JPH01137186A - Flow control method of expansion turbine in air separator - Google Patents

Flow control method of expansion turbine in air separator

Info

Publication number
JPH01137186A
JPH01137186A JP29469987A JP29469987A JPH01137186A JP H01137186 A JPH01137186 A JP H01137186A JP 29469987 A JP29469987 A JP 29469987A JP 29469987 A JP29469987 A JP 29469987A JP H01137186 A JPH01137186 A JP H01137186A
Authority
JP
Japan
Prior art keywords
flow rate
amount
turbine
chill
standard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29469987A
Other languages
Japanese (ja)
Other versions
JPH0325716B2 (en
Inventor
Yoshinobu Nakane
中根 義信
Genichi Terada
寺田 元一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP29469987A priority Critical patent/JPH01137186A/en
Publication of JPH01137186A publication Critical patent/JPH01137186A/en
Publication of JPH0325716B2 publication Critical patent/JPH0325716B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04193Division of the main heat exchange line in consecutive sections having different functions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04309Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04781Pressure changing devices, e.g. for compression, expansion, liquid pumping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/42Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/40Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval
    • F25J2240/44Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval the fluid being nitrogen

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

PURPOSE: To improve the separation efficiency of a device, by calculating a standard amount of chill from a unit required amount of chill from a feed air and the flow rate of the feed air, detecting the state of an expansion turbine for chilling and hence calculating the amount of generated chill, and adjusting the flow rate of the expansion turbine based on the comparison between the amount of generated chill and the standard amount of chill. CONSTITUTION: A unit required amount of chill is set from a feed air temperature being detected by a temperature sensor 9 and is multiplied by a feed air flow rate being detected by a flow-rate sensor 10 to calculate a standard amount of chill Qs. For an expansion turbine 7, enthalpies H1 and H2 at the entrance and exit sides of the expansion turbine 7 are calculated based on a value that is detected by temperature sensors 12 and 14 and pressure sensors 13 and 15, and the amount of generated chill ΔH(=H1 -H2 ) per unit volume of the expansion turbine 7 is calculated. By obtaining the ratio Qs/ΔG of the standard amount of chill Qs to the amount of unit generated chill ΔH, a standard turbine flow rate Fs that becomes a target value is calculated and a flow-rate regulation valve 8 is controlled to be opened and closed so that a turbine flow rate F being detected by a flow-rate sensor 11 becomes a standard turbine flow rate Fs.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、空気分離装置における膨脹タービンの流量を
適切に調整する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for appropriately adjusting the flow rate of an expansion turbine in an air separation device.

(従来技術) 従来、窒素や酸素等の沸点の差を利用する深冷分離式の
空気分離装置としては、第9図に示されるようなものが
ある。同図にJ3いて、1は原料空気圧縮機であり、こ
の原料空気圧縮機1により所要圧まで圧縮された圧縮原
料空気は、アフタクーラ等により予協冷却され、保冷箱
Bの入口に設けられた切換式主熱交換器2に送られる。
(Prior Art) Conventionally, there is a cryogenic separation type air separation apparatus that utilizes the difference in boiling points of nitrogen, oxygen, etc., as shown in FIG. 9. In the figure, J3 indicates a raw material air compressor, and the compressed raw air compressed to the required pressure by this raw material air compressor 1 is precooled by an aftercooler, etc., and is installed at the entrance of the cold storage box B. It is sent to the switching main heat exchanger 2.

この切換式主熱交換器2により、空気は液化点近くまで
冷却され、保冷箱B内の複式精留塔3のF塔3aに供給
される。この下塔3aで、最も低い沸点を有する窒素が
下塔3aの頂部方向へ上111.、粗分離される。
The switching main heat exchanger 2 cools the air to near the liquefaction point, and supplies the air to the F column 3a of the double rectification column 3 in the cold box B. In this lower column 3a, the nitrogen having the lowest boiling point is directed upward 111. to the top of the lower column 3a. , roughly separated.

この下塔3aの底部に分離貯留された富酸素液体空気は
、その中に含まれるアセチレン、メタン等の炭化水素系
物質が液体空気フィルタ4aによって除去された状態で
複式精留塔3の上塔3bへ送られ、沸点差を利用して、
上塔3bの頂部には高純度の窒素ガスが分離され、同様
に中腹部にはアルゴン含有ガスが、底部には高純度液体
酸素がそれぞれ分離される。この2ヒ塔3bの中腹部に
溜つたアルゴン含有ガスは抽出されて粗アルゴン塔へ供
給され、ここでアルゴンの粗分離が行われる。
The oxygen-enriched liquid air separated and stored at the bottom of the lower column 3a is transferred to the upper column of the double rectification column 3 in a state in which hydrocarbon substances such as acetylene and methane contained therein are removed by the liquid air filter 4a. 3b, and using the boiling point difference,
High-purity nitrogen gas is separated at the top of the upper column 3b, argon-containing gas is similarly separated at the midsection, and high-purity liquid oxygen is separated at the bottom. The argon-containing gas accumulated in the midsection of the 2H column 3b is extracted and supplied to the crude argon column, where argon is roughly separated.

なJ3、上塔3bの下部からは液体酸素が抽出されて液
体酸素フィルタ4bに通されており、ここでも上記と同
様に炭化水素系物質の除去が行なわれている。
In J3, liquid oxygen is extracted from the lower part of the upper tower 3b and passed through a liquid oxygen filter 4b, where hydrocarbon substances are removed in the same manner as above.

一方、上記上塔3bの頂部および下部からはそれぞれ製
品窒素および製品酸素が法用され、上記切換式主熱交換
器2に送られて原料空気との熱交換が行われる。また、
上塔3bの上部からは余剰の不純窒素が抽出されるとと
もに、下塔3aの中部からも不純窒素が抽出される。こ
の下塔3aからの不純窒素は、再熱窒素として直接切換
式主熱交換器2に送られた後、熱交換器5を通して−H
保冷箱Bの外部に送り出され、以下、圧縮機6および膨
張タービン7に通されることにより断熱膨脹して低温状
態となり、上記上塔3bからの不純窒素とともに減圧さ
れた状態で切換式主熱交換器2に送られる。
On the other hand, product nitrogen and product oxygen are used from the top and bottom of the upper column 3b, respectively, and are sent to the switching type main heat exchanger 2 to undergo heat exchange with the feed air. Also,
Excess impure nitrogen is extracted from the upper part of the upper column 3b, and impure nitrogen is also extracted from the middle part of the lower column 3a. The impure nitrogen from the lower column 3a is sent to the direct switching main heat exchanger 2 as reheated nitrogen, and then passed through the heat exchanger 5 to -H
It is sent to the outside of the cold storage box B, and is then passed through the compressor 6 and the expansion turbine 7, where it is adiabatically expanded and brought to a low temperature state.Then, it is reduced in pressure along with the impure nitrogen from the upper column 3b, and is then turned into a switching main heat source. sent to exchanger 2.

また、圧縮機6の上流側には流ω調整弁8が設けられ、
この流量調整弁8によって上記膨張タービン7における
流量を変化させることにより、膨張タービン7により発
生する冷熱岱が調整される。
Further, a flow ω adjustment valve 8 is provided on the upstream side of the compressor 6,
By changing the flow rate in the expansion turbine 7 using the flow rate regulating valve 8, the cooling and heating pressure generated by the expansion turbine 7 is adjusted.

ところで、上記精留塔3等は保冷箱Bによって約−17
0〜−195℃の低温状態に保たれるわけであるが、実
際には、上記切換式主熱交換器2における熱交換のロス
や液化アルゴンの抽出の際の熱ロス、あるいは大気から
の入熱や膨張タービンの熱効率等の影響によって完全な
保冷はなされておらず、このような熱ロス吊の分だけ上
記膨張タービン7によって冷熱を発生させる必要がある
By the way, the rectification column 3 etc. has a temperature of about -17
It is maintained at a low temperature of 0 to -195°C, but in reality, heat exchange loss in the switching type main heat exchanger 2, heat loss during extraction of liquefied argon, or input from the atmosphere occurs. Perfect cold storage is not achieved due to the effects of heat, thermal efficiency of the expansion turbine, etc., and it is necessary to generate cold heat by the expansion turbine 7 to compensate for such heat loss.

このような冷熱発生用の膨張タービン7の流量を調整す
る方法として、従来は、運転者が上塔3b内の液体酸素
のレベルLlj−監視し、このレベルLが下がった時に
は発生冷熱毎が不足していると判断して流量調整弁8を
開き、レベルLが上がった時には発生冷熱量が過剰であ
ると判断して流量調整弁8を絞るといった調整が行なわ
れている。
Conventionally, as a method for adjusting the flow rate of the expansion turbine 7 for generating cold heat, an operator monitors the level Llj- of liquid oxygen in the upper tower 3b, and when this level L falls, the generated cold heat is insufficient. When the level L rises, it is determined that the amount of cooling heat generated is excessive and the flow rate regulating valve 8 is throttled.

すなわち、液体酸素のレベル[の変動から、運転者の経
験に基づく判断により、手動でタービン流Fli(言換
えれば発生冷熱量)の調整が行なわれている。
That is, the turbine flow Fli (in other words, the amount of generated cooling heat) is manually adjusted based on the judgment based on the driver's experience based on the fluctuations in the level of liquid oxygen.

ところが、このように運転者の主観により流量を調整す
る方法では、流1を常に適切な値に調整し、液面レベル
しを安定した状態に保つことは困難であり、実際には調
整時に必要以上に流量を増減させてしまうことが多い。
However, with this method of adjusting the flow rate based on the driver's subjectivity, it is difficult to always adjust flow 1 to an appropriate value and keep the liquid level stable, and in reality, it is difficult to adjust the flow 1 to an appropriate value and keep the liquid level stable. In many cases, the flow rate is increased or decreased by more than the above amount.

従って、装置の分離効率(原料空気量/製品酸素敏)の
向上は難しく、液面レベルも不安定となり易い問題点が
ある。特に、この液面レベル[は下塔3aおよびF塔3
b間の熱交換に影響する重要な要県であるため、なるべ
く安定した状態に保たれることが望ましい。 ゛(発明
の目的) 本発明は上記事情に鑑み、空気分離装置における膨張タ
ービンの流量を効率良く適切に調整することができ、こ
れによって装置の分離効率の向上を図ることができる膨
張タービンの流量調整方法を提供することを目的とする
Therefore, it is difficult to improve the separation efficiency (feedstock air amount/product oxygen sensitivity) of the device, and there is a problem that the liquid level tends to become unstable. In particular, this liquid level [lower column 3a and F column 3
Since it is an important prefecture that affects heat exchange between B and B, it is desirable to keep it as stable as possible. (Objective of the Invention) In view of the above circumstances, the present invention provides an expansion turbine flow rate that can efficiently and appropriately adjust the flow rate of an expansion turbine in an air separation device, thereby improving the separation efficiency of the device. The purpose is to provide an adjustment method.

(発明の構成) 本発明は、熱交換器に給送される原料空気の温度を検出
し、この温度において原料空気から窒素、酸素、アルゴ
ン等を分離するのに要する単位必要冷熱量と、給送され
る原料空気の流量とから標IM冷熱吊を算出する一方、
冷熱用の膨張タービンの入口側と出口側とにお(プる状
態を検出して発生冷熱量を算出し、この発生冷熱量と上
記標準冷熱吊の比較に基づいて膨張タービンの流量を調
整するものである。
(Structure of the Invention) The present invention detects the temperature of feed air fed to a heat exchanger, and determines the unit required amount of cooling heat required to separate nitrogen, oxygen, argon, etc. from the feed air at this temperature, and While calculating the standard IM cooling/heating load from the flow rate of the raw material air to be sent,
The amount of cold heat generated is calculated by detecting the state of the flow between the inlet and outlet sides of the expansion turbine for cold heat, and the flow rate of the expansion turbine is adjusted based on the comparison between the generated cold heat amount and the standard cold heat ratio. It is something.

(実施例) 第1図は、本発明方法が実施される空気分離装置を示し
ており、この装置は、上記第9図の装置と同様に、原料
空気圧縮機1、切換式主熱交換器2、下塔3aおよび、
[塔3bからなる精留塔3、液体空気フィルタ4a、液
体酸素フィルタ4b。
(Example) Fig. 1 shows an air separation apparatus in which the method of the present invention is carried out, and this apparatus, like the apparatus shown in Fig. 9 above, includes a feed air compressor 1, a switching main heat exchanger 2. Lower tower 3a and
[A rectification column 3 consisting of a column 3b, a liquid air filter 4a, and a liquid oxygen filter 4b.

熱交換器5、圧縮機6、膨張タービン7、および流量調
整弁8を備えている。
It includes a heat exchanger 5, a compressor 6, an expansion turbine 7, and a flow rate regulating valve 8.

さらにこの装置において、切換式主熱交換器2の上流側
には、給送される原料空気の温度および流1を検出する
温度センサ9および流量センナ10が設りられ、同様に
、流量調整弁8の下流側には流量センサ11が、膨脹タ
ービン7の入口側付近には温度センサ12および圧力セ
ンサ13が、膨脹タービン7の出口側付近には温度セン
サ14および圧力センサ15が設けられている。また、
精留塔3の上塔3bには、液体酸素の液面レベルLを検
出するレベルセンサ16が設けられ、以上、の各センサ
の検出値が制御部17に入力されるようになっている。
Further, in this device, a temperature sensor 9 and a flow rate sensor 10 are installed on the upstream side of the switching type main heat exchanger 2 to detect the temperature and flow 1 of the feed air to be fed, and a flow rate regulating valve is also provided. A flow rate sensor 11 is provided on the downstream side of the expansion turbine 8, a temperature sensor 12 and a pressure sensor 13 are provided near the inlet side of the expansion turbine 7, and a temperature sensor 14 and a pressure sensor 15 are provided near the exit side of the expansion turbine 7. . Also,
The upper column 3b of the rectification column 3 is provided with a level sensor 16 for detecting the liquid level L of liquid oxygen, and the detection values of each of the above sensors are input to the control section 17.

この制御部17は、第2図に示されるように、データ読
取り装置18、レコーダ19、コンピュータ20.プリ
ンタ21およびデイスプレィ22を備え、各センサから
入力された検出値をデータ読取り装置18で読取ってレ
コーダ19に入力し、このレコーダ1つからコンピュー
タ20にデータをデジタル入力するようになっている。
As shown in FIG. 2, this control section 17 includes a data reading device 18, a recorder 19, a computer 20. It is equipped with a printer 21 and a display 22, and the detected values input from each sensor are read by a data reading device 18 and input to a recorder 19, and data is digitally input from this recorder to a computer 20.

コンピュータ20は、これらの入力値から流量調整弁8
の調整に必要な値を算出し、そのデータをプリンタ21
およびデイスプレィ22に出力するとともに、流φ制御
弁8に間開制御信号を出力する。
The computer 20 determines the flow rate adjustment valve 8 from these input values.
Calculate the values necessary for adjustment and send the data to the printer 21.
and is output to the display 22, and an opening control signal is output to the flow φ control valve 8.

第3図は、この制御部170機能構成を示したbのであ
る。同図において、標準冷熱は設定部23は、温度セン
サ9および流量センサ10により検出された原料空気の
温度および流量から、後に記すように、原料空気から窒
素酸素、アルゴンを分離するのに要する標準冷熱ff1
Qsを算出するものである。
FIG. 3b shows the functional configuration of this control section 170. In the figure, the standard cooling/heat setting unit 23 determines the standard required for separating nitrogen, oxygen, and argon from the raw air, based on the temperature and flow rate of the raw air detected by the temperature sensor 9 and the flow rate sensor 10, as described later. Cold heat ff1
This is to calculate Qs.

一方、タービン入口側エンタルピ算出部24およびター
ビン出口側エンタルピ算出部25は、温度センサ12お
よび圧力センサ13により検出されたタービン入口側の
温度および圧力、温度センサ14および圧力センサ15
により検出されたタービン出口側の温度および圧力によ
り、タービン入口側のエンタルピH1およびタービン出
口側のエンタルピ1」2をそれぞれ算出するものであり
、単位発生冷熱型算出部26は、これらのエンタルピh
h、H2の差をとることにより、1Nゴ当たりの発生冷
熱耶(単位発生冷熱量)Δト1を算出するものである。
On the other hand, the turbine inlet side enthalpy calculation unit 24 and the turbine outlet side enthalpy calculation unit 25 calculate the temperature and pressure on the turbine inlet side detected by the temperature sensor 12 and the pressure sensor 13, and calculate the temperature and pressure detected by the temperature sensor 12 and the pressure sensor 13.
The enthalpy H1 on the turbine inlet side and the enthalpy 1''2 on the turbine outlet side are respectively calculated based on the temperature and pressure on the turbine outlet side detected by
By taking the difference between h and H2, the cold heat generated per 1N (unit generated cold heat amount) Δto1 is calculated.

標準タービン流量設定部27は、上記標準冷熱量osa
3よび単位必要冷熱量八Hから、目標値である標準ター
ビン流ff1Fsを設定するものであり、流量制御部2
8は、タービン流ff1Fを検出する流量センサ11の
出力を受けながら、このタービン流fjiFが上記標準
タービン流ff1Fsとなるように流量調整弁8の開閉
制御を行う。
The standard turbine flow rate setting unit 27 sets the standard cooling energy amount osa
The standard turbine flow ff1Fs, which is the target value, is set from 3 and the unit required cooling heat amount 8H, and the flow rate control unit 2
8 controls the opening and closing of the flow rate regulating valve 8 so that the turbine flow fjiF becomes the standard turbine flow ff1Fs while receiving the output of the flow rate sensor 11 that detects the turbine flow ff1F.

次に、この制御部17による実際の制6I1wJ作を、
第4図のフローチャートを参照しながら説明する。
Next, the actual control 6I1wJ production by this control section 17 is as follows.
This will be explained with reference to the flowchart shown in FIG.

まず、温度センサ9により検出された原料空気温度から
単位必要冷熱fitH3[kcal/Nゴ1を設定する
(ステップS1)。この単位必要冷熱量は、第5図に示
されるグラフにより求められる。この第5図のグラフは
、原料空気温度と、単位必要冷熱fit(IN−Idの
原料空気が導入された際に必要な膨脹タービン7の冷熱
発生量)との関係を示したものであり、この関係は予め
実験により求められたものである。
First, a unit required cold heat fitH3 [kcal/Ngo1] is set from the raw air temperature detected by the temperature sensor 9 (step S1). This unit required amount of cooling heat is obtained from the graph shown in FIG. The graph in FIG. 5 shows the relationship between the feed air temperature and the unit required cold heat fit (the amount of cold heat generated by the expansion turbine 7 when the feed air of IN-Id is introduced). This relationship was determined in advance through experiments.

なお、このグラフは、原料空気流量が特定の範囲内にあ
り、かつアルゴンの抽出量がほぼ一定であるような条件
の下で求められたものであり、原料空気流量やアルゴン
抽出量が変化すると、それに応じて原料空気温度と単位
必要冷熱量との関係も変動する。従って、原料空気流量
やアルゴン抽出量を広範囲に亘って設定し、それぞれの
条件下で運転する場合には、その設定される原料空気流
量やアルゴン抽出量に応じた原料空気温度と甲泣必要冷
熱昂との関係をそれぞれ求めておくようにすればよい。
Note that this graph was obtained under the conditions that the feed air flow rate was within a specific range and the amount of argon extracted was approximately constant.If the feed air flow rate or the amount of argon extracted changes , the relationship between the raw air temperature and the required unit amount of cooling energy also changes accordingly. Therefore, when the feed air flow rate and argon extraction amount are set over a wide range and the operation is performed under each condition, the feed air temperature and required cooling temperature will be adjusted according to the set feed air flow rate and argon extraction amount. All you have to do is find out their relationship with Kou.

そして、このグラフから求められた中位必要冷熱ff1
H3に、流量センサ10により検出された1原料空気流
II F 1[N u/hrlを乗じることにより、標
準冷熱m Q s [kcal/hrlを算出する(ス
テップ82 )。
Then, the intermediate required cooling heat ff1 obtained from this graph
H3 is multiplied by one raw material air flow II F 1 [N u/hrl detected by the flow rate sensor 10 to calculate the standard cold heat m Q s [kcal/hrl (step 82 ).

一方、膨脹タービン7については、温度センサ12.1
4および圧力センサ13.i5により検出された値に基
づいて、WA脹タービン7の入口側および出口側のそれ
ぞれにおけるエンタルピH+ 。
On the other hand, for the expansion turbine 7, the temperature sensor 12.1
4 and pressure sensor 13. Based on the values detected by i5, the enthalpy H+ on each of the inlet and outlet sides of the WA expansion turbine 7.

H2[kcal/N 1Llを算出しくステップS3)
、これらの値から、膨脹タービン7の単位体積当たりの
発生冷熱吊ΔH(=H1−H2)を算出する(ステップ
34)。そして、上記標準冷熱ffiQsと単位発生冷
熱量ΔHの比Qs/ΔHをとることにより、目標値とな
る標準タービン流量F s[N 11t/hrlを算出
しくステップS5)、上記流量センサ11により検出さ
れるタービン流ff1Fがこの標準タービン流ff1F
sとなるように温情調整弁8の開閉制皿を行う(ステッ
プSs)。
H2 [calculate kcal/N 1Ll Step S3)
, From these values, the generated cooling/heating hang ΔH (=H1-H2) per unit volume of the expansion turbine 7 is calculated (step 34). Then, by taking the ratio Qs/ΔH of the standard cold heat ffiQs and the unit generated cold heat amount ΔH, the standard turbine flow rate F s[N 11t/hrl, which is the target value, is calculated.Step S5) is detected by the flow rate sensor 11. The turbine flow ff1F is the standard turbine flow ff1F.
The temperature regulating valve 8 is controlled to open and close so that the temperature becomes s (step Ss).

このような方法により膨張タービン7の流量調整を行う
と、上塔3bの液面レベルLは時間の経過とともにほぼ
第6図のように変化する。この図におけるレベルLの周
191的な急落は、上記第1図における液体空気フィル
タ4aおよび液体酸素フィルタ4bの切換によるもので
ある。
When the flow rate of the expansion turbine 7 is adjusted by such a method, the liquid level L in the upper tower 3b changes over time as shown in FIG. 6. The sudden drop in the level L along the circumference 191 in this figure is due to the switching of the liquid air filter 4a and the liquid oxygen filter 4b in FIG. 1 above.

つまり、これらのフィルタ4a、4bは並行してそれぞ
れ2つずつ設けられ、一方を使用している間に他方が活
性化されるようになっており、使用状態のフィルタと使
用していないフィルタとが周期的に切換えられるように
なっている。この切換時、においで、使用していなかっ
た側のフィルタを予冷するために発生冷熱が使われ、こ
れによってレベルLが急激に降下するのである。
In other words, two of these filters 4a and 4b are provided in parallel, and while one is being used, the other is activated, and there are two filters in use and one not in use. can be switched periodically. At the time of this switching, the generated cold energy is used to pre-cool the filter on the side that is not in use, causing the level L to drop rapidly.

従って、上記標準タービン流ff1Fsは、このような
フィルタ交換によるレベル降下も考慮して設定されてお
り、この標準タービン流量Fsに基づいてタービン流1
flFを調整することにより、上記降下分だけレベル[
が漸次的に増大するようになっている(第6図参照)。
Therefore, the above-mentioned standard turbine flow rate ff1Fs is set taking into account the level drop caused by such filter replacement, and the turbine flow rate ff1Fs is set based on this standard turbine flow rate Fs.
By adjusting flF, the level [
gradually increases (see Figure 6).

第7図は、この標準タービン流fftQsに基づく調整
の効果を実験的に明確化したものである。同図において
、線61〜65は、それぞれ液面レベルし、標準冷熱吊
Qs、発生冷熱量(FxΔH)、標準タービン流量Fs
1および実際のタービン流fiFの時間的推移を示した
ものであるが、同図の左側部分に示されるように、実際
のタービン流ωF(線65)を標準タービン流量Qs 
 (線64)に調整した状態では液面レベルL(線61
)が漸次的に増加するのに対し、同図中央部分に示され
るように、タービン流ff1Fを標準タービン流ff1
FSから僅かに下げると、液面レベルLが著しく降下す
る。従って、タービン流f)Fを標準タービン流Ffi
Fsに合せれば、効率の良い安定した運転を行うことが
できることが分る。
FIG. 7 experimentally clarifies the effect of adjustment based on this standard turbine flow fftQs. In the same figure, lines 61 to 65 indicate the liquid level, standard cooling and heating load Qs, generated cooling heat amount (FxΔH), and standard turbine flow rate Fs.
1 and the time course of the actual turbine flow fiF. As shown on the left side of the figure, the actual turbine flow ωF (line 65) is expressed as the standard turbine flow rate Qs.
(line 64), the liquid level is adjusted to L (line 61).
) gradually increases, while the turbine flow ff1F is changed to the standard turbine flow ff1 as shown in the center of the figure.
When the liquid level L is slightly lowered from FS, the liquid level L drops significantly. Therefore, the turbine flow f)F is defined as the standard turbine flow Ffi
It can be seen that efficient and stable operation can be achieved by adjusting to Fs.

以上のようにこの実施例方法によれば、各センサの検出
値に塁づいて標準タービン流ff1Fsを設定し、この
標準タービン流ff1Fsに合致するようにタービン流
量Fを調整しているので、従来のように運転者によって
流量調整がばらついたり、必要以上に流量を増減させた
りすることがなく、タービン流量Fの調整を効率良く常
に適切に行うことができる。
As described above, according to the method of this embodiment, the standard turbine flow ff1Fs is set based on the detection value of each sensor, and the turbine flow rate F is adjusted to match this standard turbine flow ff1Fs. The turbine flow rate F can be adjusted efficiently and appropriately at all times without causing variations in flow rate adjustment depending on the operator or increasing or decreasing the flow rate more than necessary.

なお、この実施例では、原料空気流量およびアルゴン抽
出量に応じた原料空気温度と単位発生冷熱量との関係を
予め求めるようにしているが、本発明方法はこれに限ら
ず、例えば原料空気温度と単位必要冷熱mt−hの関係
は一定の条件下におけるもののみを求めておき、上記実
施例と同様に標準タービン流量Fsを求めた後に、第8
図に示されるように、この標準タービンff1Fsに原
料空気流量や単位必要冷熱ff1H3の変動に応じた補
正係数Gを乗じ(ステップS7)、この補正された標準
タービン流ff1Fs ’ にタービン流量Fを調整す
る(ステップ86′)ようにしてもよい。
In this embodiment, the relationship between the raw air temperature and the unit generated cooling heat amount is determined in advance according to the raw material air flow rate and the argon extraction amount, but the method of the present invention is not limited to this. The relationship between the unit required cooling heat mt-h is determined only under certain conditions, and after determining the standard turbine flow rate Fs in the same manner as in the above example, the eighth
As shown in the figure, this standard turbine flow ff1Fs is multiplied by a correction coefficient G according to fluctuations in the feed air flow rate and the unit required cooling heat ff1H3 (step S7), and the turbine flow rate F is adjusted to this corrected standard turbine flow ff1Fs'. (step 86').

さらに、上記のように液面レベルセンサ16を設Gノ、
これによって液面レベルLの監視を行うようにすれば、
予期せぬ原因によってレベルLが変動した時に迅速に対
応することができる。また、この方法のように標準ター
ビン流ff1Fsを目安に流fft調整をしている場合
には、通常状態では液面レベルLが安定しているはずで
あるがら、この液面レベル1−の変動により、装置の故
障等も従来に比べより早期に発見することができる。
Furthermore, the liquid level sensor 16 is installed as described above,
If the liquid level L is monitored using this,
It is possible to quickly respond when the level L fluctuates due to unexpected causes. In addition, when the flow fft is adjusted using the standard turbine flow ff1Fs as a guide as in this method, although the liquid level L should be stable under normal conditions, this fluctuation in the liquid level 1- As a result, equipment failures can be detected earlier than in the past.

さらに、この液面レベルセンサ16によって空気分離装
置の運転中にレベルLの変動を追跡し、このレベルLが
より安定した状態となるように原料空気温度と単位発生
冷熱量との関係式を運転中に逐次補正し、あるいは一定
期間蓄積したデータから回帰分析して上記関係式を更新
していくようにすれば、この関係式を用いて行う流ω調
整の精度をより高いものとすることができる。
Furthermore, this liquid level sensor 16 tracks fluctuations in the level L during operation of the air separation device, and operates the relational expression between the raw air temperature and the unit amount of cooling heat generated so that this level L becomes more stable. If the above relational expression is updated by sequentially correcting the flow rate or performing regression analysis from data accumulated over a certain period of time, the accuracy of the flow ω adjustment performed using this relational expression can be made higher. can.

なお、第1図の実施例では、算出された標準タービン流
ff1Fsに基づいてタービン流量を自動的に調整する
ものを示しているが、本発明方法はこれに限らず、算出
された標準タービン流量Fsに応じて運転者が手動で流
量調整を行うようにしても構わない。この場合、上記プ
リンタ21あるいはデイスプレィ22に標準タービン流
けを表示するだけでなく、冷熱不足量、すなわち現在の
発生冷熱量がどれだけ不足しているかを表示するように
すれば、運転者が調整する際の大きな目安となる。
Although the embodiment shown in FIG. 1 shows a method in which the turbine flow rate is automatically adjusted based on the calculated standard turbine flow ff1Fs, the method of the present invention is not limited to this. The driver may manually adjust the flow rate according to Fs. In this case, in addition to displaying the standard turbine flow on the printer 21 or display 22, it would also be possible to display the amount of cooling heat deficiency, that is, how much cooling heat is currently being generated, so that the operator can make adjustments. This is a great guideline when doing so.

また上記実施例では、標準冷熱量QSを単位発生冷熱用
ΔHで除した値(すなわち標準タービン流ff1Fs 
>と実際のタービン流量Fとを比較するようにしている
が、標準冷熱1fiQ3と、単位必要冷熱量八Hに実際
のタービン流ff1Fを乗じた全発生冷熱ff1(FX
八へ)とを直接比較するようにしてもよい。
Further, in the above embodiment, the value obtained by dividing the standard amount of cold energy QS by the unit generated cold energy ΔH (that is, the standard turbine flow ff1Fs
> and the actual turbine flow rate F, the standard cold heat 1fiQ3 and the total generated cold heat ff1 (FX
8) may be directly compared.

(発明の効果) 以上のように本発明は、原料空気から窒集、酸素、アル
ゴン等を分離するのに要する単位冷熱発生量と、給送さ
れる原料空気の流量とから標準冷熱量を算出する一方、
冷熱用の膨脂タービンの入口側と出口側とにおける状態
から発生冷熱はを算出し、この発生冷熱量と上記標準冷
熱量の比較に基づいて膨脂タービンの流量を調整するも
のであるので、従来のように液体酸素の液面レベルの監
視によって調整を行う方法に比べ、流量を必要以上に増
減させることなく、膨脂タービンの流量調整を適切に安
定して行うことができ、これによって装置の分離効率の
向上を図ることができる効果がある。
(Effects of the Invention) As described above, the present invention calculates the standard amount of cold heat from the unit amount of cold heat generation required to separate nitrogen, oxygen, argon, etc. from the feed air and the flow rate of the feed air. On the other hand,
The generated cold heat is calculated from the conditions at the inlet and outlet sides of the fat expansion turbine for cold heat, and the flow rate of the fat expansion turbine is adjusted based on a comparison between the generated cold heat amount and the standard cold heat amount. Compared to the conventional method of adjusting by monitoring the level of liquid oxygen, it is possible to properly and stably adjust the flow rate of the fat expansion turbine without increasing or decreasing the flow rate more than necessary. This has the effect of improving the separation efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例方法が実施される空気分離装
置の構造図、第2図は同装置における制御部のハード構
成図、第3図は同制御部の機能梠成図、第4図は同制御
部の制御I切動作示すフローチャート、第5図は予め実
験により求められた原料空気温度と単位必要冷熱mとの
関係を示すグラフ、第6図は上記方法が実施された際の
液面レベルの時間的変化を示すグラフ、第7図はタービ
ン流量の変化に応じた発生冷熱量および液面レベルの変
化を示したグラフ、第8図は他の実施例における$11
 ill動作を示すフローチャート、第9図は従来の空
気分離装置の構造図である。 7・・・膨脂タービン、8・・・流量調整弁、9.12
゜14・・・温度センサ、10.11・・・流量センサ
、13.15・・・圧力センサ、17・・・制御部、2
3・・・標準冷熱吊設室部、26・・・単位発生冷熱喰
算出部、27・・・標準タービン流量設定部。 特許出願人     株式会社 神戸製鋼所代 理 人
     弁理士  小谷 悦司同       弁理
士  長1) 正向       弁理士  板谷 康
夫第  2  図 +8       19       20     
21第  4   図 第6図 第  7  図 すr5
FIG. 1 is a structural diagram of an air separation device in which an embodiment of the method of the present invention is implemented, FIG. Figure 4 is a flowchart showing the control I off operation of the control section, Figure 5 is a graph showing the relationship between the raw air temperature determined in advance by experiment and the unit required cooling heat m, and Figure 6 is the flow chart when the above method is implemented. FIG. 7 is a graph showing changes in the amount of cold heat generated and the liquid level according to changes in the turbine flow rate. FIG. 8 is a graph showing changes in the liquid level over time in another example.
A flowchart showing the ill operation, and FIG. 9 is a structural diagram of a conventional air separation device. 7... Fat expansion turbine, 8... Flow rate adjustment valve, 9.12
゜14...Temperature sensor, 10.11...Flow rate sensor, 13.15...Pressure sensor, 17...Control unit, 2
3... Standard cooling and heating suspension chamber section, 26... Unit generated cooling and heat consumption calculation section, 27... Standard turbine flow rate setting section. Patent applicant Kobe Steel, Ltd. Agent Patent attorney Etsushi Kotani Patent attorney Chief 1) Masamukai Patent attorney Yasuo Itaya No. 2 Figure +8 19 20
21 Figure 4 Figure 6 Figure 7 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 1、熱交換器に給送される原料空気の温度を検出し、こ
の温度において原料空気から窒素、酸素、アルゴン等を
分離するのに要する単位冷熱発生量と、給送される原料
空気の流量とから標準冷熱量を算出する一方、冷熱用の
膨脹タービンの入口側と出口側とにおける状態を検出し
て発生冷熱量を算出し、この発生冷熱量と上記標準冷熱
用の比較に基づいて膨脹タービンの流量を調整すること
を特徴とする空気分離装置における膨脹タービンの流量
調整方法。
1. Detect the temperature of the feed air fed to the heat exchanger, and calculate the unit amount of cold heat generation required to separate nitrogen, oxygen, argon, etc. from the feed air at this temperature, and the flow rate of the feed air fed. While calculating the standard amount of cold energy from A method for adjusting the flow rate of an expansion turbine in an air separation device, the method comprising adjusting the flow rate of the turbine.
JP29469987A 1987-11-20 1987-11-20 Flow control method of expansion turbine in air separator Granted JPH01137186A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29469987A JPH01137186A (en) 1987-11-20 1987-11-20 Flow control method of expansion turbine in air separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29469987A JPH01137186A (en) 1987-11-20 1987-11-20 Flow control method of expansion turbine in air separator

Publications (2)

Publication Number Publication Date
JPH01137186A true JPH01137186A (en) 1989-05-30
JPH0325716B2 JPH0325716B2 (en) 1991-04-08

Family

ID=17811159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29469987A Granted JPH01137186A (en) 1987-11-20 1987-11-20 Flow control method of expansion turbine in air separator

Country Status (1)

Country Link
JP (1) JPH01137186A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220142528A (en) 2020-12-23 2022-10-21 아이캔 컴퍼니 엘티디. electric hydraulic actuator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220142528A (en) 2020-12-23 2022-10-21 아이캔 컴퍼니 엘티디. electric hydraulic actuator

Also Published As

Publication number Publication date
JPH0325716B2 (en) 1991-04-08

Similar Documents

Publication Publication Date Title
JP5752731B2 (en) Method and system for optimizing argon recovery in an air separation unit
JPH07332845A (en) Control method of capacity of cryogenic rectification system
JPH01137186A (en) Flow control method of expansion turbine in air separator
JP2004163003A (en) Control method of air separator
CN108731378B (en) Nitrogen production system for producing nitrogen gas of different purities and nitrogen gas production method
CN101796360B (en) Method for controlling a cryogenic distillation unit
JP6753298B2 (en) Air liquefaction separation method and air liquefaction separation device
US4261719A (en) Method of and apparatus for controlling rate of material air supply to air separation plant
JP3644918B2 (en) Air separation device and air separation method
JP4450503B2 (en) Product gas backup device
RU2748320C2 (en) Method and device for producing air gases by cryogenic air separation using variable output of liquefied products and electricity consumption
JP3027368B1 (en) Air liquefaction separation device and control method thereof
KR100454810B1 (en) Method of nitrogen gas manufacture using an air separator in the type of sub-zero
JP7446569B2 (en) Product gas supply amount adjustment device and air separation device equipped with the same
JP7460974B1 (en) Nitrogen generator and nitrogen generation method
JP3181482B2 (en) High-purity nitrogen gas production method and apparatus used therefor
RU2741174C2 (en) Method of producing air gases by cryogenic air separation
JP3213848B2 (en) Nitrogen production apparatus and control method thereof
JP3710252B2 (en) Control method of air liquefaction separation device
JP4091388B2 (en) Air separation device and control method of raw material air compressor
JP2726970B2 (en) Control method of air liquefaction / separation equipment corresponding to demand fluctuation
JP2967427B2 (en) Air separation method and apparatus suitable for demand fluctuation
JPH05149679A (en) Air liquefying and separating device and its controlling method
JP4104726B2 (en) Operation method of air liquefaction separator
JPS6314074A (en) Method of controlling operation of fractionating column in air separator