JPH01136389A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPH01136389A
JPH01136389A JP62295486A JP29548687A JPH01136389A JP H01136389 A JPH01136389 A JP H01136389A JP 62295486 A JP62295486 A JP 62295486A JP 29548687 A JP29548687 A JP 29548687A JP H01136389 A JPH01136389 A JP H01136389A
Authority
JP
Japan
Prior art keywords
active layer
pores
beams
semiconductor laser
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62295486A
Other languages
Japanese (ja)
Inventor
Susumu Asada
麻田 進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP62295486A priority Critical patent/JPH01136389A/en
Publication of JPH01136389A publication Critical patent/JPH01136389A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers

Abstract

PURPOSE:To narrow an outgoing spread angle in the face direction, and to project beams to sections except the in-face direction by tapering a sectional shape along the axis of a pore reaching a striped active layer from the surface at an end section on the active layer side. CONSTITUTION:An active layer 12 is formed into a semiconductor clad layer 11 on a semiconductor substrate 10, and sectional shapes along the axes of pores 14 are formed to a tapered shape. Consequently, since tapered sections 21 in which end sections on the active layer 12 side of the pores 14 are formed to the tapered shape are shaped, emission from the active layer 12 is projected as face-direction outgoing beams 15 besides in-face outgoing beams 13. Since a semiconductor laser 16 can project beams within narrow ranges in the axial direction of the pores, a desired light-receiving section in another face type optical information processing element 17 arranged to an upper section can be irradiated with beams. Said pores 14 can be formed easily by a focussed ion beam device for an AuSiBe liquid metallic ion source.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光通信や光情報処理に用いられる半導体レーザ
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a semiconductor laser used in optical communications and optical information processing.

(従来の技術とその問題点) 半導体レーザは光通信や光情報処理における光接続にお
いて、その光出射方向が問題になっている。特に電気配
線が不可能となりつつある問題の改善のため、面内に多
数の光源、受光器などを並べ、面と面の間を光でつない
で大量の情報の処理演算を行なう固型光情報処理素子が
重要になりつつある。そしてこの固型光情報処理素子に
おいて、面間を結ぶ方向及び面内方向に発光でき、面内
に集積できる面接レーザが求められている。従来、この
ような面接レーザは実際に作製されたものが少ないのが
現状である。すなわち、既存の面内方向に発光するレー
ザに対し、面内にレーザ端面を持つ真の面接レーザも開
発されつつあるが、発振閾電流特性や信頼性が集積化に
は未だ不十分なことや、面垂直方向以外には発光を目指
してないなどの問題があった。従って、発振閾電流特性
や信頼性においてすぐれた面内発光型のレーザを利用す
るのが、最も現実的であるが、面接レーザにしたものは
レーザ端面近傍に45°エツチングミラーを設けたもの
が従来知られている程度であった。 45”エツチング
ミラーの従来例はアブライド・フィジイクス・レターズ
1985年第46巻第115頁(Z、L、Liau a
nd J、N、Walpole、 Appl、 Phy
s、 Lett。
(Prior Art and its Problems) The light emission direction of semiconductor lasers has become a problem in optical connections in optical communications and optical information processing. In particular, in order to improve the problem where electrical wiring is becoming impossible, solid-state optical information is used to process large amounts of information by arranging a large number of light sources, light receivers, etc. within a surface and connecting the surfaces with light. Processing elements are becoming important. In this solid-state optical information processing device, there is a need for a surface laser that can emit light in the direction connecting the surfaces and in the in-plane direction, and that can be integrated within the surface. Conventionally, the current situation is that very few such interview lasers have actually been manufactured. In other words, in contrast to existing lasers that emit light in the in-plane direction, true surface lasers with laser end faces in the plane are being developed, but the oscillation threshold current characteristics and reliability are still insufficient for integration. , there were problems such as not aiming to emit light in any direction other than perpendicular to the surface. Therefore, it is most practical to use an in-plane laser with excellent oscillation threshold current characteristics and reliability, but a surface laser with a 45° etching mirror near the laser end face is most practical. This was at a level that was previously known. A conventional example of a 45" etching mirror is described in Abride Physics Letters, 1985, Vol. 46, p. 115 (Z, L, Liau a
nd J., N., Walpole, Appl., Phy.
s, Lett.

並、 115(1985) )に記載きれている。しか
し、半導体レーザの場合、レーザ端面から、光軸のまわ
りに光が放射状に出射するから、45°エツチングミラ
ーもあまり有効でない、特に面垂直方向は出射角が大き
いことから、出射光のうち、ミラーに入射しないものが
多いこと、ミラーに入射しても反射光が垂直壁面により
散乱きれるなど、所望の面垂直方向以外に光が放散し、
面方向の出射方向が所望と違って広いという問題があっ
た。更に、前記の固型光情報処理素子に求められる光源
は、面間を光で結ぶ際に、光の出射方向をある程度狭く
し、できれば1個のレーザから複数方向に光を出射でき
ることが望ましい、しかし、この様な構造の半導体レー
ザは従来知られていなかった。
115 (1985)). However, in the case of a semiconductor laser, the light is emitted radially from the laser end face around the optical axis, so a 45° etching mirror is not very effective.Especially in the direction perpendicular to the surface, the emission angle is large, so of the emitted light, There are many things that do not enter the mirror, and even if the reflected light does enter the mirror, it is scattered by the vertical wall surface, and the light is scattered in a direction other than the direction perpendicular to the desired surface.
There was a problem that the outgoing direction in the planar direction was wider than desired. Furthermore, it is desirable that the light source required for the solid-state optical information processing device described above should be able to narrow the light emission direction to some extent when connecting surfaces with light, and if possible, be able to emit light in multiple directions from one laser. However, a semiconductor laser with such a structure has not been known so far.

そこで、本発明の目的は、上記の従来素子の問題点を改
善し、活性層の面内方向だけでなく、活性層面に角度を
なす方向(面方向)へも光の出射が可能であり、面方向
への出射広がり角が狭く、面内方向以外に少なくとも1
つ゛以上の方向に出射可能な、すなわち、面内方向以外
への光接続が容易な、従って固型光情報処理素子に適し
た半導体レーザを提供することである。
Therefore, an object of the present invention is to improve the problems of the above-mentioned conventional elements, and to make it possible to emit light not only in the in-plane direction of the active layer but also in the direction at an angle to the active layer surface (in-plane direction). The emission spread angle in the in-plane direction is narrow, and at least 1 in the in-plane direction
It is an object of the present invention to provide a semiconductor laser that can emit light in more than one direction, that is, can easily connect optically in directions other than the in-plane direction, and is therefore suitable for a solid-state optical information processing device.

(問題点を解決するための手段) 前述の問題点を解決して上記目的を達成するために本発
明が提供する手段は、半導体基板上の層状半導体中にス
トライプ状の活性層を有する半導体レーザであって、前
記半導体レーザの表面から前記ストライプ状の活性層に
到達する少なくとも1個の細孔を備え、前記細孔の軸に
沿った断面形状が前記活性層側の端部においてテーパ状
に先すぼまりになっていることを特徴とする。
(Means for Solving the Problems) Means provided by the present invention in order to solve the above-mentioned problems and achieve the above objects is a semiconductor laser having a striped active layer in a layered semiconductor on a semiconductor substrate. at least one pore reaching the striped active layer from the surface of the semiconductor laser, and a cross-sectional shape along the axis of the pore is tapered at an end on the active layer side. It is characterized by a tapered tip.

(発明の作用原理) 本発明の半導体レーザでは、本来面内方向の出射光を半
導体による反射散乱を利用して面方向に向けるようにし
ている。第1図は本発明の一実施例の半導体レーザを示
す模式的斜視図であり、以下に一例として本図を参照し
ながら本発明の作用原理を説明する。
(Principle of Operation of the Invention) In the semiconductor laser of the present invention, emitted light originally in the in-plane direction is directed in the in-plane direction by utilizing reflection and scattering by the semiconductor. FIG. 1 is a schematic perspective view showing a semiconductor laser according to an embodiment of the present invention, and the principle of operation of the present invention will be explained below as an example with reference to this figure.

本発明の半導体レーザは、半導体基板10上の半導体ク
ラッド層11中に活性層12を設けてなり、通常の半導
体レーザと同じ層構造をなしている。ただし、本発明の
半導体レーザでは、素子表面から活性層12に達する細
孔14を少なくとも1個設けた点が従来と異なる。この
細孔14が設けであるから、活性層12からの発光は、
面内出射光13の他に面方向出射光15としても出射き
れる0本発明の半導体レーザ16は、細孔の軸方向の狭
い範囲に光を出射できるから、上方に配置された他の固
型光情報処理素子17の所望の受光部に光を照射するこ
とが可能となる。
The semiconductor laser of the present invention has an active layer 12 provided in a semiconductor cladding layer 11 on a semiconductor substrate 10, and has the same layer structure as a normal semiconductor laser. However, the semiconductor laser of the present invention is different from the conventional semiconductor laser in that at least one pore 14 reaching the active layer 12 from the element surface is provided. Since the pores 14 are provided, the light emitted from the active layer 12 is
The semiconductor laser 16 of the present invention, which can emit in-plane emitted light 15 as well as in-plane emitted light 15, can emit light within a narrow range in the axial direction of the pore. It becomes possible to irradiate light to a desired light receiving portion of the optical information processing element 17.

本発明の構造では、活性層12からの出射光を細孔14
の軸に沿った狭い方向に導いて外部に出射するための工
夫として、第2図に断面図で示すように、細孔14の軸
に沿った断面形状を先すぼまりのテーパ状にした。第2
図のように、細孔14の活性層12側の端部をテーパ状
にしたテーパ状部21を設けることにより、光の取り出
し効率が高く、かつ光の広がりの狭い面方向光出射が達
成きれる。
In the structure of the present invention, the light emitted from the active layer 12 is transmitted through the pores 14.
As a device to guide the light in a narrow direction along the axis of the pore 14 and emit it to the outside, the cross-sectional shape of the pore 14 along the axis is tapered to a narrow point, as shown in the cross-sectional view in Fig. 2. . Second
As shown in the figure, by providing a tapered portion 21 in which the end of the pore 14 on the active layer 12 side is tapered, it is possible to achieve high light extraction efficiency and in-plane light emission with a narrow light spread. .

以下、本発明の実施例につい゛て更に詳しく説明する。Embodiments of the present invention will be described in more detail below.

(実施例) 第1図は、前述のとおり、本発明の一実施例を示す模式
的な斜視図である0本実施例は、通常の半導体レーザ作
製工程に従って基板10上にクラッド層11とストライ
プ状活性層12を形成した後、集束イオンビーム装置を
用い、ストライプ状活性層12の所望部分にまで届く細
孔14を形成した。この細孔14の活性層12側先端は
テーパ状に先ぼそりになっている0本実施例の場合、1
.5−厚のp型AQGaAsクラッド層を突き抜け0.
 IJIfllのGaAs活性層12に到達する細孔1
4は、Au5iBe液体金属イオンソースの集束イオン
ビーム装置により、ビーム径0.4−のAuイオンビー
ムでエツチングすることにより形成した。細孔14の内
径は表面側で1−にした0本エツチング法ではエツチン
グ物質の細孔壁への再付着現象があるから、先端部でテ
ーパ状に細くなる細孔14を容易に形成することができ
る。
(Example) As described above, FIG. 1 is a schematic perspective view showing an example of the present invention. In this example, a cladding layer 11 and stripes are formed on a substrate 10 according to a normal semiconductor laser manufacturing process. After the striped active layer 12 was formed, pores 14 reaching desired portions of the striped active layer 12 were formed using a focused ion beam device. The tips of the pores 14 on the side of the active layer 12 are tapered.
.. Penetrates through 5-thick p-type AQGaAs cladding layer 0.
Pore 1 reaching GaAs active layer 12 of IJIfll
No. 4 was formed by etching with an Au ion beam having a beam diameter of 0.4 - using a focused ion beam device with an Au5iBe liquid metal ion source. In the 0-line etching method in which the inner diameter of the pores 14 is set to 1- on the surface side, there is a phenomenon in which the etching material re-attaches to the pore walls, so it is easy to form the pores 14 that taper at the tip. Can be done.

細孔14の軸方向は、第1図に示すところから明らかな
ように一様ではない、すなわち、細孔14には軸方向が
素子表面に垂直なものの他、表面に垂直な軸から傾いた
ものもある。
The axial direction of the pores 14 is not uniform as shown in FIG. There are some things.

このように形成した素子に電極を設け、半導体レーザと
して完成して、通電した結果、発振電流特性が従来素子
とほぼ同等であり、従来のエツチングミラーによる固型
発光レーザに比べ面方向へのビーム広がりの狭い出射光
が得られた。更にこの素子の上方に面上に集積して並べ
た受光素子への光出射も能率よく行なえ、面型光情報処
理素子の実現への手がかりが得られた。
Electrodes were provided on the device formed in this way, the semiconductor laser was completed, and as a result of energization, the oscillation current characteristics were almost the same as the conventional device, and the beam in the in-plane direction was found to be smaller than that of the conventional solid-state light-emitting laser using an etching mirror. Output light with a narrow spread was obtained. Furthermore, the light can be efficiently emitted to the light-receiving elements arranged in a plane above this element, providing a clue to the realization of a plane-type optical information processing element.

上記実施例はGaAQAs/GaAs系であるが、In
P/InGaAsP系においても同様な素子が形成でき
、また細孔の製法も必ずしも集束イオンビームに限られ
るものではなく、他の方法で形成しても差し支えない、
また、細孔壁の反射率を増加するために、金属膜を細孔
壁にコートすることも有用である。上記実施例の場合、
Au集束イオンビーム入射電圧を低くすることにより、
Au膜のコートができこれにより、光のより良好な出射
効率が得られた。
The above embodiment is based on GaAQAs/GaAs, but In
A similar element can be formed in the P/InGaAsP system, and the method for forming the pores is not necessarily limited to focused ion beam, but may be formed by other methods.
It is also useful to coat the pore walls with a metal film to increase the reflectance of the pore walls. In the case of the above example,
By lowering the Au focused ion beam incident voltage,
A coating of Au film was formed, which resulted in better light output efficiency.

(発明の効果) 以上に説明したように、本発明の半導体レーザは、面方
向への出射広がり角が従来のエツチングミラーによる固
型レーザ素子に比べ狭く、かつ複数の方向へも出射可能
である。従って、本発明の半導体レーザは、面内方向以
外への光接続が容易であり、ひいては固型光情報処理に
適する素子である。
(Effects of the Invention) As explained above, the semiconductor laser of the present invention has a narrower emission spread angle in the plane direction than that of a conventional solid-state laser element using an etching mirror, and can also emit light in multiple directions. . Therefore, the semiconductor laser of the present invention allows easy optical connection in directions other than the in-plane direction, and is therefore a device suitable for solid-state optical information processing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す模式的な斜視図、第2
図は第1図実施例の細孔14を含む部分の拡大断面図で
ある。 10・・・基板、11・・・クラッド層、12・・・活
性層、13・・・面内出射光、14・・・細孔、15・
・・面方向出射光、17・・・他の面型光情報処理素子
、21・・・テーパ状部。
FIG. 1 is a schematic perspective view showing one embodiment of the present invention, and FIG.
The figure is an enlarged sectional view of a portion including the pores 14 of the embodiment in FIG. DESCRIPTION OF SYMBOLS 10... Substrate, 11... Clad layer, 12... Active layer, 13... In-plane emitted light, 14... Pore, 15...
... Planar direction emitted light, 17... Other planar optical information processing element, 21... Tapered portion.

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上の層状半導体中にストライプ状の活性層を
有する半導体レーザにおいて、前記半導体レーザの表面
から前記ストライプ状の活性層に到達する少なくとも1
個の細孔を備え、前記細孔の軸に沿った断面形状が前記
活性層側の端部においてテーパ状に先すぼまりになって
いることを特徴とする半導体レーザ。
In a semiconductor laser having a striped active layer in a layered semiconductor on a semiconductor substrate, at least one layer reaching the striped active layer from the surface of the semiconductor laser.
What is claimed is: 1. A semiconductor laser comprising a plurality of pores, and a cross-sectional shape of the pores along an axis thereof tapers at an end on the active layer side.
JP62295486A 1987-11-24 1987-11-24 Semiconductor laser Pending JPH01136389A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62295486A JPH01136389A (en) 1987-11-24 1987-11-24 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62295486A JPH01136389A (en) 1987-11-24 1987-11-24 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPH01136389A true JPH01136389A (en) 1989-05-29

Family

ID=17821233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62295486A Pending JPH01136389A (en) 1987-11-24 1987-11-24 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPH01136389A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009503887A (en) * 2005-08-05 2009-01-29 ゼネラル・ナノ・オプティクス・リミテッド Injection laser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009503887A (en) * 2005-08-05 2009-01-29 ゼネラル・ナノ・オプティクス・リミテッド Injection laser

Similar Documents

Publication Publication Date Title
JPS6079786A (en) Bistable laser
EP0423513A2 (en) Method of producing a laserwafer
DE19838518A1 (en) arrangement
US5617439A (en) Semiconductor laser device and semiconductor laser array device
JPS58180080A (en) Semiconductor laser device
JPH01136389A (en) Semiconductor laser
JPH01164077A (en) Light-emitting diode and its manufacture
JPS63164386A (en) Semiconductor laser
US4914669A (en) Semiconductor laser array apparatus
JPH054835B2 (en)
JP4398598B2 (en) Polarization-maintaining fiber, manufacturing method thereof, and semiconductor laser module
JP2532449B2 (en) Semiconductor laser device
JP2846668B2 (en) Broad area laser
JPS63200591A (en) Semiconductor laser device and manufacture thereof
US4122410A (en) Lateral mode control in semiconductor lasers
DeFreez et al. Operating characteristics and elevated temperature lifetests of focused ion beam micromachined transverse junction stripe lasers
CN101656397B (en) Have lensed surface emitting and receiving photonic device
JPS58162090A (en) Semiconductor laser
WO2022264210A1 (en) Semiconductor laser device and method for manufacturing semiconductor laser device
JPH04199133A (en) Optical amplifier and optical integrated circuit
JPS62172780A (en) Semiconductor laser device
JPS61290788A (en) Semiconductor laser device and manufacture thereof
JPS63318183A (en) Semiconductor laser
JPS63164376A (en) Semiconductor laser element
JPS63172482A (en) Optical integrated element