JPS63318183A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPS63318183A
JPS63318183A JP15328587A JP15328587A JPS63318183A JP S63318183 A JPS63318183 A JP S63318183A JP 15328587 A JP15328587 A JP 15328587A JP 15328587 A JP15328587 A JP 15328587A JP S63318183 A JPS63318183 A JP S63318183A
Authority
JP
Japan
Prior art keywords
laser
face
semiconductor laser
outgoing end
laser ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15328587A
Other languages
Japanese (ja)
Inventor
Shigeo Yamashita
茂雄 山下
Takashi Kajimura
梶村 俊
Yuichi Ono
小野 佑一
Akemi Yamanaka
山中 明実
Toshiaki Tanaka
俊明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15328587A priority Critical patent/JPS63318183A/en
Publication of JPS63318183A publication Critical patent/JPS63318183A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent an outgoing beam from having an eclipse and an irregular reflection by a method wherein a recessed part with a side face slanted against a laser ray outgoing end face is formed adjacent thereto. CONSTITUTION:A recessed part with a side face 5 slanted against a laser ray outgoing end face is formed adjacent to the outgoing end face of a semiconductor substrate 1 so as to protect a radiated laser ray against deterioration. The position of the recessed part is so determined as to satisfy such an equation as S<=d/tanalpha, where S denotes the step length of the base of the laser ray outgoing end face, (d) is the distance to an active layer, and an angle alpharepresents the angle at which the intensity of the laser ray becomes 1/10 times as small as the peak intensity in a ray radiating property. The laser being structured as mentioned above, the radiated laser beam is prevented from an eclipse and an irregular reflection.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光共振器反射面をドライエツチング法、ウェ
ットエツチング法等で形成した半導体レーザにおける、
戻り光に対する対策構造に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a semiconductor laser in which an optical resonator reflecting surface is formed by a dry etching method, a wet etching method, etc.
This invention relates to a structure for countermeasures against returning light.

〔従来の技術] 半導体レーザは、小形、高効率等、優れた特徴を有し、
光デイスクピックアップ用光源等に増々応用されるよう
になった。半導体レーザの光共振器は、結晶の特定方位
を利用したへき開面によって構成するのが一般的である
。このへき開工程は、半導体レーザ素子作製プロセスの
中では作業性が低く、量産化に対して不利な要素を持っ
ている。
[Prior art] Semiconductor lasers have excellent characteristics such as small size and high efficiency.
It has come to be increasingly applied to light sources for optical disk pickups, etc. The optical resonator of a semiconductor laser is generally constructed by a cleavage plane that utilizes a specific orientation of a crystal. This cleavage step has low workability in the semiconductor laser device manufacturing process, which is disadvantageous for mass production.

これに対し、比較的近年になって半導体レーザの反射面
のウェットエツチングやドライエツチングで形成する試
みが活発に進められるようになった。
In contrast, in relatively recent years, attempts have been made to actively form the reflective surface of a semiconductor laser by wet etching or dry etching.

これらの方法によれば、半導体レーザ素子作製プロセス
の作業性が著しく改善され、量産化がより容易になる。
According to these methods, the workability of the semiconductor laser device manufacturing process is significantly improved, and mass production becomes easier.

上記エツチングで共振器を作製する方法については、例
えば応用物理学会予稿集p。
For the method of fabricating a resonator by the above-mentioned etching, see, for example, the Proceedings of the Japan Society of Applied Physics, p.

96 (1983年秋季)において論じられている。96 (Autumn 1983).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、光放出特性や反射戻り光に対して配慮
がされておらず、以下に示すような問題点があることが
明らかになった。
It has become clear that the above-mentioned conventional technology does not take into account light emission characteristics or reflected return light, and has the following problems.

問題点1ニドライエツチング等で反射面を作製する場合
、通常エツチングはレーザ 活性層よりも1μm程度から数μm 深くまで行なわれる。−カキ導体レ ーザの光ビームを通常上下方向に対 して20°〜40°程度広がって出 射される。そのため、レーザ光の一 部がエツチングされた領域の底面部 で反射され、光放出特性が著しく悪 影響を受けてしまう、これを解決す る方法としては、構造的にはエツチ ングを十分深く行って反射の影響を 小さくすれば良いが、実際にはエツ チングをそのまま十分深く行うと、 今度は共振器反射面の平坦性、平滑 性が損なわれてしまうということに なる。
Problem 1 When producing a reflective surface by dry etching or the like, the etching is usually performed to a depth of about 1 μm to several μm deeper than the laser active layer. - The light beam of the oyster conductor laser is normally emitted with a spread of about 20° to 40° in the vertical direction. As a result, a portion of the laser beam is reflected at the bottom of the etched area, significantly affecting the light emission characteristics.The way to solve this problem is to make the etching deep enough to prevent reflection. It is possible to reduce the effect, but in reality, if etching is continued to a sufficient depth, the flatness and smoothness of the resonator reflection surface will be impaired.

問題点2:また、半導体レーザの応用分野である光ディ
スクにおいては、トラッキ ング方式の1つに、レーザビームを 回折格子によって3スポツトに分割 し、両側の2つのレーザスポットよ りトラッキング信号を取り出す方式 がある。光デイスクシステムでは。
Problem 2: Also, in optical disks, which is an application field of semiconductor lasers, one of the tracking methods is to divide the laser beam into three spots using a diffraction grating and extract the tracking signal from the two laser spots on both sides. . In optical disk systems.

レーザ、ディスク面共に焦点位置に 設定するような光学系を用いている ため、上記光デイスク上で3点に結 像したレーザビームは、反射して半 導体レーザ端面に結像する。この際、 上記反射スポットが戻る面が、レー ザ共振器反射面と平行な面で形成さ れていると、再度レーザ部で反射さ れて、ディスク面上あるいは受光系 に戻り、トラッキング信号にノイズ を生じ易いという問題があった。Both laser and disk surface are in focus position Uses an optical system that sets Therefore, it is connected to three points on the above optical disk. The imaged laser beam is reflected and split into half. An image is formed on the end face of the conductor laser. On this occasion, The surface on which the above reflection spot returns is The resonator is formed by a surface parallel to the reflective surface. If it is, it will be reflected by the laser section again. on the disc surface or the light receiving system. Noise in the tracking signal There was a problem in that it was easy to cause

本発明の目的は、上記の問題点を 解決する半導体レーザ素子の構造を 提供することにある。The purpose of the present invention is to solve the above problems. The structure of a semiconductor laser device that solves It is about providing.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するために、本発明では第1図(a)に
示すようにエツチング等で光共振器を形成した半導体レ
ーザの基板の出射端面近傍に、放射゛されたレーザ光が
阻害されないような凹部をさらに設け、かつ、この凹部
を構成する面を共振器反射面と非平行な面とした構造を
用いる。
In order to achieve the above object, the present invention is designed to prevent the emitted laser light from being obstructed near the output end face of the semiconductor laser substrate in which an optical resonator is formed by etching or the like, as shown in FIG. 1(a). A structure is used in which a concave portion is further provided, and the surface constituting the concave portion is non-parallel to the resonator reflecting surface.

なお、この凹部の位置としては、レーザ光出射面底部の
ステップの長さをS、活性層までの距離をd、レーザの
光放出特性のピーク位置から強度1/1oになる角度を
αとした時(第1図(a)。
For the position of this recess, the length of the step at the bottom of the laser beam emission surface is S, the distance to the active layer is d, and the angle at which the intensity is 1/1o from the peak position of the laser light emission characteristic is α. Time (Figure 1(a).

(b)参照)、およそ次の式を満たすのが良い。(b)), it is preferable that approximately the following formula is satisfied.

S≦□ tan α 例えば、d = 3 p m 、 a = 30 ”の
場合、Sは約5.2μm以下とする。
S≦□ tan α For example, when d = 3 p m and a = 30'', S is approximately 5.2 μm or less.

〔作用〕[Effect]

第1図(a)は半導体レーザ光出射部近傍の。 FIG. 1(a) shows the area near the semiconductor laser light emitting part.

光の進行方向に対する断面図で、1は半導体基板結晶、
2はレーザ活性層、3は共振器反射面、4は反射面底部
のステップ、5は凹部の側面である。
In the cross-sectional view in the direction of light propagation, 1 is a semiconductor substrate crystal;
2 is a laser active layer, 3 is a resonator reflecting surface, 4 is a step at the bottom of the reflecting surface, and 5 is a side surface of the recess.

本構造によれば、エツチング等で形成した共振器反射面
の近傍に設けた凹部によって、出射されたレーザビーム
のケラレおよび乱反射がなくなり、半導体レーザの光放
射特性が著しく改善される。
According to this structure, the recess provided near the resonator reflecting surface formed by etching or the like eliminates vignetting and diffuse reflection of the emitted laser beam, and the light emission characteristics of the semiconductor laser are significantly improved.

また、光デイスク応用における。トラッキング用ビーム
の戻り光は、凹部側面5の斜面によってレーザーディス
ク間の光学系に再度入らないような方向へ反射されるた
め、応用面で問題となっていたトラッキング誤りも著し
く改善できる。
Also in optical disk applications. Since the returned light of the tracking beam is reflected by the slope of the side surface 5 of the recess in a direction that prevents it from entering the optical system between the laser disks again, tracking errors, which have been a problem in practical applications, can be significantly improved.

〔実施例〕〔Example〕

以下、本発明の実施例を第2図(a)、(b)を用いて
説明する。第2図(a)は本発明の実施例であるところ
の、エツチングで共振器反射面を形成した半導体レーザ
素子の斜視図、同図(b)はその断面図である。bはn
型G、aAs基板((100)面)でこの上にGaAs
 −GaAlAs系の多層構造より成るレーザ構造結晶
7を形成している。レーザの横モード制御方式にはC3
P(Channeld 5ubstrate Pran
ar)構造を用いた。8はp側電極、9はn側電極であ
る。共振器反射面3は反応性イオンビームエツチング法
でほぼ垂直に加工し形成した。深さは約7μmである。
Examples of the present invention will be described below with reference to FIGS. 2(a) and 2(b). FIG. 2(a) is a perspective view of a semiconductor laser device according to an embodiment of the present invention, in which a resonator reflection surface is formed by etching, and FIG. 2(b) is a sectional view thereof. b is n
Type G, aAs substrate ((100) plane) with GaAs on top of it.
- A laser structure crystal 7 having a GaAlAs multilayer structure is formed. C3 is used for the laser transverse mode control method.
P (Channel 5ubstrate Plan)
ar) structure was used. 8 is a p-side electrode, and 9 is an n-side electrode. The resonator reflecting surface 3 was processed and formed almost vertically by reactive ion beam etching. The depth is approximately 7 μm.

10は本発明で重要な点であるところの凹部で1反射面
3より約3μmの位置に、深さはレーザ活性層2から約
55μmに形成した。この凹みの加工には、リン酸、過
酸化水素水系の反応律速型エッチャントを用い、凹部1
0を構成する側面5がレーザの共振器反射面3と非平行
になるようにした。
Reference numeral 10 denotes a concave portion, which is an important point in the present invention, and was formed at a position of about 3 μm from the reflecting surface 3 and at a depth of about 55 μm from the laser active layer 2. To process this recess, a reaction rate-limiting etchant based on phosphoric acid and hydrogen peroxide is used to process the recess.
The side surface 5 constituting 0 is made non-parallel to the laser cavity reflecting surface 3.

この点は本発明の重要な点である。本実施例では、凹部
10の側面5は反射面3に対して各々β〜35°、γ〜
20“傾いており、(111)G a面および(221
)面で構成されていると推定される。
This point is an important point of the present invention. In this embodiment, the side faces 5 of the recess 10 are at β~35° and γ~35° with respect to the reflective surface 3, respectively.
20" tilted, (111) Ga plane and (221
) surface.

本発明の半導体レーザ素子は、発振しきい電流値約6Q
mA、波長約790nmで発振した。また、レーザ出射
部11の近傍に設けた凹部10によって、レーザ光の一
部がケラれたり、乱反射することが防げたため、良好な
光放出特性が得られた0本レーザを光デイスクピックア
ップに応用したところ、凹部10の側面5がレーザ反射
面3に対して斜めに形成されていることの効果によって
The semiconductor laser device of the present invention has an oscillation threshold current of approximately 6Q.
It oscillated at mA and a wavelength of about 790 nm. In addition, the recess 10 provided near the laser emitting part 11 prevented part of the laser beam from being vignetted or diffusely reflected, so the 0-beam laser, which had good light emission characteristics, was applied to an optical disk pickup. This is due to the effect of the side surface 5 of the recess 10 being formed obliquely to the laser reflecting surface 3.

トラッキング用ビームの再反射を防止できるため、良好
なトラッキング特性が得られることが判った。
It has been found that good tracking characteristics can be obtained because the tracking beam can be prevented from being re-reflected.

なお、上記側面5の反射面3に対する傾きは、8.3度
以上あれば問題ないことが実験的に確かめられた。
It has been experimentally confirmed that there is no problem as long as the inclination of the side surface 5 with respect to the reflective surface 3 is 8.3 degrees or more.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、エツチング等によって共振器反射面を
形成した半導体レーザ索子の光出射端面近傍に設けた凹
部によって、出射ビームのケラレ。
According to the present invention, the emitted beam is prevented from being vignetted by the recess provided in the vicinity of the light emitting end face of the semiconductor laser probe in which the resonator reflecting surface is formed by etching or the like.

乱反射を防止でき、レーザ素子の光放射特性を著しく改
善できる。また、この凹部の側面を共振器反射面に対し
て8.3度以上傾いた非平行な面で構成し、かつこの深
さをレーザ活性層から50μm以上にすることにより、
光ディスクへの応用における、トラッキング用ビームの
多重反射を防止でき、トラッキング特性を著しく向上さ
せることができ、その効果は非常に大である。
Diffuse reflection can be prevented and the light emission characteristics of the laser device can be significantly improved. In addition, by configuring the side surfaces of this recess with non-parallel surfaces inclined at 8.3 degrees or more with respect to the resonator reflection surface, and by setting the depth to 50 μm or more from the laser active layer,
When applied to optical discs, multiple reflections of the tracking beam can be prevented and the tracking characteristics can be significantly improved, which is extremely effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)、(b)はそれぞれ本発明の半導体レーザ
素子の光の進行方向における反射面近傍の断面図、およ
び光放出特性図、第2図(a)。 (b)はそれぞれ本発明の実施例の半導体レーザ素子の
傾斜図、および断面図である。 1・・・半導体結晶基板、2・・・レーザ活性層、3・
・・共振器反射面、4・・・反射面底部ステップ、5・
・・凹部の側面、6・・・n型G a A s基板、7
・・・レーザ構造結晶、10・・・凹部、11・・・レ
ーザ光出射部。
FIGS. 1(a) and 1(b) are a sectional view of the semiconductor laser device of the present invention in the vicinity of the reflecting surface in the direction of light propagation, and a light emission characteristic diagram, respectively, and FIG. 2(a). (b) is an oblique view and a cross-sectional view of a semiconductor laser device according to an embodiment of the present invention, respectively. DESCRIPTION OF SYMBOLS 1... Semiconductor crystal substrate, 2... Laser active layer, 3...
...Resonator reflecting surface, 4...Reflecting surface bottom step, 5.
・・Side surface of the recess, 6 ・N-type GaAs substrate, 7
. . . Laser structure crystal, 10 . . . Concave portion, 11 .

Claims (1)

【特許請求の範囲】 1、レーザ光出射端面をエッチングにより形成する半導
体レーザにおいて、該半導体レーザの基板の上記レーザ
光出射端面近傍に、上記レーザ光出射端面に対して傾斜
した側面を有する凹部を形成したことを特徴とする半導
体レーザ。 2、上記凹部の深さはレーザ光出射部より50μm以上
である特許請求の範囲第1項に記載の半導体レーザ。
[Claims] 1. In a semiconductor laser whose laser light emitting end face is formed by etching, a recessed portion having a side surface inclined with respect to the laser light emitting end face is provided in the vicinity of the laser light emitting end face of the substrate of the semiconductor laser. A semiconductor laser characterized in that: 2. The semiconductor laser according to claim 1, wherein the depth of the recess is 50 μm or more from the laser light emitting part.
JP15328587A 1987-06-22 1987-06-22 Semiconductor laser Pending JPS63318183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15328587A JPS63318183A (en) 1987-06-22 1987-06-22 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15328587A JPS63318183A (en) 1987-06-22 1987-06-22 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPS63318183A true JPS63318183A (en) 1988-12-27

Family

ID=15559131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15328587A Pending JPS63318183A (en) 1987-06-22 1987-06-22 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPS63318183A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002103866A1 (en) * 2001-06-15 2002-12-27 Nichia Corporation Semiconductor laser element, and its manufacturing method
JP2005327905A (en) * 2004-05-14 2005-11-24 Sony Corp Semiconductor light emitting device and optical apparatus using the same
US8217411B2 (en) 2009-05-12 2012-07-10 Seiko Epson Corporation Light emitting device
JP6394832B1 (en) * 2017-11-17 2018-09-26 三菱電機株式会社 Semiconductor laser device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002103866A1 (en) * 2001-06-15 2002-12-27 Nichia Corporation Semiconductor laser element, and its manufacturing method
JP2005327905A (en) * 2004-05-14 2005-11-24 Sony Corp Semiconductor light emitting device and optical apparatus using the same
US8217411B2 (en) 2009-05-12 2012-07-10 Seiko Epson Corporation Light emitting device
JP6394832B1 (en) * 2017-11-17 2018-09-26 三菱電機株式会社 Semiconductor laser device
US11211769B2 (en) 2017-11-17 2021-12-28 Mitsubishi Electric Corporation Semiconductor laser device

Similar Documents

Publication Publication Date Title
CA1295404C (en) Super-luminescent diode
US20050175052A1 (en) Semiconductor laser apparatus, laser coupler, data reproduction apparatus, data recording apparatus and production method of semiconductor laser apparatus
JP2877857B2 (en) Semiconductor laser device
KR100731241B1 (en) Semiconductor laser device and method of producing semiconductor laser
US20060067375A1 (en) Semiconductor laser array and semiconductor laser device having semiconductor laser array
GB2181892A (en) A semi-conductor laser
US5235609A (en) Semiconductor laser device
JP2006294984A (en) Semiconductor laser element, its manufacturing method and light pickup device employing it
JPS63318183A (en) Semiconductor laser
US20020136255A1 (en) Semiconductor laser, optical element provided with the same and optical pickup provided with the optical element
JP2798720B2 (en) Semiconductor laser array
JP2009164389A (en) Semiconductor laser and pickup device for recording and reproduction using the same, and manufacturing method of semiconductor laser
JPS6351556B2 (en)
JP3327179B2 (en) Method for manufacturing nitride semiconductor laser device
JP2578798B2 (en) Semiconductor laser device
JP3533273B2 (en) Optical device
JPH01273378A (en) Semiconductor laser device
JPS62172780A (en) Semiconductor laser device
JP3674266B2 (en) Laser equipment
JPH10335754A (en) Semiconductor light emitting diode and its manufacture
JPS61290788A (en) Semiconductor laser device and manufacture thereof
JP3131497B2 (en) Optical head device
JPH0510373Y2 (en)
JP2007115929A (en) Semiconductor laser device
JP2001308446A (en) Semiconductor light emitting element and semiconductor light emitting device