JPH0113621B2 - - Google Patents
Info
- Publication number
- JPH0113621B2 JPH0113621B2 JP7035481A JP7035481A JPH0113621B2 JP H0113621 B2 JPH0113621 B2 JP H0113621B2 JP 7035481 A JP7035481 A JP 7035481A JP 7035481 A JP7035481 A JP 7035481A JP H0113621 B2 JPH0113621 B2 JP H0113621B2
- Authority
- JP
- Japan
- Prior art keywords
- vacuum
- liquid crystal
- electric field
- field sensor
- monitoring device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000004973 liquid crystal related substance Substances 0.000 claims description 59
- 230000005684 electric field Effects 0.000 claims description 47
- 230000000694 effects Effects 0.000 claims description 24
- 238000012806 monitoring device Methods 0.000 claims description 17
- 239000013307 optical fiber Substances 0.000 claims description 10
- 230000005669 field effect Effects 0.000 claims description 3
- 238000012544 monitoring process Methods 0.000 claims description 3
- 230000002093 peripheral effect Effects 0.000 claims 1
- 239000011521 glass Substances 0.000 description 9
- 230000005540 biological transmission Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 239000012212 insulator Substances 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 6
- 238000002834 transmittance Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 230000005697 Pockels effect Effects 0.000 description 1
- NMFHJNAPXOMSRX-PUPDPRJKSA-N [(1r)-3-(3,4-dimethoxyphenyl)-1-[3-(2-morpholin-4-ylethoxy)phenyl]propyl] (2s)-1-[(2s)-2-(3,4,5-trimethoxyphenyl)butanoyl]piperidine-2-carboxylate Chemical compound C([C@@H](OC(=O)[C@@H]1CCCCN1C(=O)[C@@H](CC)C=1C=C(OC)C(OC)=C(OC)C=1)C=1C=C(OCCN2CCOCC2)C=CC=1)CC1=CC=C(OC)C(OC)=C1 NMFHJNAPXOMSRX-PUPDPRJKSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H33/00—High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
- H01H33/60—Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
- H01H33/66—Vacuum switches
- H01H33/668—Means for obtaining or monitoring the vacuum
Landscapes
- Measuring Fluid Pressure (AREA)
- High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
Description
本発明は真空しや断器などの真空開閉機器の真
空度監視装置に関する。
一般に真空しや断器などの真空開閉機器は内部
の真空度の良否によつてしや断能力が大きく左右
されるため、その真空度を監視することが重要と
なる。このため従来においても種々の真空度監視
装置が提案されているが、いずれも絶縁、大き
さ、コストなどにおいて問題があり、実用的でな
かつた。
そこで、本願出願人は先に特願昭55−37098号
で真空電気機器の真空度監視装置を提案している
が、この真空度監視装置は真空度の変化により真
空電気機器たとえば真空しや断器の内部の分担電
圧が変化し、これにより真空電気機器たとえば真
空しや断器の外部近傍の電界が変化することに着
目し、この電界を検出し、この検出信号の大きさ
で真空度のモニタリングを行なおうとするもので
ある。第1図に真空開閉機器たとえば真空しや断
器の真空度監視装置の構成を示す。
第1図において、1は真空しや断器、2は固定
電極、3は可動電極、4は固定リード、5は可動
リード、6は絶縁筒、7,8は絶縁筒6の両端に
封着された端板で、固定リード4は端板7に取付
けられ、可動リード5はベローズ9を介して端板
8に封着される。
10は絶縁筒6の中間に取付けられたシールド
である。
このような構成の真空しや断器の真空容器の内
部は高真空に保たれており、この真空度が劣化し
た場合に、固定電極2、可動電極3とシールド1
0間の抵抗が急激に小さくなり、固定電極2、可
動電極3とシールド10間の電圧が小さくなり、
真空しや断器の各部での分担電圧に変化が生じ
る。従つてシールド10の電圧は真空度によつて
大きく変化し、シールド10付近の電界Eも大き
く変化する。第3図に真空しや断器内圧力と真空
しや断器外部近傍の電界強度の関係を示す。
また11はシールド10の外部側近傍に設けら
れた電界センサであつて、この電界センサ11は
第2図に示すようにポツケルス素子(電気光学効
果素子)12の両側に偏光板13,14を配置
し、絶縁物ケース15内に収納してなるもので、
発光部(電気一光変換部)16からの光は光フア
イバ17を介して電界センサ11に供給され、電
界センサ11からの光を光フアイバ18を介して
受光部(光一電気変換部)19に供給し、ここ
で、受光した光の量に応じた電気信号に変換して
出力し、この出力を真空度良否判定部20で受け
て真空度の良否を判定する。真空度良否判定部2
0は受光部19の出力が急激に大きく(又は小さ
く)なつたことにより真空度劣化を検知して警報
や表示のための出力を出す。
このような構成の真空度監視装置では、電界セ
ンサ11にポツケルス素子12を用い、そのポツ
ケルス効果を利用して真空度に応じた電界強度を
検出し、その検出量の大きさで真空度の良否を判
定する訳であるが、電界以外で光量が変化した
り、あるいは真空度と関係なく電界が変化(例え
ばサージ電圧などによる)した場合など誤検出し
ないように種々の考慮を払う必要があるために、
構成がやや複雑であつた。
本発明はこのような点に鑑みなされたもので、
即ち発光部と、真空開閉機器の真空部の外周側に
配置され、かつ液晶を用いてなる電界センサと、
受光素子を有する受光部とを光フアイバ結合して
なり、前記受光部の出力を真空度監視信号とし、
常時真空度の監視計測ができるようにしたことを
特徴とする真空開閉機器の真空度監視装置を提供
しようとするもので、以下実施例を用いて説明す
る。
本発明を説明する前にまず本発明に適用される
電界センサとして用いる液晶について説明する。
液晶にはいくつかの動作方式があるが、まず、第
4図および第5図に夫々動的散乱効果(DSM)
を利用した液晶素子構成および動的散乱効果
(DSM)型液晶素子の透過特性を示す。
第4図において、21は動的散乱効果(DSM)
を利用した液晶、22および23は夫々液晶21
の上面および下面側に配置された透明電極であつ
て、これらの透明電極22と23間に交流電源
(直流電源でも可)が接続されている。また24,
25はガラス、26はプラスチツクなどの絶縁部
材であつて、液晶21の側面側は絶縁部材26で
囲まれている。これらの透明電極22,23と絶
縁部材26は液晶21と反応したりして液晶21
に影響を与えない物質である。
第4図構成の透明電極22,23に電源Vによ
り電圧を印加していくと、印加電界E(=V/d、
ここでVは電源電圧、dは液晶21の厚さ)と透
過率P2/P1の関係は第5図で示される。ここで、
P1およびP2は夫々入力光のエネルギーおよび出
力光のエネルギーである。
また第6図および第7図に夫々ねじれ効果
(TN)型液晶素子構成およびねじれ効果(TN)
型液晶素子の透過特性および旋光特性を示す。
第6図において、31はねじれ効果(TN)を
利用した液晶、32および33は夫々液晶31の
上面および下面側に配置された透明電極であつ
て、これらの透明電極32と33間に交流電源V
(直流電源でも可)が接続されている。34は偏
光子としての偏光板、35は検光子としての偏光
板であり、これら偏光板34,35の偏光面を平
行させておく。
36および37はガラス、38はプラスチツク
などの絶縁部材であつて、液晶31の側面側は絶
縁部材38で囲繞されている。これらの透明電極
32,33と絶縁部材38は液晶31と反応した
りして液晶31に影響を与えない物質である。
第7図において、イの点線の曲線は液晶31に
偏光板34,35を用いない状態で厚さdの液晶
31に電圧Vを印加していつた場合の印加電界E
(=V/d)と旋光角(deg)との関係を示す旋
光特性曲線であり、またロの実線の曲線はイの如
き旋光特性をもつ液晶31を用いた第6図構成
で、透明電極32,33に電源Vにより電圧を印
加していつた場合の印加電界E(=V/d)と透
過率の関係を示す透過特性曲線である。なお偏光
板34と35の偏光面を直角とすると印加電界E
と透過率P2/P1の関係は第7図のイの如く逆に
なる。
さらに電界効果型Distortion of Align Phase
(略してDAP型という)液晶素子構成は前述した
第6図と同様に構成され、またそのDAP型液晶
素子の透過特性および旋光特性についても前述し
た第7図と同様である。
なお、ねじれ効果(TN)型液晶素子構成の場
合やDAP型液晶素子構成の場合でも、第6図構
成を用いて言えば偏光板35は必要であるが入力
光としてフオトダイオードの出力光を使用すれば
偏光板34を必要とし、レーザ光を使用すれば偏
光板34は不要となる。
上述した動的散乱効果(DSM)型液晶とねじ
れ効果(TN)及びDAP型液晶の差異はDSM型
は素子構成が容易であり、TN及びDAP型は透過
特性に顕著なしきい値を有することである。しか
も特にTN型のしきい値は液晶の成分を調整する
ことによりコントロールが可能であり、真空開閉
機器の真空度監視装置の電界センサ部に使用にあ
たつてはその電界強度に合致することが可能であ
る。
次に液晶の機能別分類を下表に示す。
The present invention relates to a vacuum level monitoring device for vacuum switchgear such as vacuum shields and disconnectors. In general, the ability of vacuum switchgears such as vacuum insulators and disconnectors to disconnect greatly depends on the quality of the internal vacuum, so it is important to monitor the vacuum level. For this reason, various vacuum degree monitoring devices have been proposed in the past, but all of them have problems with insulation, size, cost, etc., and are not practical. Therefore, the applicant of the present application has previously proposed a vacuum level monitoring device for vacuum electrical equipment in Japanese Patent Application No. 55-37098, but this vacuum level monitoring device is designed to prevent vacuum electrical equipment such as vacuum shields and Focusing on the fact that the shared voltage inside the device changes, which changes the electric field near the outside of vacuum electrical equipment, such as vacuum shields and circuit breakers, this electric field is detected, and the degree of vacuum can be determined based on the magnitude of this detection signal. This is an attempt to carry out monitoring. FIG. 1 shows the configuration of a vacuum degree monitoring device for a vacuum switchgear, such as a vacuum switch or disconnector. In Fig. 1, 1 is a vacuum shield, 2 is a fixed electrode, 3 is a movable electrode, 4 is a fixed lead, 5 is a movable lead, 6 is an insulating tube, and 7 and 8 are sealed at both ends of the insulating tube 6. The fixed lead 4 is attached to the end plate 7 and the movable lead 5 is sealed to the end plate 8 via the bellows 9. 10 is a shield attached to the middle of the insulating cylinder 6. The interior of the vacuum vessel of the vacuum shield and disconnector with such a configuration is maintained at a high vacuum, and when this degree of vacuum deteriorates, the fixed electrode 2, movable electrode 3, and shield 1
The resistance between 0 and 0 suddenly decreases, and the voltage between the fixed electrode 2, movable electrode 3 and shield 10 decreases,
Changes occur in the shared voltage at each part of the vacuum shield and disconnector. Therefore, the voltage across the shield 10 varies greatly depending on the degree of vacuum, and the electric field E near the shield 10 also varies greatly. Figure 3 shows the relationship between the pressure inside the vacuum shield and the electric field strength near the outside of the vacuum shield. Reference numeral 11 denotes an electric field sensor provided near the outside of the shield 10, and as shown in FIG. and is housed in an insulator case 15,
The light from the light emitting section (electrical-to-optical converter) 16 is supplied to the electric field sensor 11 via the optical fiber 17, and the light from the electric field sensor 11 is supplied to the light receiving section (optical-to-electrical converter) 19 via the optical fiber 18. Here, the received light is converted into an electric signal corresponding to the amount of light and outputted, and this output is received by the degree of vacuum quality determining section 20 to determine whether the degree of vacuum is good or bad. Vacuum degree quality judgment section 2
0 detects deterioration of the degree of vacuum due to a sudden increase (or decrease) in the output of the light receiving section 19, and outputs an output for alarm or display. In the vacuum level monitoring device having such a configuration, a Pockels element 12 is used as the electric field sensor 11, and the Pockels effect is used to detect the electric field strength according to the vacuum level, and the quality of the vacuum level is determined based on the magnitude of the detected amount. However, various considerations must be taken to avoid false detections, such as when the amount of light changes due to factors other than the electric field, or when the electric field changes regardless of the degree of vacuum (for example, due to surge voltage). To,
The structure was a little complicated. The present invention was made in view of these points,
That is, a light emitting part, an electric field sensor arranged on the outer circumferential side of the vacuum part of the vacuum switchgear and using a liquid crystal,
A light receiving section having a light receiving element is coupled with an optical fiber, and the output of the light receiving section is used as a vacuum level monitoring signal,
The purpose of this invention is to provide a vacuum level monitoring device for vacuum switching equipment, which is characterized by being able to monitor and measure the vacuum level at all times, and will be described below using examples. Before explaining the present invention, first, a liquid crystal used as an electric field sensor applied to the present invention will be explained.
There are several operating methods for liquid crystals. First, the dynamic scattering effect (DSM) is shown in Figures 4 and 5, respectively.
The structure of a liquid crystal device using this method and the transmission characteristics of a dynamic scattering effect (DSM) type liquid crystal device are shown. In Figure 4, 21 is the dynamic scattering effect (DSM)
22 and 23 are the liquid crystals 21 and 23, respectively.
Transparent electrodes are arranged on the upper and lower surfaces of the transparent electrodes 22 and 23, and an AC power source (or a DC power source is also acceptable) is connected between these transparent electrodes 22 and 23. Also 24,
25 is glass, 26 is an insulating member such as plastic, and the side surface of the liquid crystal 21 is surrounded by the insulating member 26. These transparent electrodes 22 and 23 and the insulating member 26 react with the liquid crystal 21 and
It is a substance that does not affect the When voltage is applied from the power source V to the transparent electrodes 22 and 23 configured in FIG. 4, the applied electric field E (=V/d,
The relationship between the transmittance P 2 /P 1 (where V is the power supply voltage and d is the thickness of the liquid crystal 21) is shown in FIG. here,
P 1 and P 2 are the input light energy and the output light energy, respectively. Figures 6 and 7 show the twist effect (TN) type liquid crystal element structure and twist effect (TN), respectively.
This figure shows the transmission characteristics and optical rotation characteristics of a type liquid crystal element. In FIG. 6, numeral 31 is a liquid crystal that utilizes a twisting effect (TN), 32 and 33 are transparent electrodes arranged on the upper and lower surfaces of the liquid crystal 31, respectively, and an AC power source is connected between these transparent electrodes 32 and 33. V
(DC power supply is also acceptable) is connected. 34 is a polarizing plate as a polarizer, 35 is a polarizing plate as an analyzer, and the polarization planes of these polarizing plates 34 and 35 are made parallel. 36 and 37 are glass, and 38 is an insulating member such as plastic, and the side surface of the liquid crystal 31 is surrounded by the insulating member 38. These transparent electrodes 32 and 33 and the insulating member 38 are materials that do not react with the liquid crystal 31 and do not affect the liquid crystal 31. In FIG. 7, the dotted line curve A indicates the applied electric field E when a voltage V is applied to the liquid crystal 31 with a thickness d without using the polarizing plates 34 and 35.
(=V/d) and the angle of optical rotation (deg), and the solid line curve (B) is the structure shown in FIG. This is a transmission characteristic curve showing the relationship between applied electric field E (=V/d) and transmittance when a voltage is applied to 32 and 33 from power source V. Note that if the polarization planes of the polarizing plates 34 and 35 are at right angles, the applied electric field E
The relationship between the transmittance P 2 /P 1 and the transmittance P 2 /P 1 is reversed as shown in FIG. 7A. Furthermore, field effect type Distortion of Align Phase
The structure of a liquid crystal element (abbreviated as DAP type) is similar to that shown in FIG. 6 described above, and the transmission characteristics and optical rotation characteristics of the DAP type liquid crystal element are also similar to those shown in FIG. 7 described above. Note that even in the case of a torsional effect (TN) type liquid crystal element configuration or a DAP type liquid crystal element configuration, the polarizing plate 35 is required using the configuration shown in Figure 6, but the output light of the photodiode is used as the input light. In this case, the polarizing plate 34 is required, but if laser light is used, the polarizing plate 34 becomes unnecessary. The difference between the dynamic scattering effect (DSM) type liquid crystal and the twisting effect (TN) and DAP type liquid crystal described above is that the DSM type is easy to construct, while the TN and DAP types have a remarkable threshold in their transmission characteristics. be. Furthermore, the threshold value of the TN type in particular can be controlled by adjusting the components of the liquid crystal, and when used in the electric field sensor part of the vacuum level monitoring device of vacuum switchgear, it is possible to match the electric field strength. It is possible. The table below shows the classification of LCDs by function.
【表】
真空開閉機器の真空度監視装置の電界センサ部
に使用する液晶としては、コントラストの大きな
DAP型又はTN型を使用するのが望ましい。なお
DMP型とTN型の使いわけは真空開閉機器の使
用電界強度に応じて使用する。
第8図は本発明による真空開閉機器の真空度監
視装置の一実施例を示し、第1図と同じものある
いは同じ機能を有するものには同符号を用いてい
る。同図において40は真空しや断器1を収納す
るタンク壁であつて接地されている。また41は
真空しや断器1の外周側に配置された電界センサ
であつて、この電界センサ41として、たとえば
ねじれ効果(TN)型液晶素子を用いた場合の詳
細を第9図で示す。第9図において、ねじれ効果
(TN)型液晶42の両側に偏光子としての偏光
板13と検光子としての偏光板14とを配置し、
偏光板13の入力光側にガラス部材43を当接配
置し、このガラス部材43に光フアイバ17が接
続されている。また偏光板14の出力光側にガラ
ス部材44を当接配置し、このガラス部材44に
光フアイバ18が接続されている。これらの液晶
42と偏光板13,14とガラス部材43,44
が絶縁物ケース15に収納されている。これらの
偏光板13,14および絶縁物ケース15は液晶
42と反応したりして液晶42に影響を与えない
物質である。
次に電界センサ41としてねじれ効果(TN)
型液晶素子を用いた場合の動作説明をする。
発光部16のたとえばフオトダイオードからの
光を電界センサ41へ入力する。真空開閉機器こ
こでは真空しや断器1の外周側には内部の真空度
に対応した電界が分布している。このため電界セ
ンサ41の液晶42には電界が印加されている。
従つて電界センサ41へ入力した光(光のエネル
ギーP1)は偏光子としての偏光板13介し、液
晶42を透過し、検光子としての偏光板14を経
て取り出される光(光のエネルギーP2)は前述
した第7図の特性から判るように透過率(P2/
P1)と比例する。つまり、真空度劣化(不良)
となれば、その度合に応じて印加電界が増し、印
加電界が増せば電界センサ41からの出力光(光
のエネルギーP2)は極端に低下する。受光部1
9では電界センサ41からのこの低下した出力を
受け、これを電気信号(電流信号)に変換し、こ
のとき真空度不良として表示又は警報信号を出力
し、一方電界センサ41から第6図の真空度良好
領域における光(光のエネルギーP2)が供給さ
れたときは、光のエネルギーP2が大なので電気
信号に変換しても出力しないように構成しておけ
ばよい。たとえば受光部19の構成を、光一電気
変換部とたとえばトランジスタなどを用いたスイ
ツチング回路との組合せでよい。
また受光部19は液晶素子の型が異なれば液晶
素子の透過特性が異なるので、それに応じて真空
度不良に対応した検出信号が取り出せるように構
成されることはいうまでもない。この検出信号を
警報、表示信号として用いればよい。
本実施例第8図においては、電界センサ41と
して、ねじれ効果(TN)型液晶素子(第9図参
照)を用いた場合について言及したけれども、本
発明はこれに限定されることなく電界センサとし
て動的散乱効果(DSM)型液晶素子や電界効果
型Distortion of Align Phase(DAP型と略記す
る)液晶素子を用いた場合についても同様に適用
される。この場合、DSM型液晶素子を用いた場
合は第9図で言えば電界センサ41の構成は液晶
42の代りにDSM型液晶を用い、偏光板13,
14を必要せず、DSM型液晶とガラス部材43,
44を絶縁物ケース15に収納したものとなり、
またDAP型液晶素子を用いた場合は第9図でい
えば液晶42の代りにDAP型液晶を用いた構成
となる。なお、発光部16としてレーザを用い、
そのレーザ光(単一振動を示す)を電界センサに
入力する場合には偏光子としての偏光板は不要と
なる。
本発明は本実施例に限定されることなく種々の
応用および変形が考えられる。
上述した本発明による真空開閉機器の真空度監
視装置を用いれば次のような種々の効果を奏す
る。
(1) 電界センサとして液晶素子(TN型液晶素
子、DAP型液晶素子)を使用することにより、
真空度良否判定部が不要となり、構成が簡単に
なる。
(2) 電界センサ部の光路を従来のポツケルス型素
子に比して小さくできるので、光フアイバの出
射光を平行線化するなどの光学系は不要とな
り、電界センサ部構成が簡単である。
(3) 真空開閉機器内部の真空状態をその機器構造
を全く変えることなく非接触で監視できる。
(4) 光フアイバによつて接地電位と高圧部である
真空しや断器などの真空開閉機器との絶縁が容
易に行なえるので、電圧階級に関係なく真空度
の監視を行なうことができる(第8図参照)。
(5) 電界センサ41および光フアイバ17,18
は全て絶縁物で構成され、小型であるので実装
化が容易である。
(6) 真空開閉機器の高圧部に設置される電界セン
サを構成する液晶素子は全て受動素子であり、
信頼性が非常に高い。
(7) 光の効果を利用して真空度の検出を行なつて
いるので、システムの耐ノイズ性が高い。
(8) サージ電圧のような短時間(数〜数100μs)
のパルスに対して液晶素子は数10ms以上の応
答時間なので、特別のサージ電圧対策装置が不
要である。
(9) 真空開閉機器の真空度監視が自動的に行なわ
れるので、電力システムの自動化が容易であ
る。[Table] Liquid crystals with high contrast are used for electric field sensors in vacuum level monitoring devices for vacuum switchgear.
It is preferable to use the DAP type or TN type. In addition
The DMP type and TN type are used depending on the electric field strength used in the vacuum switchgear. FIG. 8 shows an embodiment of the vacuum degree monitoring device for vacuum switchgear according to the present invention, and the same reference numerals are used for the same components as in FIG. 1 or those having the same functions. In the figure, reference numeral 40 denotes a tank wall that houses the vacuum chamber and disconnector 1, and is grounded. Reference numeral 41 denotes an electric field sensor disposed on the outer circumferential side of the vacuum shield disconnector 1, and FIG. 9 shows details of a case where, for example, a torsion effect (TN) type liquid crystal element is used as the electric field sensor 41. In FIG. 9, a polarizing plate 13 as a polarizer and a polarizing plate 14 as an analyzer are arranged on both sides of a torsional effect (TN) type liquid crystal 42,
A glass member 43 is disposed in contact with the input light side of the polarizing plate 13, and an optical fiber 17 is connected to this glass member 43. Further, a glass member 44 is disposed in contact with the output light side of the polarizing plate 14, and an optical fiber 18 is connected to this glass member 44. These liquid crystal 42, polarizing plates 13, 14, and glass members 43, 44
is housed in an insulator case 15. The polarizing plates 13 and 14 and the insulating case 15 are made of materials that do not react with the liquid crystal 42 and have no effect on the liquid crystal 42. Next, the torsion effect (TN) is used as the electric field sensor 41.
The operation when using a type liquid crystal element will be explained below. Light from a photodiode of the light emitting unit 16, for example, is input to the electric field sensor 41. Vacuum switching equipment Here, an electric field corresponding to the degree of vacuum inside is distributed on the outer circumferential side of the vacuum switch 1. Therefore, an electric field is applied to the liquid crystal 42 of the electric field sensor 41.
Therefore, the light (light energy P 1 ) input to the electric field sensor 41 is transmitted through the liquid crystal 42 through the polarizing plate 13 as a polarizer, and the light (light energy P 2 ) is extracted through the polarizing plate 14 as an analyzer. ) is the transmittance (P 2 /
P 1 ). In other words, the degree of vacuum has deteriorated (defective)
If so, the applied electric field increases in accordance with the degree of the change, and as the applied electric field increases, the output light (light energy P 2 ) from the electric field sensor 41 decreases extremely. Light receiving part 1
9 receives this reduced output from the electric field sensor 41, converts it into an electric signal (current signal), and at this time displays or outputs an alarm signal as a vacuum degree failure. When light (light energy P 2 ) in a good-quality region is supplied, the light energy P 2 is large, so the configuration may be such that it is not output even if it is converted into an electrical signal. For example, the configuration of the light receiving section 19 may be a combination of a photoelectric conversion section and a switching circuit using, for example, a transistor. Furthermore, since the transmission characteristics of the liquid crystal element differ depending on the type of the liquid crystal element, it goes without saying that the light receiving section 19 is configured to be able to extract a detection signal corresponding to a poor vacuum degree. This detection signal may be used as an alarm or display signal. Although FIG. 8 of this embodiment refers to the case where a torsional effect (TN) type liquid crystal element (see FIG. 9) is used as the electric field sensor 41, the present invention is not limited to this, and the present invention can be used as an electric field sensor. The same applies to cases where a dynamic scattering effect (DSM) type liquid crystal element or a field effect type Distortion of Align Phase (abbreviated as DAP type) liquid crystal element is used. In this case, when a DSM type liquid crystal element is used, the configuration of the electric field sensor 41 is as shown in FIG. 9, using a DSM type liquid crystal instead of the liquid crystal 42, and
14 is not required, DSM type liquid crystal and glass member 43,
44 is housed in an insulator case 15,
Further, when a DAP type liquid crystal element is used, the configuration is such that the DAP type liquid crystal is used instead of the liquid crystal 42 in FIG. 9. Note that using a laser as the light emitting section 16,
When inputting the laser light (indicating a single vibration) to an electric field sensor, a polarizing plate as a polarizer is not required. The present invention is not limited to this embodiment, and various applications and modifications are possible. By using the vacuum level monitoring device for vacuum switchgear according to the present invention described above, the following various effects can be achieved. (1) By using a liquid crystal element (TN type liquid crystal element, DAP type liquid crystal element) as an electric field sensor,
A vacuum level quality determination section is not required, and the configuration is simplified. (2) Since the optical path of the electric field sensor section can be made smaller than that of conventional Pockels type elements, there is no need for an optical system that parallelizes the light emitted from the optical fiber, and the structure of the electric field sensor section is simple. (3) The vacuum state inside vacuum switching equipment can be monitored without contact, without changing the equipment structure at all. (4) Optical fibers can easily insulate the ground potential from high-voltage parts such as vacuum shields and vacuum switchgear such as disconnectors, so the degree of vacuum can be monitored regardless of the voltage class ( (See Figure 8). (5) Electric field sensor 41 and optical fibers 17, 18
It is made entirely of insulators and is small, so it is easy to implement. (6) All liquid crystal elements that make up the electric field sensor installed in the high voltage section of vacuum switchgear are passive elements.
Very reliable. (7) Since the degree of vacuum is detected using the effect of light, the system has high noise resistance. (8) Short time like surge voltage (several to several 100 μs)
Since the response time of a liquid crystal element to a pulse of 10 ms or more is over several tens of milliseconds, no special surge voltage countermeasure device is required. (9) Since the vacuum level of vacuum switchgear is automatically monitored, it is easy to automate the power system.
第1図は従来の真空開閉機器の真空度監視装置
の一例を示す構成図、第2図は第1図のA部の拡
大断面図、第3図は真空しや断器内圧力と真空し
や断器近傍電界強度の関係を示す特性図、第4図
は動的散乱効果を利用した液晶素子の構成図、第
5図は第4図の動的散乱効果型液晶素子の透過特
性図、第6図はねじれ効果型液晶素子の構成図、
第7図はねじれ効果型液晶素子の旋光特性及び透
過特性を示す図、第8図は本発明による真空開閉
機器の真空度監視装置の一実施例を示す構成図、
第9図は第8図のB部の拡大断面図であつて、図
中1は真空しや断器、13,14は偏光板、15
は絶縁物ケース、16は発光部、17,18は光
フアイバ、19は受光部、41は電界センサ、4
2はねじれ効果型液晶、43,44はガラス部材
を示す。
Figure 1 is a configuration diagram showing an example of a conventional vacuum level monitoring device for vacuum switchgear, Figure 2 is an enlarged sectional view of section A in Figure 1, and Figure 3 is a diagram showing the pressure inside the vacuum chamber and the vacuum. Figure 4 is a configuration diagram of a liquid crystal element that utilizes the dynamic scattering effect, Figure 5 is a transmission characteristic diagram of the dynamic scattering effect type liquid crystal element shown in Figure 4, Figure 6 is a configuration diagram of a twist effect type liquid crystal element.
FIG. 7 is a diagram showing optical rotation characteristics and transmission characteristics of a torsional effect type liquid crystal element, FIG. 8 is a configuration diagram showing an embodiment of a vacuum degree monitoring device for vacuum switching equipment according to the present invention,
FIG. 9 is an enlarged sectional view of part B in FIG. 8, in which 1 is a vacuum shield, 13 and 14 are polarizing plates, and 15
1 is an insulator case, 16 is a light emitting part, 17 and 18 are optical fibers, 19 is a light receiving part, 41 is an electric field sensor, 4
Reference numeral 2 indicates a twist effect type liquid crystal, and reference numerals 43 and 44 indicate glass members.
Claims (1)
配置され、かつ液晶を用いてなる電界センサと、
受光素子を有する受光部とを光フアイバ結合して
なり、前記受光部の出力を真空度監視信号とした
ことを特徴とする真空開閉機器の真空度監視装
置。 2 電界センサとして、動的散乱効果形液晶を用
いたことを特徴とする特許請求の範囲第1項記載
の真空開閉機器の真空度監視装置。 3 電界センサとして、ねじれ効果形液晶と、少
なくとも検光子としての偏光板とを備えたことを
特徴とする特許請求の範囲第1項記載の真空開閉
機器の真空度監視装置。 4 電界センサとして、電界効果形(DAP)液
晶と、少なくとも検光子としての偏光板とを備え
たことを特徴とする特許請求の範囲第1項記載の
真空開閉機器の真空度監視装置。[Scope of Claims] 1. A light emitting unit, an electric field sensor disposed on the outer peripheral side of a vacuum section of a vacuum switchgear, and using a liquid crystal;
1. A vacuum level monitoring device for a vacuum switchgear, characterized in that a light receiving section having a light receiving element is coupled with an optical fiber, and an output of the light receiving section is used as a vacuum level monitoring signal. 2. The vacuum degree monitoring device for vacuum switching equipment according to claim 1, characterized in that a dynamic scattering effect type liquid crystal is used as the electric field sensor. 3. The vacuum level monitoring device for vacuum switchgear according to claim 1, characterized in that the electric field sensor includes a torsional effect type liquid crystal and at least a polarizing plate as an analyzer. 4. The vacuum degree monitoring device for vacuum switchgear according to claim 1, comprising a field effect (DAP) liquid crystal as an electric field sensor and a polarizing plate as at least an analyzer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7035481A JPS57185632A (en) | 1981-05-11 | 1981-05-11 | Vacuum monitor for vacuum switching mechanism |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7035481A JPS57185632A (en) | 1981-05-11 | 1981-05-11 | Vacuum monitor for vacuum switching mechanism |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57185632A JPS57185632A (en) | 1982-11-15 |
JPH0113621B2 true JPH0113621B2 (en) | 1989-03-07 |
Family
ID=13429007
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7035481A Granted JPS57185632A (en) | 1981-05-11 | 1981-05-11 | Vacuum monitor for vacuum switching mechanism |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS57185632A (en) |
-
1981
- 1981-05-11 JP JP7035481A patent/JPS57185632A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS57185632A (en) | 1982-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4547769A (en) | Vacuum monitor device and method for vacuum interrupter | |
EP0036760B1 (en) | Vacuum circuit interrupter system | |
JPH01122530A (en) | Breaking performance deterioration predicting device for vacuum breaker | |
US6127817A (en) | Pockels cell electro-optic sensor coupled to solid voltage divider | |
JPS648413B2 (en) | ||
JPH0113621B2 (en) | ||
JP3099669B2 (en) | Optical voltage measuring device for gas insulated electrical equipment | |
JPH0151011B2 (en) | ||
JPS6324422Y2 (en) | ||
JPS6022288B2 (en) | Vacuum level monitoring device for vacuum electrical equipment | |
JPH0562569A (en) | Vacuum monitoring device for vacuum switch apparatus | |
KR860000841Y1 (en) | Pressure detecting device for a vacuum breaker | |
JPS6148856B2 (en) | ||
KR100266721B1 (en) | Detecting device for ground fault of gas insulated switchgear | |
JPS647452B2 (en) | ||
JPS644205Y2 (en) | ||
JPS644201Y2 (en) | ||
KR860001784B1 (en) | Vacuum rate monitor for vacuum circuit breaker | |
JPS644202Y2 (en) | ||
KR100989700B1 (en) | The Insulator Having The Optical Voltage Sensor Built-In and The Distributing Board Equipped with The Same | |
JPS61214309A (en) | Voltage sensor built-in type lightningproof insulator | |
JPS644203Y2 (en) | ||
JPH0951610A (en) | Insulating spacer of gas insulated electric equipment and insulation monitor thereof | |
JP2969035B2 (en) | Optical PT | |
JPH11153639A (en) | Arc detecting device for gas insulated electric apparatus |