JPH0151011B2 - - Google Patents

Info

Publication number
JPH0151011B2
JPH0151011B2 JP5678681A JP5678681A JPH0151011B2 JP H0151011 B2 JPH0151011 B2 JP H0151011B2 JP 5678681 A JP5678681 A JP 5678681A JP 5678681 A JP5678681 A JP 5678681A JP H0151011 B2 JPH0151011 B2 JP H0151011B2
Authority
JP
Japan
Prior art keywords
vacuum
light
level
degree
monitoring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5678681A
Other languages
Japanese (ja)
Other versions
JPS57172621A (en
Inventor
Tomio Fukushima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP5678681A priority Critical patent/JPS57172621A/en
Publication of JPS57172621A publication Critical patent/JPS57172621A/en
Publication of JPH0151011B2 publication Critical patent/JPH0151011B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)
  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Description

【発明の詳細な説明】 本発明は真空しや断器などの真空電気機器の真
空度監視装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vacuum degree monitoring device for vacuum electrical equipment such as a vacuum shield or disconnector.

一般に真空しや断器などの真空電気機器は内部
の真空度の良否によつて能力が大きく左右される
ため、その真空度を監視することが必要となる。
このため従来においても種々の真空度監視装置が
提案されているが、いずれも絶縁、大きさ、コス
トなどにおいて問題があり、実用的でなかつた。
In general, the performance of vacuum electrical equipment such as vacuum chambers and disconnectors is greatly affected by the quality of the internal vacuum, so it is necessary to monitor the vacuum.
For this reason, various vacuum degree monitoring devices have been proposed in the past, but all of them have problems with insulation, size, cost, etc., and are not practical.

そこで、本願出願人は先に特願昭55−37098号
で真空電気機器の真空度監視装置を提案している
が、この真空度監視装置は真空度の変化により真
空電気機器たとえば真空しや断器の内部の分担電
圧が変化し、これにより真空電気機器たとえば真
空しや断器外部近傍の電界が変化することに着目
し、この電界を検出し、この検出信号の大きさで
真空度のモニタリングを行なおうとするものであ
る。第1図に真空電気機器たとえば真空しや断器
の真空度監視装置の構成を示す。
Therefore, the applicant of the present application has previously proposed a vacuum level monitoring device for vacuum electrical equipment in Japanese Patent Application No. 55-37098, but this vacuum level monitoring device is designed to prevent vacuum electrical equipment such as vacuum shields and Focusing on the fact that the shared voltage inside the device changes, which changes the electric field near the outside of vacuum electrical devices such as vacuum shields and disconnectors, this electric field is detected and the degree of vacuum is monitored based on the magnitude of this detection signal. This is what we are trying to do. FIG. 1 shows the configuration of a vacuum level monitoring device for vacuum electric equipment, such as vacuum shields and disconnectors.

第1図において、1は真空しや断機器、2は固
定電極、3は可動電極、4は固定リード、5は可
動リード、6は絶縁筒、7,8は絶縁筒6の両端
に封着された端板で、固定リード4は端板7に取
付けられ、可動リード5はベローズ9を介して端
板8に封着される。10は絶縁筒6の中間に取付
けられたシールドである。
In Fig. 1, 1 is a vacuum insulation device, 2 is a fixed electrode, 3 is a movable electrode, 4 is a fixed lead, 5 is a movable lead, 6 is an insulating tube, and 7 and 8 are sealed at both ends of the insulating tube 6. The fixed lead 4 is attached to the end plate 7 and the movable lead 5 is sealed to the end plate 8 via the bellows 9. 10 is a shield attached to the middle of the insulating cylinder 6.

このような構成の真空しや断器の真空容器の内
部は高真空に保たれており、この真空度が劣化し
た場合に、固定電極2、可動電極3とシールド1
0間の抵抗が急激に小さくなり、固定電極2、可
動電極3とシールド10間の電圧が小さくなり、
真空しや断器の各部での分担電圧に変化が生じ
る。従つてシールド10の電圧は真空度によつて
大きく変化し、シールド10付近の電界Eも大き
く変化する。第2図に真空度と真空しや断器外部
近傍の電界強度(1ユニツト当り(P.u.)の相対
的電界強度)の関係を示す。
The interior of the vacuum container of the vacuum shield and disconnector with such a configuration is maintained at a high vacuum, and when this degree of vacuum deteriorates, the fixed electrode 2, movable electrode 3, and shield 1
The resistance between 0 and 0 suddenly decreases, and the voltage between the fixed electrode 2, movable electrode 3 and shield 10 decreases,
Changes occur in the shared voltage at each part of the vacuum shield and disconnector. Therefore, the voltage across the shield 10 varies greatly depending on the degree of vacuum, and the electric field E near the shield 10 also varies greatly. Figure 2 shows the relationship between the degree of vacuum and the electric field strength (relative electric field strength per unit (Pu)) near the outside of the vacuum shield and breaker.

また11はシールド10の外部側近傍に設けら
れた偏光子12とポツケルス素子(電気光学効果
素子)13と検光子14とからなる光センサ(ポ
ツケルス効果利用電界検出器)であつて、発光部
15からの光は光フアイバ16を介して光センサ
11に供給され、光センサ11からの光を光フア
イバ17を介して受光部18に供給し、ここで、
受光した光の量に応じた電気信号に変換して出力
し、この出力を真空度判定部19で受けて真空度
の良否を判定する。真空度判定部19は受光部1
8の出力が急激に大きく又は小さくなつたことに
より真空度劣化を検知して警報や表示のための出
力を出す。
Reference numeral 11 denotes an optical sensor (electric field detector utilizing the Pockels effect) which is provided near the outside of the shield 10 and includes a polarizer 12, a Pockels element (electro-optic effect element) 13, and an analyzer 14; The light from the optical sensor 11 is supplied to the optical sensor 11 via the optical fiber 16, and the light from the optical sensor 11 is supplied to the light receiving unit 18 via the optical fiber 17, where:
It converts the received light into an electrical signal corresponding to the amount of light and outputs it, and this output is received by the degree of vacuum determination section 19 to determine whether the degree of vacuum is good or bad. The degree of vacuum determination section 19 is the light receiving section 1
When the output of No. 8 suddenly increases or decreases, deterioration of the degree of vacuum is detected and an output for alarm or display is issued.

しかしながら、真空度に対する電界強度の変化
量は100%である。従つて線路電圧が正常の場合
は真空度による電界変化が100%あるので上記構
成の真空度監視装置によつて誤検出はしないが、
開閉サージ、フエランチ効果(無負荷の高電圧長
距離送電線を充電すると送電端電圧より受電端電
圧が高くなる)、一線地絡時等には異常電圧が発
生するために真空度が良好でも真空しや断器1近
傍の電界強度が大きくなり、誤検出する恐れがあ
る。ちなみにこの場合の異常電圧の大きさは、開
閉サージ時3倍、一線地絡時に非接地系では2
倍、有接地系で1.4倍程度になる。
However, the amount of change in electric field strength with respect to the degree of vacuum is 100%. Therefore, when the line voltage is normal, there is a 100% change in the electric field due to the degree of vacuum, so the vacuum degree monitoring device with the above configuration will not make false detections.
Even if the degree of vacuum is good, a vacuum may occur due to abnormal voltages that occur during switching surges, ferranci effects (when charging an unloaded high-voltage long-distance transmission line, the voltage at the receiving end becomes higher than the voltage at the sending end), and single-line ground faults. The electric field strength near the shield breaker 1 increases, and there is a risk of erroneous detection. Incidentally, the magnitude of the abnormal voltage in this case is 3 times as large in the case of a switching surge, and 2 times as large in an ungrounded system as a result of a single line ground fault.
In a grounded system, it becomes about 1.4 times.

ところで、この真空しや断器の真空度監視装置
は真空しや断器以上の信頼性が要求され、いかな
る電気条件に対しても誤信号を出力してはならな
い。しかし、上記のように誤検出する恐れがある
ため、この問題点の解決をはかる必要がある。
By the way, the vacuum degree monitoring device for this vacuum shield disconnector is required to be more reliable than a vacuum shield disconnector, and must not output an erroneous signal under any electrical conditions. However, since there is a risk of false detection as described above, it is necessary to solve this problem.

本発明はこのような点に鑑みてなされたもの
で、以下実施例を用いて説明する。
The present invention has been made in view of these points, and will be described below using examples.

第3図は本発明による真空電気機器の真空度監
視装置の一実施例を示し、特に真空電気機器とし
て真空しや断器を例にとつた場合を示している。
第3図において第1図と同じものあるいは同じ機
能を有するものには同符号を用いている。
FIG. 3 shows an embodiment of the vacuum degree monitoring device for vacuum electrical equipment according to the present invention, and particularly shows the case where a vacuum shield and a disconnector are taken as an example of the vacuum electrical equipment.
In FIG. 3, the same reference numerals are used for the same components as in FIG. 1 or those having the same functions.

第3図において、20は受光部18の検出出力
を入力し、真空しや断器1の真空容器の真空度の
良否を判定し、真空しや断器の真空度良否信号出
力aを送出すると共に真空度監視装置の正常、異
常を判定し、真空度監視装置の正常、異常信号出
力bを送出する真空度判定及び装置監視部であ
る。この真空度判定及び装置監視部20の構成を
第4図に示す。
In FIG. 3, 20 inputs the detection output of the light receiving unit 18, determines whether the vacuum degree of the vacuum container of the vacuum shield breaker 1 is good or bad, and sends out the vacuum degree pass/fail signal output a of the vacuum shield breaker 1. This is also a vacuum degree determination and device monitoring section that determines whether the vacuum degree monitoring device is normal or abnormal and sends out a normality or abnormality signal output b of the vacuum degree monitoring device. The configuration of this vacuum degree determination and device monitoring section 20 is shown in FIG.

第4図において、光フアイバ17からの光は受
光部18の受光素子21で電気信号(電流信号)
に変換され、これが非反転増巾器(電流電圧変換
回路)22で電圧信号に変換される。この受光部
18の出力が真空度判定及び装置監視部20へ供
給される。以下真空度判定及び装置監視部20に
おいて、23は受光部18の検出出力と設定値と
をつき合せて偏差をとるつき合せ回路、24は受
光部18の出力を反転増巾する反転増巾回路、2
5はつき合せ回路23の偏差出力と反転増巾回路
24の出力とを加算する加算回路、26は入力E
が所定値E0より小さく(E<E0)のとき出力が
0で、入力Eが所定値E0以上のとき一定の出力
(0でない)を送出する比較回路であつて、この
比較回路26の出力は保持回路27に供給され
る。保持回路27は入力が0のとき真空度監視装
置異常動作のため真空度監視装置異常信号出力を
送出し、入力が一定値(0でない)のとき真空度
監視装置正常動作のため真空度監視装置正常信号
出力を送出する。28はつき合せ回路23の出力
の絶対値をとる絶対値回路、29は絶対値回路2
8の出力eが所定値e0より大きい(e>e0)とき
パルス出力を送出し、絶対値回路28の出力eが
e0以下(e≦e0)のときパルスを出力しない比較
回路、30は比較回路29の出力パルスをカウン
トするカウンタ、31はカウンタ30の出力(カ
ウント内容)が入力され、その継続時間tが所定
時間t0を越えるとたとえば論理“1”出力(真空
度劣化の場合)を送出し、その他の場合(真空度
良好の場合)たとえば論理“0”出力を送出す
る、しかも真空度良否を判定する判定部であつ
て、ロジツク回路で構成されている。32は判定
部31の出力を保持し、真空しや断器1の真空度
良否信号出力aを送出する保持回路であつて、こ
の保持回路32は判定部31の出力が論理“1”
のとき真空しや断器1の真空度劣化信号(真空度
不良信号)を送出し、また判定部31の出力が論
理“0”のとき真空しや断器1の真空度良好信号
を送出するものである。
In FIG. 4, the light from the optical fiber 17 is converted into an electric signal (current signal) by the light receiving element 21 of the light receiving section 18.
This is converted into a voltage signal by a non-inverting amplifier (current-voltage conversion circuit) 22. The output of this light receiving section 18 is supplied to a degree of vacuum determination and apparatus monitoring section 20. In the vacuum degree determination and device monitoring section 20, 23 is a matching circuit that compares the detected output of the light receiving section 18 with a set value and takes a deviation, and 24 is an inverting amplification circuit that inverts and amplifies the output of the light receiving section 18. ,2
5 is an adder circuit that adds the deviation output of the matching circuit 23 and the output of the inverting amplification circuit 24, and 26 is an input E.
This comparator circuit 26 is a comparator circuit that outputs 0 when E is smaller than a predetermined value E 0 (E<E 0 ), and outputs a constant output (not 0) when input E is greater than or equal to a predetermined value E 0 . The output of is supplied to the holding circuit 27. When the input is 0, the holding circuit 27 outputs a vacuum monitoring device abnormality signal because the vacuum monitoring device is operating abnormally, and when the input is a constant value (not 0), the vacuum monitoring device is operating normally. Sends normal signal output. 28 is an absolute value circuit that takes the absolute value of the output of the matching circuit 23, and 29 is an absolute value circuit 2.
When the output e of the absolute value circuit 28 is larger than the predetermined value e 0 (e>e 0 ), a pulse output is sent, and the output e of the absolute value circuit 28 is
A comparator circuit that does not output pulses when e 0 or less (e≦e 0 ), 30 is a counter that counts the output pulses of the comparator circuit 29, 31 is an input of the output (count content) of the counter 30, and its duration t is When the predetermined time t0 is exceeded, it sends out a logic "1" output (in the case of poor vacuum), and in other cases (in the case of good vacuum), it sends out a logic "0" output, and also determines whether the vacuum is good or bad. It is a determination section that performs the following, and is composed of a logic circuit. 32 is a holding circuit that holds the output of the determination unit 31 and sends out the vacuum degree pass/fail signal output a of the vacuum shield breaker 1;
When this happens, a deterioration of vacuum level signal (poor vacuum level signal) of the vacuum shield disconnector 1 is sent out, and when the output of the determination section 31 is logic "0", a good vacuum level signal of the vacuum shield disconnector 1 is sent out. It is something.

第5図は第4図に対応して、真空度監視装置の
真空度良否判定及び装置自身の監視原理のフロー
チヤートである。第5図において0/Eは光・電
気変換器である。
FIG. 5, corresponding to FIG. 4, is a flowchart of the principle of determining the quality of the vacuum level of the vacuum level monitoring device and monitoring the device itself. In FIG. 5, 0/E is an optical/electrical converter.

真空しや断器の真空度良否判定の基準は、光セ
ンサ11の検出信号(光信号)を受光部18で電
気信号に変換して得られる検出信号出力の交流
(AC)分のレベルとその継続時間で行なう。その
理由は、開閉サージなどの系統異常により得られ
る検出信号(AC分)の継続時間が真空しや断器
の真空度劣化による検出信号(AC分)の継続時
間に比して短時間であるからである。従つて、比
較回路29で検出信号(AC分)のレベル比較を
行ない、そのレベル比較によりその交流分eが所
定レベルe0より大きい場合の継続時間tがt0時間
より長く継続した場合に判定部31で真空度劣化
(不良)と判定している。
The criteria for determining whether the vacuum level of a vacuum shield is good or bad is based on the level of the alternating current (AC) component of the detection signal output obtained by converting the detection signal (optical signal) of the optical sensor 11 into an electrical signal by the light receiving section 18 and its level. Do it for a duration. The reason for this is that the duration of the detection signal (AC minute) obtained due to system abnormalities such as switching surges is shorter than the duration of the detection signal (AC minute) due to deterioration of the vacuum level of the vacuum shield or disconnector. It is from. Therefore, the comparison circuit 29 compares the levels of the detection signals (AC components), and based on the level comparison, a determination is made if the duration time t when the AC component e is greater than the predetermined level e 0 continues longer than t 0 time. In section 31, it is determined that the degree of vacuum has deteriorated (defective).

一方真空度監視装置自身の自動監視は、光セン
サ11の検出信号(光信号)を受光部18で電気
信号に変換して得られる検出信号出力の直流
(DC)分のレベル比較でもつて判定することにな
る。真空度監視装置の故障としては、(イ)光フアイ
バ16,17の切断、(ロ)発光部15の発光素子の
破壊、(ハ)受光部18の受光素子21の破壊、(ニ)光
フアイバ16,17などのコネクタ部での損失増
加などが考えられるが、これらの場合、すべて検
出信号のDC分が低下することになるので、その
DCレベルEを比較回路26で所定値E0と比較す
ることにより、E<E0のとき真空度監視装置の
異常動作と判断し、真空度監視装置異常信号出力
を保持回路27を介して送出する。同様に比較回
路26でE≧E0のとき保持回路27を介して真
空度監視装置の正常信号出力を送出する。このよ
うにして真空度監視装置自身の自動監視が不能と
なる。
On the other hand, automatic monitoring of the vacuum level monitoring device itself is determined by comparing the level of the direct current (DC) component of the detection signal output obtained by converting the detection signal (optical signal) of the optical sensor 11 into an electrical signal by the light receiving section 18. It turns out. Failures of the vacuum level monitoring device include (a) breakage of the optical fibers 16 and 17, (b) destruction of the light emitting element of the light emitting section 15, (c) destruction of the light receiving element 21 of the light receiving section 18, and (d) destruction of the optical fiber. There may be an increase in loss at connectors such as 16 and 17, but in all of these cases, the DC component of the detection signal will decrease, so
By comparing the DC level E with a predetermined value E0 in the comparator circuit 26, it is determined that the vacuum level monitoring device is operating abnormally when E< E0 , and a vacuum level monitoring device abnormality signal output is sent via the holding circuit 27. do. Similarly, when E≧E 0 in the comparison circuit 26, a normal signal output from the vacuum degree monitoring device is sent out via the holding circuit 27. In this way, automatic monitoring of the vacuum level monitoring device itself becomes impossible.

以上のようにして、開閉サージなどによる系統
電圧異常時に真空度判定の誤信号を出力しないこ
とは勿論、真空度監視装置自身の自動監視を同時
に行ない、真空度監視装置の信頼性を高めること
ができる。
As described above, it is possible to not only prevent the output of false vacuum level judgment signals when the system voltage is abnormal due to switching surges, etc., but also automatically monitor the vacuum level monitoring device itself, thereby increasing the reliability of the vacuum level monitoring device. can.

本実施例においては真空しや断器を例にとつて
説明したけれども本発明はこれに限定されること
なくたとえば真空しや断器を使用した断路器やス
イツチ、真空管、真空ギヤツプ、X線管などの真
空電気機器に適用できるものである。
Although the present embodiment has been explained using a vacuum shield and disconnector as an example, the present invention is not limited to this, and the present invention can be applied to, for example, a disconnector, a switch, a vacuum tube, a vacuum gap, an X-ray tube, etc. using a vacuum shield or disconnector. It can be applied to vacuum electrical equipment such as

上述したように本発明を用いれば次のような効
果を奏する。
As described above, the following effects can be achieved by using the present invention.

(1) 開閉サージなど系統異常による誤検出はな
く、真空電気機器の真空度のみで、その真空度
の良否信号を出力でき、検出信号の信頼性が高
い。
(1) There are no false detections due to system abnormalities such as opening/closing surges, and a pass/fail signal for the degree of vacuum can be output based only on the degree of vacuum of the vacuum electrical equipment, making the detection signal highly reliable.

(2) 光センサによる検出信号のうち、直流分のレ
ベルを判定することにより、容易に真空度監視
装置自身の自動監視を行なえ、真空度監視装置
の信頼性を非常に高くすることが可能となる。
(2) By determining the level of the DC component of the detection signal from the optical sensor, the vacuum level monitoring device itself can be easily monitored automatically, making it possible to greatly increase the reliability of the vacuum level monitoring device. Become.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は提案されている真空電気機器の真空度
監視装置の一例を示す構成図、第2図は圧力と真
空しや断器近傍電界強度の関係を示す図、第3図
は本発明による真空電気機器の真空度監視装置の
一実施例を示す構成図、第4図は第3図の真空度
判定及び装置監視部の一実施例を示す構成図、第
5図は真空度監視装置の真空度良否判定及び装置
自身の監視原理のフローチヤートであつて、図中
1は真空しや断器、10はシールド、11は光セ
ンサ、15は発光部、16,17は光フアイバ、
18は受光部、20は真空度判定及び装置監視
部、21は受光素子を示す。
Figure 1 is a configuration diagram showing an example of the proposed vacuum degree monitoring device for vacuum electrical equipment, Figure 2 is a diagram showing the relationship between pressure and electric field strength near the vacuum shield, and Figure 3 is a diagram according to the present invention. FIG. 4 is a block diagram showing an embodiment of the vacuum level monitoring device for vacuum electric equipment. FIG. 4 is a block diagram showing an embodiment of the vacuum level determination and device monitoring section of FIG. 3. FIG. This is a flowchart of the vacuum level judgment and monitoring principle of the device itself, in which 1 is a vacuum breaker, 10 is a shield, 11 is an optical sensor, 15 is a light emitting part, 16 and 17 are optical fibers,
Reference numeral 18 indicates a light receiving section, 20 indicates a degree of vacuum determination and apparatus monitoring section, and 21 indicates a light receiving element.

Claims (1)

【特許請求の範囲】[Claims] 1 発光素子を有する発光部と、真空電気機器の
真空部の外側に配置された電気光学効果を利用し
た光センサと、受光素子を有する受光部とを光フ
アイバ結合してなり、前記受光部の検出出力にも
とづいて真空電気機器の真空度の良否を半定する
真空電気機器の真空度監視装置において、前記受
光部の検出出力の直流分のレベル比較により真空
度監視装置自身の正常あるいは異常信号を送出す
ると共に前記受光部の検出出力の交流分のレベル
比較と、このレベル比較によりその交流分の所定
値レベルより大きい場合の継続時間の比較とでも
つて、真空度の良否を判定し真空度良否信号を送
出する真空度判定及び装置監視部を前記受光部の
出力側に設けたことを特徴とする真空電気機器の
真空度監視装置。
1 A light-emitting part having a light-emitting element, a light sensor using an electro-optic effect placed outside the vacuum part of a vacuum electric device, and a light-receiving part having a light-receiving element are coupled by an optical fiber, and the light-receiving part has a light-emitting element. In a vacuum monitoring device for vacuum electrical equipment that semi-determines whether the vacuum level of the vacuum electrical equipment is good or bad based on the detection output, a normal or abnormal signal of the vacuum monitoring device itself is detected by comparing the level of the DC component of the detection output of the light receiving section. At the same time, the degree of vacuum is judged to be good or bad by comparing the level of the AC component of the detection output of the light receiving section and comparing the duration when the AC component is greater than a predetermined value level as a result of this level comparison. A vacuum degree monitoring device for vacuum electrical equipment, characterized in that a vacuum degree determination and device monitoring section for sending out a pass/fail signal is provided on the output side of the light receiving section.
JP5678681A 1981-04-15 1981-04-15 Vacuum degree monitoring device for vacuum electric equipment Granted JPS57172621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5678681A JPS57172621A (en) 1981-04-15 1981-04-15 Vacuum degree monitoring device for vacuum electric equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5678681A JPS57172621A (en) 1981-04-15 1981-04-15 Vacuum degree monitoring device for vacuum electric equipment

Publications (2)

Publication Number Publication Date
JPS57172621A JPS57172621A (en) 1982-10-23
JPH0151011B2 true JPH0151011B2 (en) 1989-11-01

Family

ID=13037094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5678681A Granted JPS57172621A (en) 1981-04-15 1981-04-15 Vacuum degree monitoring device for vacuum electric equipment

Country Status (1)

Country Link
JP (1) JPS57172621A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0372608U (en) * 1989-11-17 1991-07-23
JPH0372606U (en) * 1989-11-17 1991-07-23
JPH0372609U (en) * 1989-11-17 1991-07-23
JPH0372607U (en) * 1989-11-17 1991-07-23

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0648202B2 (en) * 1986-10-03 1994-06-22 コナックス バッファロウ コーポレーション Fiber optical sensor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0372608U (en) * 1989-11-17 1991-07-23
JPH0372606U (en) * 1989-11-17 1991-07-23
JPH0372609U (en) * 1989-11-17 1991-07-23
JPH0372607U (en) * 1989-11-17 1991-07-23

Also Published As

Publication number Publication date
JPS57172621A (en) 1982-10-23

Similar Documents

Publication Publication Date Title
US3468164A (en) Open thermocouple detection apparatus
US5574378A (en) Insulation monitoring system for insulated high voltage apparatus
US4937698A (en) System for foreseeing deterioration in interrupting performance of vacuum interrupter
US20230053450A1 (en) Method for Detecting a Series Resistance Fault in a Digital-Electricity Transmission System
KR20100049216A (en) Method for detecting arc in power distribution system and system for alerting arc using the same method
AU4358299A (en) Method and device for monitoring an electrode line of a bipolar high voltage direct current (hvdc) transmission system
CN106771500B (en) A kind of HVDC transmission system difference channel current amount otherness detection method
JPH0151011B2 (en)
KR101535923B1 (en) An electric distributing board with diagnosis function of electric power quality through monitoring carbonization of power cable and dischare of power apparatus connecting parts
EP0040918B1 (en) A vacuum circuit interrupter with a pressure monitoring system
KR0169969B1 (en) Power apparatus, power transmission/distribution unit, and tripping method therefor
CN114859197A (en) Online monitoring device and method for thyristor aging evaluation
KR100266721B1 (en) Detecting device for ground fault of gas insulated switchgear
USRE41343E1 (en) Operational monitoring for a converter
KR101377190B1 (en) Phase identification appratus and method of of leakage and arc on switchgear
KR100368425B1 (en) method for diagnosing operation status of gas insulation open and close apparatus
JP3457366B2 (en) Lightning arrester monitoring device
JP2569258B2 (en) Power cable insulation deterioration detection circuit
KR102544329B1 (en) Monitoring System for Cable Sheath Induced Voltage Reduction Device
KR860000841Y1 (en) Pressure detecting device for a vacuum breaker
JPH0627182A (en) Partial discharge monitoring apparatus
KR102444736B1 (en) Insulation status monitoring equipment of power cables and method
JPH06201755A (en) Partial discharge detecting device
WO2024097534A1 (en) Method for detecting a series resistance fault in a digital-electricity transmission system
JPH02119510A (en) Compressed gas insulated switchgear