JPH01135599A - Sludge discharge controller for sedimentation tank - Google Patents

Sludge discharge controller for sedimentation tank

Info

Publication number
JPH01135599A
JPH01135599A JP62295724A JP29572487A JPH01135599A JP H01135599 A JPH01135599 A JP H01135599A JP 62295724 A JP62295724 A JP 62295724A JP 29572487 A JP29572487 A JP 29572487A JP H01135599 A JPH01135599 A JP H01135599A
Authority
JP
Japan
Prior art keywords
sludge
value
raw water
concentration
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62295724A
Other languages
Japanese (ja)
Other versions
JPH0739000B2 (en
Inventor
Hiroshi Tsukura
津倉 洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP62295724A priority Critical patent/JPH0739000B2/en
Publication of JPH01135599A publication Critical patent/JPH01135599A/en
Publication of JPH0739000B2 publication Critical patent/JPH0739000B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To automate, by automatically obtaining a value to be fixed by means of a timer, said value corresponding to a sludge discharge, period and a sludge discharge time. CONSTITUTION:Original water is introduced into a sedimentation tank 1 and subjected to solid-liquid separation by means of the flocculating effect of a stirrer 13, and treated water is discharged. The measured values of both the turbidity of the original water and the sludge concentration in a second stirring room 15 are inputted in an FF controller 41. A sludge discharge period DS1 and a sludge discharge time DT1 are obtained from the measured values TB of the turbidity and each of the relationships between them. From measured values SS of the sludge concentration and each of the relationships between them, a sludge discharge period DS2 and a sludge discharge time DT2 are obtained, and further a value DS to be fixed is obtained from the DS1 and DS2. Further, a value DT to be fixed is obtained from the DT1 and DT2, and an FB controller 42 fixes a target value SS0 of the sludge concentration, said target value corresponding to the TB. Then, a sludge-discharging means is controlled by setting a timer such that the sludge discharge time may be DT+DELTADT.

Description

【発明の詳細な説明】 A、産業上の利用分野 本発明は沈澱池の汚泥を排出するための制御装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a control device for discharging sludge from a settling tank.

B3発明の概要 本発明は高速凝集沈澱池や検流式の沈澱池の汚泥をタイ
マにより所定周期で排出させる排泥制御装置において、 操作員の実際の排泥操作のデータをコントローラ等に格
納し、原水濁度等の検出値と前記データにもとずいて排
泥周期及び排泥時間の設定値を決定することによ−って
、       □排泥制御を自動化し、かつ設備費用
を抑えるようにしたものである。
B3 Summary of the Invention The present invention is a sludge control device that discharges sludge from a high-speed coagulation sedimentation tank or a galvanic type sedimentation tank at a predetermined period using a timer, in which data of an operator's actual sludge removal operation is stored in a controller, etc. By determining the setting values for the sludge removal cycle and sludge time based on the detected values of raw water turbidity, etc. and the above data, □ Automate sludge removal control and reduce equipment costs. This is what I did.

C1従来の技術及び発明が解決しようとする問題点 現在浄水場の薬品沈澱池における排泥操作は、タイマを
用いて排泥周期と排泥時間を例えば夫々lO分、1分と
いったように設定してできるだけ連続排泥に近い形で行
っている。□この排泥方法ではタイマに設定する排泥周
期と排泥時間とを操作員の共力や経験により原水水質特
に濁度の変化に応じて随時手動設定により変更していか
なければならない。そのため洪水期や融雪期等の高濁度
発生時に排泥周期を短くしかつ排泥時間を長くするよう
にタイムリーに頻繁1こ設定変更をしなければならず、
しかも昼夜の別なく行わなければならない。また真冬の
渇水期には原水濁度は低濃度となり、沈澱池滞留汚泥が
腐敗しないように排泥周期と排泥時間を設定して排泥操
作を行うと共に、突然の台風等の洪水時には大幅な設定
変更を真夜中でも実施しなければならず、これを怠ると
沈澱池の処理水質が悪化してしまう。このように排泥操
作自体については、排泥弁を自動開閉したり排泥ポンプ
を自動的にオン/オフするので自動化されているが、排
泥周期と排泥時間をいくらに設定するかといった設定行
為は操作員の共力と経験に従って人為的に決められてい
る。しかしながらこのような人為的な設定を行う方法は
操作員の負担が大きいという問題がある。
C1 Problems to be Solved by the Prior Art and the Invention At present, the sludge removal operation in the chemical sedimentation tank of a water treatment plant uses a timer to set the sludge period and the sludge time to, for example, 10 minutes and 1 minute, respectively. This is done in a manner as close to continuous mud removal as possible. □With this sludge removal method, the sludge removal period and sludge removal time set on the timer must be manually changed as needed according to changes in raw water quality, especially turbidity, with the cooperation and experience of the operator. Therefore, when high turbidity occurs during the flood season or snowmelt season, it is necessary to frequently change the settings in a timely manner to shorten the sludge cycle and lengthen the sludge time.
Moreover, it must be done day and night. In addition, during the dry season in the middle of winter, the concentration of raw water turbidity is low, and in order to prevent the sludge accumulated in the sedimentation tank from rotting, the sludge operation is carried out by setting the sludge cycle and sludge time, and when there is a sudden flood such as a typhoon, the turbidity of the raw water becomes low. Setting changes must be made even in the middle of the night, and if this is not done, the quality of treated water in the sedimentation pond will deteriorate. In this way, the sludge removal operation itself is automated, as the sludge valve is automatically opened and closed, and the sludge pump is automatically turned on and off. The setting behavior is artificially determined according to the cooperation and experience of the operator. However, such a method of making artificial settings has a problem in that it places a heavy burden on the operator.

また沈澱池の排泥制御を完全自動化する方法として、原
水濁度にもとずく発生汚泥量を推定し、沈澱池内に滞留
する汚泥を汚泥界面計や汚泥濃度計の各検出値にもとず
いてミニコンピユータ等の計算機により推定して排泥量
を決定することも検討されている。しかしながらこの方
法は排泥汚泥濃度計(例えば5%フルスケール)、汚泥
界面計及び原水濁計等の水質計測器並びに原水流量計や
排泥流量計等の多くの計測機器、制御機器に加えてミニ
コンピユータクラスの計算機が必要となり、設備費用が
高騰する上、その割には汚泥滞留状態の推定精度は多く
の外乱のために低い。
In addition, as a method to fully automate sedimentation tank drainage control, the amount of generated sludge is estimated based on raw water turbidity, and the sludge stagnant in the sedimentation tank is estimated based on the detected values of the sludge interface meter and sludge concentration meter. It is also being considered to determine the amount of sludge discharged by estimating it using a calculator such as a minicomputer. However, this method requires water quality measuring instruments such as effluent sludge concentration meters (e.g. 5% full scale), sludge interface meters and raw water turbidity meters, as well as many measurement and control instruments such as raw water flow meters and sludge flow meters. Mini-computer-class calculators are required, which increases equipment costs, and the accuracy of estimating the state of sludge retention is relatively low due to many disturbances.

本発明の目的は、沈澱池の排泥制御を自動化し、かつ設
備投資を少なくすることにある。
An object of the present invention is to automate the control of sludge removal from a sedimentation tank and to reduce capital investment.

D0問題点を解決するための手段 本発明では、例えばスラリー循環型高速凝集沈澱池を対
象とする場合、2次撹拌室の汚泥濃度及び原水濁度の検
出値をファジーコントローラ等に入力し、ファジー演算
やPID演算を行って出力信号として排泥周期及び排泥
時間の各設定値を出力する。ファジーコントローラ等の
内部で行う制御方法は、経験豊かな操作員の制御方法を
まねる形式をとっている。実際の高速凝集沈殿池の2次
撹拌室に例えば0〜5000mg/4を測定範囲とする
汚泥濃度計を設置し、操作員によるタイマの手動設定に
もとずく排泥操作を1年間に亘って実施した結果を第4
図に示す。この図かられかるように原水濁度が上昇する
につれて2次撹拌室の汚泥濃度も増加し、操作員は原水
濁度が上昇するにつれて排水周期を短かく、排水時間を
長くとって、前記泥濃度の上昇を一定に抑えている。本
発明はこの原理をコントローラ等に組み込んで排泥制御
を自動化したものであり、具体的には排泥周期及び排泥
時間の各設定値を求めるフィードフォワード制御部と、
この各設定値に対する補正値を求めるフィードバック制
御部と、前記設定値及び補正値にもとずいてタイマを設
定するタイマ設定部とから構成される。
Means for solving the D0 problem In the present invention, for example, when targeting a slurry circulation type high-speed coagulation sedimentation tank, the detected values of the sludge concentration and raw water turbidity in the secondary stirring chamber are input to a fuzzy controller etc. It performs calculations and PID calculations and outputs each set value of the mud removal period and mud removal time as an output signal. The control method performed inside a fuzzy controller or the like imitates the control method used by an experienced operator. A sludge concentration meter with a measurement range of, for example, 0 to 5000 mg/4 was installed in the secondary stirring chamber of an actual high-speed coagulation sedimentation tank, and the sludge removal operation based on manual timer settings by the operator was carried out over a period of one year. The results of the implementation are shown in the fourth
As shown in the figure. As can be seen from this figure, as the raw water turbidity increases, the sludge concentration in the secondary stirring chamber also increases. The increase in concentration is kept constant. The present invention incorporates this principle into a controller etc. to automate sludge removal control, and specifically includes a feedforward control section that calculates each set value of the sludge removal period and sludge removal time,
It is comprised of a feedback control section that calculates correction values for each set value, and a timer setting section that sets a timer based on the set values and correction values.

80作用 フィードフォワード制御部では、タイマを手動設定した
行った実際の排泥操作にもとすくデータから得られた、
原水濁度及び撹拌室内の汚泥濃度の各々と排泥周期との
関係、及び原水濁度及び前期汚泥濃度の各々と排泥時間
との関係を予め記憶すると共に、これら関係と原水濁度
及び前記汚泥濃度の各検出値とにもとずいて排泥周期及
び排泥時間の各設定値を求める。またフィードフォワー
ド制m部では、前記排泥操作時のデータにもとずいて得
られた原水濁度と前記汚泥濃度の目標値との関係を予め
記憶すると共に、この関係と原水濁度の検出値とから前
記汚泥濃度の目標値を求め、前記汚泥濃度の検出値が前
記目標値となるように排泥周期及び排泥時間の各設定値
の夫々について補正値を求める。そして前記排泥周期の
設定値及び補正値の加算値を排泥周期としてかつ前記排
泥 □時間の設定値及び補正値の加算値を排泥時間とし
てタイマを設定する。
In the 80-action feedforward control section, the timer was manually set.
The relationship between raw water turbidity and sludge concentration in the stirring chamber and the sludge cycle, and the relationship between each of raw water turbidity and early sludge concentration and sludge time are stored in advance, and these relationships, raw water turbidity, and the above-mentioned relationship are stored in advance. Based on each detected value of sludge concentration, each set value of the sludge drainage cycle and sludge drainage time is determined. In addition, the feedforward system m section stores in advance the relationship between the raw water turbidity obtained based on the data during the sludge removal operation and the target value of the sludge concentration, and also detects this relationship and the raw water turbidity. A target value of the sludge concentration is determined from the value, and a correction value is determined for each of the set values of the sludge cycle and the sludge time so that the detected value of the sludge concentration becomes the target value. Then, a timer is set so that the added value of the set value of the mud removal cycle and the correction value is the mud removal cycle, and the added value of the set value of the mud removal time and the correction value is the mud removal time.

F、実施例 第1図は本発明の実施例を示す図である。■は高速凝集
沈澱池であり、この沈澱池1は、原水を導入管!、を介
して円錐台状の撹拌室のうらの下部側の1次撹拌室!、
に導入し、撹拌手段!、の撹拌により汚泥を凝集沈澱さ
せて排出管14を通じて排出させると共に、汚泥を含む
原水を上部側の2次撹拌室11を通じてその上端より越
流させ、固液分離部!、にて固液分離を行うものである
F. Embodiment FIG. 1 is a diagram showing an embodiment of the present invention. ■ is a high-speed coagulation sedimentation tank, and this sedimentation tank 1 is a pipe for introducing raw water! , to the primary stirring chamber on the lower side of the truncated conical stirring chamber! ,
Introduced into the stirring means! , the sludge is coagulated and precipitated by stirring and discharged through the discharge pipe 14, and the raw water containing the sludge is overflowed from the upper end through the secondary stirring chamber 11 on the upper side, and the solid-liquid separation section! , solid-liquid separation is performed.

前記導入W1.及び2次撹拌室1゛iこは夫々濁度計2
及び汚泥濃度計3が設置されている。41はフィードフ
ォワード(以下rFFJという)制御部であり、経験豊
かな操作員の排泥操作にもとずいて得られたデータを予
め記憶すると共に、このデータと前記濁度計2及び汚泥
濃度計3の各検出値とにもとずいて排泥周期の設定値D
Sと排泥時間の設定値DTとを算出する機能を有する。
Said introduction W1. and the secondary stirring chamber 1 are each equipped with a turbidity meter 2.
and a sludge concentration meter 3 are installed. 41 is a feedforward (hereinafter referred to as rFFJ) control unit, which stores in advance data obtained based on sludge removal operations by an experienced operator, and also combines this data with the turbidity meter 2 and sludge concentration meter. The setting value D of the sludge removal cycle is based on each detected value of 3.
It has a function of calculating S and a set value DT of mud removal time.

前記データは、操作員が例えば1年間jこ亘ってタイマ
の手動設定により排泥操作を行うことによって得られた
原水濁度及び二次撹拌室l、の汚泥濃度と排泥周期との
各関係(第2図(a)、(b))、及び原水濁度及び前
記汚泥濃度と排泥時間との各関係(第3図(a)、(b
))であり、操作員の確率的設定値から求められたもの
である。
The data is the relationship between the raw water turbidity, the sludge concentration in the secondary stirring chamber, and the sludge cycle, which are obtained by an operator performing sludge removal operations by manual setting of a timer over a period of one year, for example. (Fig. 2 (a), (b)), and the relationship between raw water turbidity, the sludge concentration, and sludge drainage time (Fig. 3 (a), (b))
)), which was determined from the operator's probabilistic settings.

4.はフィードバック(以下rFBJという)制御部で
あり、時間遅れを考慮して一定時間後の汚泥濃度計3の
検出値をFB制御入力信号として・用い、この値が目標
値となるようにDS、DTの値を補正する。この目標値
については、操作員が理想的な排泥制御を行った場合第
4図に示すように原水濁度と前記汚泥濃度とが巨視的に
は直線的な関係があることから、この関係と濁度計2の
検出値とから求められる。この場合汚泥濃度=aX原水
濁度十b(a、bは定数)の直線式を利用してもよいし
、あるいは第5図に示すようにステップ状の関係を利用
してもよく、この実施例では第5図の関係から目標値を
求めている。具体的には前記FB制御部4.は、汚泥濃
度の検出値及び目標値の偏差に応じたDSの補正値ΔD
SとDTの補正値ΔDTとを出力゛する。
4. is a feedback (hereinafter referred to as rFBJ) control section, which uses the detected value of the sludge concentration meter 3 after a certain period of time as the FB control input signal, taking into account the time delay, and controls the DS and DT so that this value becomes the target value. Correct the value of. Regarding this target value, since there is a macroscopic linear relationship between the raw water turbidity and the sludge concentration as shown in Figure 4 when the operator performs ideal sludge drainage control, this relationship and the detected value of the turbidity meter 2. In this case, a linear equation of sludge concentration = aX raw water turbidity + b (a and b are constants) may be used, or a step-like relationship as shown in Figure 5 may be used; In the example, the target value is determined from the relationship shown in FIG. Specifically, the FB control unit 4. is the correction value ΔD of DS according to the deviation between the detected value and target value of sludge concentration.
A correction value ΔDT of S and DT is output.

4、はタイマ設定部であり、排泥周期及び排泥時間の各
々についてFF制御部4Iの出力及びFB制御部4.の
出力の加算値であるDS+ΔDSとDT+ΔDTとを求
め、DS+ΔDSを排泥周期としかつDT+ΔDTを排
泥時間として図示しないタイマを設定する機能を持って
いる。またVは排泥弁、Mはモータであって、これらに
より排泥手段が構成され、前記タイマにより排泥周期と
排泥時間が制御される。以上においてこの例では、前記
FF@@部4□、FB制御F44.及びタイマ設定部4
.はディジタルコントローラ(例えば5LDC)4内に
組み込まれている。
4 is a timer setting section, which outputs the output of the FF control section 4I and the FB control section 4.4 for each of the sludge removal period and the sludge removal time. It has a function of determining DS+ΔDS and DT+ΔDT, which are the sum of the outputs of , and setting a timer (not shown) with DS+ΔDS as the mud removal period and DT+ΔDT as the mud removal time. Further, V is a mud draining valve, and M is a motor, which constitute mud draining means, and the mud draining cycle and mud draining time are controlled by the timer. In this example, the FF@@ section 4□, the FB control F44. and timer setting section 4
.. is built into a digital controller (eg 5LDC) 4.

次に上述実施例の作用について述べる。今原水が沈澱池
Iに導入され、ここで撹拌手段!、による凝集作用によ
って固液分離が行われ処理水が放流されているとする。
Next, the operation of the above embodiment will be described. Now the raw water is introduced into the settling tank I, where the stirring means! It is assumed that solid-liquid separation is performed by the coagulation effect of , and treated water is discharged.

このとき原水の濁度及び2次撹拌室1.の汚泥濃度の各
検出値がFF制御部4Iに入力され、濁度の検出値TB
と第2図(a)及び第3図(a)1こ示す関係とから排
泥周期DS1及び排泥時間DTlを求めると共に、汚泥
濃度の検出値SSと第2図(b)及び第3図(b)に示
す関係とから排泥周期DS、及び排泥時間DT。
At this time, the turbidity of the raw water and the secondary stirring chamber 1. Each detected value of sludge concentration is input to the FF control unit 4I, and the detected value of turbidity TB
From the relationship shown in FIGS. 2(a) and 3(a), the sludge draining period DS1 and sludge draining time DTl are determined, and the detected value SS of the sludge concentration and the relationship shown in FIGS. 2(b) and 3 are calculated. From the relationship shown in (b), the sludge removal period DS and the sludge removal time DT are obtained.

を求め、更にDSI及びDS、から設定値であるDSを
求め、またDTI及びDT、から設定値であるDTを求
める。一方FB@ll1部4.にて第5図の関係からT
Hに対応する汚泥濃度の目標値SS。
Further, DS, which is a set value, is found from DSI and DS, and DT, which is a set value, is found from DTI and DT. On the other hand, FB@ll1 part 4. From the relationship shown in Figure 5, T
Target value SS of sludge concentration corresponding to H.

が求められ、このSSoと検出値であるSSとの偏差分
に応じた補正値へ〇S及びΔDTが出力される。そして
タイマ設定部4.にてDS+ΔDSとDT+ΔDTとが
演算され、排泥周期がDS+ΔDSとなるように、また
排泥時間がDT+ΔDTとなるように図示しないタイマ
を設定し、この設定値に応じて排泥手段が制御される。
is determined, and 〇S and ΔDT are output as correction values corresponding to the deviation between this SSo and the detected value SS. and timer setting section 4. DS+ΔDS and DT+ΔDT are calculated, and a timer (not shown) is set so that the sludge removal cycle becomes DS+ΔDS and the sludge removal time becomes DT+ΔDT, and the sludge removal means is controlled according to the set values. .

第6図は本発明の他の実施例を示す図であり、この実施
例ではディジタルコントローラに代わってファンジ−コ
ントローラを用いている。図中58は設定量用の状態計
測認定部、5.は設定量推定規則格納部、5sは補正量
用の状態計測認定部54は補正量推定規則格納部、56
はファジー推論部、5、は設定値決定部、57は補正値
決定部、5.はタイマ設定部であり、これがファジーコ
ントローラ5内に組み込まれている。
FIG. 6 is a diagram showing another embodiment of the present invention, in which a fungi controller is used in place of the digital controller. In the figure, 58 is a condition measurement certification section for the set amount; 5. 5s is a set amount estimation rule storage section, 5s is a correction amount state measurement certification section 54 is a correction amount estimation rule storage section, 56
5 is a fuzzy inference section; 5 is a setting value determining section; 57 is a correction value determining section; 5. is a timer setting section, which is built into the fuzzy controller 5.

この実施例では、原水濁度の検出値と2次撹拌室1.の
汚泥濃度の検出値の両方が前記状態計測認定部58.5
!のいずれにも入力されると共に補正量用の状態計測認
定部5sには更に処理水の濁度が入力され設定量用及び
補正量用の計測値が認定される。そしてこれらの値に夫
々前記推定規則格納部52.54の推定規則が適用され
、その結果がファジー推論部5.に入力されるー。更に
ファジー推論部5.の演算結果にもとずいて、設定値決
定部5.にてDS及びDTが決定されると共に補正値決
定部5フにてΔDS及びΔDTが決定され、タイマ設定
部5.により排泥周期がDS+ΔDSとなるように、ま
た排泥時間がDT+ΔDTとなるように図示しないタイ
マを設定する。以上において第61!1に示す実施例で
は、ファジー推論115、及び設定値決定部5.がFF
制御部に相当し、ファジー推論部56及び補正値決定部
5.がF B liJ御部に相当する。
In this example, the detected value of raw water turbidity and the secondary stirring chamber 1. Both of the detected values of the sludge concentration are determined by the condition measurement certification section 58.5.
! At the same time, the turbidity of the treated water is further input to the state measurement certification section 5s for the correction amount, and the measured values for the set amount and the correction amount are certified. Then, the estimation rules in the estimation rule storage sections 52 and 54 are applied to these values, respectively, and the results are sent to the fuzzy inference section 5. will be input into. Furthermore, the fuzzy inference section 5. Based on the calculation result of 5. DS and DT are determined in the correction value determining section 5, ΔDS and ΔDT are determined in the correction value determining section 5, and the timer setting section 5. A timer (not shown) is set so that the mud removal period becomes DS+ΔDS and the mud removal time becomes DT+ΔDT. In the embodiment shown in No. 61!1 above, the fuzzy inference 115 and the setting value determination unit 5. is FF
Corresponding to the control section, the fuzzy inference section 56 and the correction value determination section 5. corresponds to F BliJ Gobe.

第7図は他の発明の実施例を示す図であり、この実施例
は、沈澱池が検流式のものである点、及び2次撹拌室の
汚泥濃度に代わりに沈澱池の排泥ピットの汚泥濃度と汚
泥界面の各検出値をFF制御部とFB@1部の入力信号
としている点において先述の発明と異なっている。第7
図中6は検流式の沈澱池であり、この沈澱池6ではフロ
ック形成池6.より流入した原水が固液分離され、沈澱
した汚泥分が図示しない汚泥かき寄せ機で排泥ピット6
!にかき集められる。7は濁度計であり、フロック形成
池61内の原水濁度を検出する。8は汚泥濃度及び汚泥
界面レベルを検出する機能を備えた光式の汚泥濃度・界
面計であり、排泥ピット6、内の各位を検出する。6.
は傾斜板沈降装置である。9はディジタルコントローラ
91はFF制御部、9jはFB制御部9.はタイマ設定
部である。FF制御部9.では汚泥濃度・界面計8より
の汚泥濃度の検出値を汚泥界面の検出値にもとずいて修
正し、修正した汚泥濃度と濁度計7よりの検出値とにも
とずいて第1図に示す実施例と同様にして第2図の関係
を用いてDSとDTとを決定する。このとき排泥ピット
6、内の汚泥濃度と原水濁度とは同様に第4図に示す関
係にあると予測されるので、FB制御部9fにて例えば
第5図に示す関係を用いて原水濁度に応じた汚泥濃度の
目標値を求め、排泥ピット6、内の汚泥濃度が目標値付
近に維持されるように補正制御する。即ち第1図に示す
実施例と同様にFB制御部9.からΔDS、ΔDTが出
力され、タイマ設定部9.によりDS+ΔDSを排泥周
期として、またDT+ΔDTを排泥時間としてタイマを
設定する。
FIG. 7 is a diagram showing an embodiment of another invention, and this embodiment has the points that the settling tank is of a galvanometric type, and that the sludge concentration in the secondary stirring chamber is changed to the sludge pit of the settling tank. This invention differs from the above-mentioned invention in that the detected values of the sludge concentration and the sludge interface are used as input signals for the FF control section and the FB@1 section. 7th
6 in the figure is a galvanic type sedimentation tank, and this sedimentation tank 6 has a floc formation tank 6. The inflowing raw water is separated into solid and liquid, and the precipitated sludge is collected in a sludge scraper (not shown) in the sludge pit 6.
! It is collected by. 7 is a turbidity meter, which detects the turbidity of raw water in the floc formation pond 61. Reference numeral 8 denotes an optical sludge concentration/interface meter having a function of detecting sludge concentration and sludge interface level, and detects each part in the sludge drainage pit 6. 6.
is an inclined plate sedimentation device. The digital controller 91 is an FF control section, and 9j is an FB control section 9. is a timer setting section. FF control section 9. Now, the value of the sludge concentration detected by the sludge concentration/interface meter 8 is corrected based on the value detected at the sludge interface, and based on the corrected sludge concentration and the value detected by the turbidity meter 7, the result is shown in Figure 1. DS and DT are determined using the relationship shown in FIG. 2 in the same manner as in the embodiment shown in FIG. At this time, it is predicted that the sludge concentration in the sludge pit 6 and the raw water turbidity have the same relationship as shown in FIG. 4, so the FB control unit 9f uses the relationship shown in FIG. A target value of sludge concentration according to turbidity is determined, and correction control is performed so that the sludge concentration in the sludge pit 6 is maintained near the target value. That is, like the embodiment shown in FIG. 1, the FB control section 9. ΔDS and ΔDT are outputted from the timer setting section 9. Accordingly, a timer is set with DS+ΔDS as the mud removal period and DT+ΔDT as the mud removal time.

ここでFF制御部9I及びFB制御部9.における汚泥
濃度・界面計8からの入力信号としては、汚泥濃度の検
出値のみあるいは汚泥界面の検出値のみを用いてもよい
Here, the FF control section 9I and the FB control section 9. As the input signal from the sludge concentration/interface meter 8, only the detected value of the sludge concentration or only the detected value of the sludge interface may be used.

また従来のマニュアル制御では、汚泥界面と排泥管64
丙の排泥濃度を見ながらタイマー設定値を定めていたが
、排泥濃度は0〜5%の間で変化するので、排泥管64
に直接挿入した汚泥濃度計からの検出値は信頼性が低い
。従って本発明では、排泥ピット6、上に汚泥濃度・界
面計8を配置して、その検出値を利用することが信頼性
の向上の点から望ましい。
In addition, in conventional manual control, the sludge interface and the sludge pipe 64
The timer setting value was determined while checking the sludge concentration of C, but since the sludge concentration changes between 0 and 5%, the sludge drainage pipe 64
Detected values from sludge concentration meters inserted directly into the water are unreliable. Therefore, in the present invention, it is desirable to arrange a sludge concentration/interface meter 8 above the sludge pit 6 and use the detected value from the viewpoint of improving reliability.

更に検流式の沈澱池の排泥制御においても、ディジタル
コントローラに代えて第6図に示すようなファジーコン
トローラを用いることもできる。
Furthermore, in the sludge removal control of a galvanometric sedimentation tank, a fuzzy controller as shown in FIG. 6 may be used instead of the digital controller.

この場合2次撹拌室!、の汚泥濃度の代わりに、前記汚
泥濃度・界面計8からの汚泥濃度及び汚泥界面の両方の
検出値が用いられるかあるいはそのうちの一方が用いら
れる。このようにファジーコントローラを利用して、更
にあいまいな情報を用いてファジー制御すれば、ΔDS
やΔDTの決定精度が高まること等から、よりきめ細か
い制御を行うことができる。
In this case, a secondary stirring chamber! Instead of the sludge concentration of , either the detected values of both the sludge concentration and the sludge interface from the sludge concentration/interface meter 8 are used, or one of them is used. If we use the fuzzy controller in this way and perform fuzzy control using more ambiguous information, ΔDS
Since the accuracy of determining ΔDT and ΔDT is increased, more fine-grained control can be performed.

H1発明の効果 本発明によれば、排泥周期及び排泥時間に対応するタイ
マ設定値を自動的に求めてタイマ設定を行っているため
排泥制御が自動化され、これにより操作員の負担が軽減
される。そして操作員の実際の排泥操作のデータにもと
ずいてFF制御によりDS、DTを決定すると共に、F
B制御によりDS、DTの各補正値を求めて補正制御を
行うようにしているため、きめ細かい排泥制御を行うこ
とができ、理想的な排泥操作を実現できる。また濁度計
と汚泥濃度計や汚泥界面計、及びディジタルコントロー
ラ等のコントローラによって制御できるから、初期投資
が少なくて済み、経済的である。
H1 Effects of the Invention According to the present invention, since the timer setting values corresponding to the sludge removal period and sludge time are automatically determined and the timer settings are performed, sludge removal control is automated, thereby reducing the burden on the operator. Reduced. Then, DS and DT are determined by FF control based on the data of the operator's actual sludge removal operation.
Since each correction value of DS and DT is determined by B control and correction control is performed, fine sludge removal control can be performed and an ideal sludge removal operation can be realized. Furthermore, since it can be controlled by a controller such as a turbidity meter, sludge concentration meter, sludge interface meter, and digital controller, the initial investment is small and it is economical.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す構成図、第2図(a)、
(b)は排泥周期の決定用関係図、第3図(a)、(b
)は排泥時間の決定用関係図、第4図は原水濁度と汚泥
濃度との関係を示すデータ図、第5図は汚泥濃度目標値
の設定用グラフ、第6図は本発明の他の実施例を示す構
成図、第7図は他の発明の実施例を示す構成図である。 l・・・高速凝集沈澱池、2,7・・・濁度計、3・・
・汚泥濃度計、4..91・・FF@御部、4−.9!
・・・FB制御部、4s、9s・・・タイマ設定部、5
・・・ファジーコントローラ、6・・・横流式沈澱池。 第1図 ホ売明の笑止イ列の講へ回 2−濁度計 3−−一刀χl茂計 4−一一ディヲタルコントO−ラ 4+−−−FF制脚部 4、−−FB制m邪 43−−一タイマ!5!i卵 第2図 羽¥χ周期の大定用関イyF、品 (a)                  (b)原
水濁M (”9/r)         ff1Z;1
! (m9/l)第3図 排χ時間の決定−用閲イ累配 (α)                 (b)恩水
濁茂(m9/r)        5ちア濃度(’97
り第4図 房UK濁皮ヒ汚湿遼U支のテークに 戸しにう蜀屓 (’9/z) 第5図 力泥漠皮巨県値の以定用7フフ 厚X濁演(’9/Z)
FIG. 1 is a configuration diagram showing an embodiment of the present invention, FIG. 2(a),
(b) is a relationship diagram for determining the sludge removal cycle, Figures 3 (a) and (b)
) is a relationship diagram for determining the sludge drainage time, Figure 4 is a data diagram showing the relationship between raw water turbidity and sludge concentration, Figure 5 is a graph for setting the target value of sludge concentration, and Figure 6 is a diagram for determining the sludge concentration target value. FIG. 7 is a block diagram showing another embodiment of the invention. l...High-speed coagulation and sedimentation tank, 2,7...Turbidity meter, 3...
・Sludge concentration meter, 4. .. 91...FF@Obe, 4-. 9!
...FB control section, 4s, 9s...timer setting section, 5
...Fuzzy controller, 6...Cross-flow sedimentation tank. Fig. 1 To the explanation of the series of laughs and rows of Homiaki 2-turbidity meter 3--itto χl meter 4-11 digital control O-ra 4+---FF leg control section 4, --FB system Mja 43--One timer! 5! i Egg Fig. 2 Feather ¥ χ Periodic function y F, Product (a) (b) Raw water turbidity M (9/r) ff1Z;1
! (m9/l) Figure 3: Determination of evacuation time - review time (α) (b) Onsui Norishige (m9/r)
Figure 4: UK cloudy skin, dirt, humidity, Liao U branch, Shuhei ('9/z) Figure 5: Definition of power desert skin giant prefecture value, 7hufu thick X turbidity ('9/z) '9/Z)

Claims (2)

【特許請求の範囲】[Claims] (1)汚泥を含む原水を沈澱池内の撹拌室内に導入し、
撹拌により汚泥を凝集沈澱させて固液分離を行う沈澱池
について、分離された汚泥の排泥周期及び排泥時間をタ
イマにより制御する排泥制御装置において、 タイマを手動設定して行った実際の排泥操作にもとずく
データから得られた、原水濁度及び撹拌室内の汚泥濃度
の各々と排泥周期との関係、及び原水濁度及び前記汚泥
濃度の各々と排泥時間との関係を予め記憶すると共に、
これら関係と原水濁度及び前記汚泥濃度の各検出値とに
もとずいて排泥周期及び排泥時間の各設定値を求めるフ
ィードフォワード制御部と、前記排泥操作時のデータに
もとずいて得られた原水濁度と前記汚泥濃度の目標値と
の関係を予め記憶すると共に、この関係と原水濁度の検
出値とから前記汚泥濃度の目標値を求め、前記汚泥濃度
の検出値が前記目標値となるように排泥周期及び排泥時
間の各設定値の夫々について補正値を求めるフィードバ
ック制御部と、前記排泥周期の設定値及び補正値の加算
値を排泥周期としてかつ前記排泥時間の設定値及び補正
値の加算値を排泥時間としてタイマを設定するタイマ設
定部とを設けてなることを特徴とする沈澱池の排泥制御
装置。
(1) Introducing raw water containing sludge into the stirring chamber in the settling tank,
Regarding the sedimentation tank that coagulates and settles sludge through stirring and performs solid-liquid separation, the sludge control device uses a timer to control the sludge period and sludge time of the separated sludge. The relationship between the raw water turbidity and the sludge concentration in the stirring chamber and the sludge cycle, and the relationship between the raw water turbidity and the sludge concentration and the sludge time, obtained from data based on the sludge operation. In addition to memorizing in advance,
a feedforward control unit that calculates set values for the sludge cycle and sludge time based on these relationships and the detected values of raw water turbidity and the sludge concentration; The relationship between the obtained raw water turbidity and the target value of the sludge concentration is stored in advance, and the target value of the sludge concentration is determined from this relationship and the detected value of the raw water turbidity, and the detected value of the sludge concentration is determined. a feedback control unit that calculates a correction value for each of the set values of the sludge cycle and the sludge time so that the set values of the sludge cycle and the sludge time become the target values; A sludge removal control device for a settling basin, comprising: a timer setting section that sets a timer using a set value of a sludge removal time and an added value of a correction value as a sludge removal time.
(2)汚泥を含む原水を沈澱池内の撹拌室内に導入し、
汚泥を沈澱させて固液分離を行う沈澱池について、分離
された汚泥の排泥周期及び排泥時間をタイマにより制御
する排泥制御装置において、タイマを手動設定して行っ
た実際の排泥操作にもとずくデータから得られた、原水
濁度及び汚泥界面より低い位置の汚泥濃度及び/または
汚泥界面レベルの各々と排泥周期との関係、及び原水濁
度及び前記汚泥濃度及び/または汚泥界面レベルの各々
と排泥時間との関係を予め記憶すると共に、これら関係
と原水濁度及び前記汚泥濃度及び/または汚泥界面レベ
ルの検出値とにもとずいて排泥周期及び排泥時間の各設
定値を求めるフィードフォワード制御部と、前記排泥操
作時のデータにもとずいて得られた原水濁度と前記汚泥
濃度及び/または汚泥界面レベルの目標値との関係を予
め記憶すると共に、この関係と原水濁度の検出値とから
前記汚泥濃度及び/または汚泥界面レベルの目標値を求
め、前記汚泥濃度及び/または汚泥界面レベルの検出値
が前記目標値となるように排泥周期及び排泥時間の各設
定値の夫々について補正値を求めるフィードバック制御
部と、前記排泥周期の設定値及び補正値の加算値を排泥
周期としてかつ前記排泥時間の設定値及び補正値の加算
値を排泥時間としてタイマを設定するタイマ設定部とを
設けてなることを特徴とする沈澱池の排泥制御装置。
(2) Introducing raw water containing sludge into the stirring chamber in the settling tank,
In a sedimentation tank that settles sludge and performs solid-liquid separation, an actual sludge operation performed by manually setting the timer in a sludge control device that uses a timer to control the sludge period and time of separated sludge. The relationship between raw water turbidity and sludge concentration below the sludge interface and/or sludge interface level and the sludge cycle, and the raw water turbidity and the sludge concentration and/or sludge obtained from data based on The relationships between each interface level and the sludge drainage time are stored in advance, and the sludge cycle and sludge time are determined based on these relationships, raw water turbidity, and the detected value of the sludge concentration and/or sludge interface level. A feedforward control unit that calculates each setting value, and stores in advance the relationship between the raw water turbidity obtained based on the data during the sludge removal operation and the target value of the sludge concentration and/or sludge interface level. , the target value of the sludge concentration and/or sludge interface level is determined from this relationship and the detected value of raw water turbidity, and the sludge drainage cycle is adjusted so that the detected value of the sludge concentration and/or sludge interface level becomes the target value. and a feedback control unit that calculates a correction value for each set value of the sludge removal time; A sludge removal control device for a sedimentation basin, comprising: a timer setting section that sets a timer using an added value as a sludge removal time.
JP62295724A 1987-11-24 1987-11-24 Sludge control device for sedimentation pond Expired - Lifetime JPH0739000B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62295724A JPH0739000B2 (en) 1987-11-24 1987-11-24 Sludge control device for sedimentation pond

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62295724A JPH0739000B2 (en) 1987-11-24 1987-11-24 Sludge control device for sedimentation pond

Publications (2)

Publication Number Publication Date
JPH01135599A true JPH01135599A (en) 1989-05-29
JPH0739000B2 JPH0739000B2 (en) 1995-05-01

Family

ID=17824346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62295724A Expired - Lifetime JPH0739000B2 (en) 1987-11-24 1987-11-24 Sludge control device for sedimentation pond

Country Status (1)

Country Link
JP (1) JPH0739000B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA009082B1 (en) * 2002-03-26 2007-10-26 СиСиАй КОРПОРЕЙШН Ameliorant for chemical treatment of cancer
CN112691413A (en) * 2020-12-04 2021-04-23 深圳市清泉水业股份有限公司 Sludge discharge control method and device for sedimentation tank
CN115465952A (en) * 2022-09-29 2022-12-13 光大环保技术研究院(深圳)有限公司 Method for controlling sludge discharge amount using sludge load, sewage treatment station, and computer-readable storage medium
CN115504557A (en) * 2022-10-25 2022-12-23 中冶赛迪技术研究中心有限公司 Automatic sludge discharge method applied to sedimentation tank
CN115936269A (en) * 2023-03-14 2023-04-07 北京埃睿迪硬科技有限公司 Method, device and equipment for predicting sludge discharge amount

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA009082B1 (en) * 2002-03-26 2007-10-26 СиСиАй КОРПОРЕЙШН Ameliorant for chemical treatment of cancer
CN112691413A (en) * 2020-12-04 2021-04-23 深圳市清泉水业股份有限公司 Sludge discharge control method and device for sedimentation tank
CN115465952A (en) * 2022-09-29 2022-12-13 光大环保技术研究院(深圳)有限公司 Method for controlling sludge discharge amount using sludge load, sewage treatment station, and computer-readable storage medium
CN115465952B (en) * 2022-09-29 2023-11-14 光大环保技术研究院(深圳)有限公司 Method for controlling sludge discharge amount by using sludge load, sewage treatment station and computer readable storage medium
CN115504557A (en) * 2022-10-25 2022-12-23 中冶赛迪技术研究中心有限公司 Automatic sludge discharge method applied to sedimentation tank
CN115504557B (en) * 2022-10-25 2024-02-09 中冶赛迪技术研究中心有限公司 Automatic mud discharging method applied to sedimentation tank
CN115936269A (en) * 2023-03-14 2023-04-07 北京埃睿迪硬科技有限公司 Method, device and equipment for predicting sludge discharge amount

Also Published As

Publication number Publication date
JPH0739000B2 (en) 1995-05-01

Similar Documents

Publication Publication Date Title
JP4492473B2 (en) Flocculant injection control device and method
JP2000218263A (en) Water quality controlling method and device therefor
JPH01135599A (en) Sludge discharge controller for sedimentation tank
JP6655975B2 (en) Aeration control device and aeration control method
JP4008694B2 (en) Sewage treatment plant water quality controller
KR20060092660A (en) Automatic control device and method for wastewater treatment using fuzzy control
JP4071519B2 (en) Flocculant injection control device for water purification plant
US7005073B2 (en) Residual wastewater chlorine concentration control using a dynamic weir
JPH09290273A (en) Method for adjusting amount of flocculant to be added and device therefor
JP7171445B2 (en) water treatment system
JPH0415002B2 (en)
JP4248043B2 (en) Biological phosphorus removal equipment
JPS6129793B2 (en)
JPS60106590A (en) Controller of sewage treatment
JP2007007601A (en) Purified water treatment method and system
JPS61125415A (en) Flocculating sedimentation apparatus
JP7103598B2 (en) Water treatment control device and water treatment system
JP6805024B2 (en) Water treatment equipment and treatment methods for water treatment processes
JPS62180796A (en) Control device for amount of sludge for activated sludge treatment plant
JPH0443718B2 (en)
JPS6234407B2 (en)
JPH0141111B2 (en)
JPS59139996A (en) Controlling means for concentration of sludge inside aeration tank in sewage disposal process
JPS5831997B2 (en) Control method for suspended solids concentration in sewage treatment facilities
JPH0494797A (en) Sludge amount controller