JPH0113523B2 - - Google Patents

Info

Publication number
JPH0113523B2
JPH0113523B2 JP56096350A JP9635081A JPH0113523B2 JP H0113523 B2 JPH0113523 B2 JP H0113523B2 JP 56096350 A JP56096350 A JP 56096350A JP 9635081 A JP9635081 A JP 9635081A JP H0113523 B2 JPH0113523 B2 JP H0113523B2
Authority
JP
Japan
Prior art keywords
pulse
pulse signal
liquid
generating means
period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56096350A
Other languages
Japanese (ja)
Other versions
JPS57211018A (en
Inventor
Kyoshi Yamaki
Hidetaka Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP56096350A priority Critical patent/JPS57211018A/en
Priority to US06/357,585 priority patent/US4444051A/en
Priority to DE8282102185T priority patent/DE3272970D1/en
Priority to EP82102185A priority patent/EP0061148B1/en
Publication of JPS57211018A publication Critical patent/JPS57211018A/en
Publication of JPH0113523B2 publication Critical patent/JPH0113523B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/26Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields
    • G01F23/263Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors
    • G01F23/266Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors measuring circuits therefor

Description

【発明の詳細な説明】 本発明は容器内液量を該容器内に設ける電極対
の静電容量から検出する液量計に関し、特に液量
計測回路に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a liquid meter that detects the amount of liquid in a container from the capacitance of a pair of electrodes provided in the container, and particularly to a liquid amount measuring circuit.

この種の従来の液量計としては、例えば第1図
に示すものがある。同図Aには容器1内に設置す
る誘電率測定用電極対2と液量測定用電極対3の
設置状態を示し、同図Bには電極対2,3の夫々
の静電容量から容器1内の液量を演算する演算回
路を示す。電極対2は液体4中に常時浸漬される
よう容器1底部に設置され、電極対3は容器内の
液深さ方向に設置される。電極対2はその電極間
を満たす液体4の比誘電率で決まる基準の静電容
量検出を目的とし、電極対3はその電極間を満た
す液体4と空気の比率で決まる静電容量検出を目
的とし、第1図Bに示す演算回路は電極対2の静
電容量を基準として電極対3の静電容量から液量
を算出する。この液量検出を以下に説明する。
An example of this type of conventional liquid meter is the one shown in FIG. Figure A shows the installation state of the dielectric constant measurement electrode pair 2 and liquid volume measurement electrode pair 3 installed inside the container 1, and Figure B shows the capacity of the container from the capacitance of each of the electrode pairs 2 and 3. 1 shows an arithmetic circuit that calculates the amount of liquid in 1. The electrode pair 2 is installed at the bottom of the container 1 so as to be constantly immersed in the liquid 4, and the electrode pair 3 is installed in the depth direction of the liquid in the container. The purpose of the electrode pair 2 is to detect a standard capacitance determined by the dielectric constant of the liquid 4 filling between the electrodes, and the purpose of the electrode pair 3 is to detect the capacitance determined by the ratio of the liquid 4 filling the gap between the electrodes and air. Then, the arithmetic circuit shown in FIG. 1B calculates the liquid amount from the capacitance of the electrode pair 3 with the capacitance of the electrode pair 2 as a reference. This liquid amount detection will be explained below.

第1図Aにおいて、容器1を立方体としてその
液面の面積Sが一定で高さ(深さ方向)Lとし、
誘電率測定用電極対2の面積S2、極板間距離d2
液量測定用電極対3の面積S3、極板間距離d3
し、高さLの溶器中に比誘電率εrの液体4が深さ
lあるとすると、電極対3の静電容量CMは下記
(1)式になる。但し、ε0は空気の誘電率。
In FIG. 1A, the container 1 is a cube, and the area S of the liquid surface is constant and the height (depth direction) is L,
Area S 2 of electrode pair 2 for dielectric constant measurement, distance d 2 between electrode plates,
Assuming that the area of the electrode pair 3 for measuring liquid volume is S 3 , the distance between the electrode plates is d 3 , and there is a liquid 4 with a relative dielectric constant ε r at a depth l in a melter with a height L, the electrostatic charge of the electrode pair 3 is Capacity C M is below
It becomes equation (1). However, ε 0 is the dielectric constant of air.

CM=εr・ε0・S3×l/L/d3+ε0・S3×L−1/
L/d3 =S3・ε0/L・d3(l・εr+L−l) ……(1) ここで、S3,ε0,L,d3は定数であり、これら
を定数A(=S3ε0/Ld3)として(1)式を変形すると l=CM−A・L/A(εr−1)=CM−C0/A(εr
−1)……(2) となる。但し、AL=(S3・ε0)/d3は液体4の無
いときの容量であるから、これをC0として示す。
C M = ε r・ε 0・S 3 ×l/L/d 30・S 3 ×L−1/
L/d 3 = S 3・ε 0 /L・d 3 (l・ε r +L−l) ...(1) Here, S 3 , ε 0 , L, and d 3 are constants, and these are called constants. Transforming equation (1) as A(=S 3 ε 0 /Ld 3 ), we get l=C M −A・L/A(ε r −1)=C M −C 0 /A(ε r
-1)...(2). However, since AL=(S 3 ·ε 0 )/d 3 is the capacity when there is no liquid 4, this is indicated as C 0 .

上記(2)式から、容器中の液量Vは V=l・S=S/A・CM−C0/εr−1 ……(3) として求められる。即ち、液量測定用電極対3の
静電容量CMを測定することにより液量Vを求め
ることができる。
From the above equation (2), the liquid volume V in the container is determined as V=l·S=S/A· CM −C 0r −1 (3). That is, the liquid volume V can be determined by measuring the capacitance C M of the liquid volume measuring electrode pair 3.

上記(3)式中、比誘電率εrは液体4により決まる
が、液体4が自動車のガソリンの場合にはその比
誘電率が温度により変化し、さらにガソリン添加
剤の混入あるいはガソホール等の使用により比誘
電率が大幅に変化する。そこで、比誘電率の変動
もしくは不明の液体の液量測定には誘電率測定用
電極対2による静電容量検出値を液体の比誘電率
εrに比例するものとして液量測定に供する。
In the above formula (3), the relative dielectric constant ε r is determined by the liquid 4, but if the liquid 4 is gasoline for automobiles, the relative dielectric constant changes depending on the temperature, and furthermore, the dielectric constant changes depending on the temperature, and the addition of gasoline additives or the use of gasohol, etc. The dielectric constant changes significantly. Therefore, in order to measure the liquid volume of a liquid whose relative dielectric constant varies or is unknown, the capacitance detected by the dielectric constant measuring electrode pair 2 is used as a value proportional to the relative permittivity ε r of the liquid.

誘電率測定用電極対2の静電容量CSは CS=ε0・εr・S2/d2 となり、比誘電率εrは下記(4)式になる。 The capacitance C S of the dielectric constant measurement electrode pair 2 is C S0 ·ε r ·S 2 /d 2 , and the relative permittivity ε r is expressed by the following equation (4).

εr=CS・d2/ε0・S2 ……(4) この(4)式と(3)式から液量Vは下記(5)式に変形さ
れる。
ε r =C S ·d 20 ·S 2 ...(4) From these equations (4) and (3), the liquid volume V is transformed into the following equation (5).

V=A0・CM−C0/KCS−C0 ……(5) 但し、A0=S・L、K=(d2・S3)/(d3
S2)となる定数である。
V=A 0・C M −C 0 /KC S −C 0 …(5) However, A 0 =S・L, K=(d 2・S 3 )/(d 3
S 2 ) is a constant.

従つて、容器1中の液量は電極対2,3の静電
容量CM,CSを測定し、(5)式の演算を施すことに
より測定できる。上記(5)式の演算回路は第1図B
に示す構成にされる。
Therefore, the amount of liquid in the container 1 can be measured by measuring the capacitances C M and C S of the electrode pair 2 and 3 and calculating the equation (5). The calculation circuit for equation (5) above is shown in Figure 1B.
The configuration is shown in .

第1図Bにおいて、電極対2,3の静電容量
CM,CSは夫々発振回路5,6の発振周波数設定
用静電容量として結合され、静電容量CM,CS
比例した周期のパルスTM(=CM・BM)、TS(=
CS・BS)を発振回路5,6が出力する(BM,BS
は比例定数)。
In Figure 1B, the capacitance of electrode pair 2 and 3
C M and C S are coupled as capacitances for setting the oscillation frequency of the oscillation circuits 5 and 6, respectively, and pulses T M (=C M・B M ) and T with periods proportional to the capacitances C M and C S S (=
The oscillation circuits 5 and 6 output (B M , B S
is a proportionality constant).

これらパルス周期TM,TSは夫々周期計測回路
7,8で2進計数値に変換され、周期計測回路7
の出力は減算回路9にて定数BM・C0が減算され
てBM(CM−C0)となり前記(5)式中のCM−C0に比
例した値が求められる。一方、周期計測回路8の
出力は乗算回路10にて定数K倍(K・TS)さ
れ、減算回路11にて定数BS,C0が減算されて
BS(KCS−C0)となり前記(5)式中のKCS−C0に比
例した値が求められる。
These pulse periods T M and T S are converted into binary count values by period measuring circuits 7 and 8, respectively, and the period measuring circuit 7
The constant B M ·C 0 is subtracted from the output by the subtraction circuit 9 to obtain B M (C M -C 0 ), and a value proportional to CM - C 0 in the above equation (5) is obtained. On the other hand, the output of the period measurement circuit 8 is multiplied by a constant K (K・TS ) in a multiplication circuit 10, and the constants B S and C 0 are subtracted in a subtraction circuit 11.
B S (KC S −C 0 ), and a value proportional to KC S −C 0 in the above equation (5) is obtained.

このようして算出された数値は除算回路12で
除算され、さらに乗算回路13で定数A0・BS
BMが乗算されて前記(5)式の演算結果として乗算
回路13の出力に液量V0に比例した値が得られ
る。この液量検出値は液量表示器への表示入力又
は残存走行可能距離計等の他の演算回路の演算デ
ータにされる。
The numerical value calculated in this way is divided by the division circuit 12, and further by the multiplication circuit 13 by the constant A 0 · B S /
B M is multiplied and a value proportional to the liquid volume V 0 is obtained from the output of the multiplication circuit 13 as a result of the calculation of the above equation (5). This liquid level detection value is input to a liquid level indicator or used as calculation data for other calculation circuits such as a remaining travel distance meter.

こうした従来の液量計は、その液量演算回路に
2つの発振回路と夫々の周期計測回路のほかに、
2進値計算による1つの除算回路、2つの減算回
路、2つの乗算回路を必要とするため、複雑高価
なハードウエア構成もしくは高価なマイクロコン
ピユータを必要とする問題があつた。
These conventional liquid level meters have two oscillation circuits and a period measurement circuit in their liquid level calculation circuit.
Since it requires one division circuit, two subtraction circuits, and two multiplication circuits based on binary value calculation, there is a problem in that it requires a complicated and expensive hardware configuration or an expensive microcomputer.

本発明の目的は、簡単な回路によるハードウエ
アで演算回路を構成して、従来と同等の計測精度
を確保できる液量計測回路を提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a liquid amount measuring circuit that can ensure measurement accuracy equivalent to that of the conventional method by configuring an arithmetic circuit using simple circuit hardware.

本発明による演算回路は、2つの発振回路と4
つの分周回路と2つの単安定マルチバイブレータ
と2つのゲート回路と2つのカウンタ回路により
構成したことを特徴とする。
The arithmetic circuit according to the present invention includes two oscillation circuits and four
It is characterized by being configured with two frequency dividing circuits, two monostable multivibrators, two gate circuits, and two counter circuits.

第2図は本発明の一実施例を示す回路図であ
る。発振回路5,6は従来回路と同様に液量計測
用電極対3、誘電率測定用電極対2で夫々の静電
容量CM,CSに比例した周期TM・TSのパルスを発
生する。これらパルスは夫々分周回路14,15
で分周比N1,N2による分周がなされ、周期が
夫々TM×N1、TS×N2のパルスに変換される。分
周期14,15の出力パルスは夫々単安定マルチ
バイグレータ16,17のトリガパルスとされ、
周期TM×N1、TS×N2のパルスでパルス幅T1
T2をもつ。
FIG. 2 is a circuit diagram showing one embodiment of the present invention. Oscillation circuits 5 and 6 generate pulses with periods T M and T S proportional to the respective capacitances C M and C S at the electrode pair 3 for liquid volume measurement and the electrode pair 2 for dielectric constant measurement, as in the conventional circuit. do. These pulses are transmitted through frequency dividing circuits 14 and 15, respectively.
Frequency division is performed by frequency division ratios N 1 and N 2 , and the pulses are converted into pulses with periods T M ×N 1 and T S ×N 2 , respectively. Output pulses with division periods 14 and 15 are used as trigger pulses for monostable multivigulators 16 and 17, respectively.
Pulse period T M ×N 1 , T S ×N 2 pulse width T 1 ,
Has T 2 .

ゲート回路18は単安定マルチバイブレータ1
6の出力パルス幅T1を除いた残りの期間TM・N1
−T1だけ発振回路6の出力パルス(周期TS)を
取出す。同様にゲート回路19は単安定マルチバ
イブレータ17の出力パルス幅T2を除いた残り
の期間TS・N2−T2だけ発振回路5の出力パルス
(周期TM)を取出す。これらゲート回路18,1
9の出力パルスは夫々分周器20,21にて分周
比N4,N3で分周される。
Gate circuit 18 is monostable multivibrator 1
The remaining period T M・N 1 excluding the output pulse width T 1 of 6
The output pulse (period T S ) of the oscillation circuit 6 is extracted by −T 1 . Similarly, the gate circuit 19 extracts the output pulse (period T M ) of the oscillation circuit 5 for the remaining period T S ·N 2 −T 2 excluding the output pulse width T 2 of the monostable multivibrator 17 . These gate circuits 18,1
The output pulses of 9 are divided by frequency division ratios N 4 and N 3 by frequency dividers 20 and 21, respectively.

カウンタ回路22は分周器21の出力パルス周
期ごとに分周器20の出力パルス数を計数し、そ
の計数値はラツチ回路23に記憶保持され、ラツ
チ回路23の内容が液量に比例した数値として取
出される。
The counter circuit 22 counts the number of output pulses of the frequency divider 20 for each output pulse period of the frequency divider 21, and the counted value is stored and held in the latch circuit 23, and the content of the latch circuit 23 is a value proportional to the liquid amount. is extracted as

第3図及び第4図は第2図のタイムチヤートを
示し、このタイムチヤートを参照して第2図の動
作を以下に説明する。
3 and 4 show the time chart of FIG. 2, and the operation of FIG. 2 will be explained below with reference to this time chart.

発振回路5,6の出力パルス(第3図a,b)
は夫々電極対3,2の静電容量CM,CSに周期TM
TSが比例したパルス列になり、その比例定数を
BM,BSと設定する。これらパルスをN1,N2の分
周比で分周した分周器14,15の出力は周期
TM×N1、TS×N2のパルス列(第3図c,d)に
なる。これらパルスがトリガとなる単安定マルチ
バイブレータ16,17は夫々出力幅T1,T2
パルス(第3図e,g)になり、このパルス幅
T1,T2を除いた期間TM×N1−T1、TM×N1−T2
だけパルス列TS,TMを通過させるゲート回路1
8,19の出力は第3図f,hになる。
Output pulses of oscillation circuits 5 and 6 (Fig. 3 a, b)
are the capacitances C M and C S of the electrode pairs 3 and 2, respectively, and the period T M ,
T S becomes a proportional pulse train whose proportionality constant is
Set B M and B S. The outputs of the frequency dividers 14 and 15, which divide these pulses with the frequency division ratio of N 1 and N 2 , have a period
This results in a pulse train of T M ×N 1 and T S ×N 2 (Fig. 3c, d). The monostable multivibrators 16 and 17 triggered by these pulses produce pulses with output widths T 1 and T 2 (Fig. 3 e and g), respectively, and this pulse width
Periods excluding T 1 and T 2 T M ×N 1 −T 1 , T M ×N 1 −T 2
Gate circuit 1 that only allows pulse trains T S and T M to pass through
The outputs of 8 and 19 are shown in Figure 3 f and h.

従つて、ゲート回路18,19の出力パルスの
平均周期TMO、TSOは下記(6)、(7)式になる。
Therefore, the average periods T MO and T SO of the output pulses of the gate circuits 18 and 19 are expressed by the following equations (6) and (7).

TMO=TS・N1・TM/N1・TM−T1 ……(6) TSO=TM・N2・TS/N2・TS−T2 ……(7) また、ゲート回路18,19の出力を夫々分周
比N4,N3で分周する分周器20,21の出力パ
ルスの平均周期TMO1、TSO1は下記(8)、(9)式にな
る。
T MO = T S・N 1・T M /N 1・T M −T 1 …(6) T SO =T M・N 2・T S /N 2・T S −T 2 …(7) Furthermore, the average periods T MO1 and T SO1 of the output pulses of the frequency dividers 20 and 21, which divide the outputs of the gate circuits 18 and 19 by frequency division ratios N 4 and N 3 respectively, are calculated by the following equations (8) and (9). become.

TMO1=N4×TMO=N4・TS・N2・TS/N1TM−T2 ……(8) TSO1=N3×TSO=N3・TM・N2・TS/N2TS−T2 ……(9) そして、カウンタ回路22は平均周期TSO1毎に
平均周期TMO1のパルス列を計数する。この平均
周期TMO1、TSO1を有するパルス列は第4図i,j
に示すようになり(第4図は第3図よりタイムス
ケールを縮少している。)、カウンタ回路22の計
数値Nは第4図kに示すように変化して、下記(10)
式になる。
T MO1 =N 4 ×T MO =N 4・T S・N 2・T S /N 1 T M −T 2 ……(8) T SO1 =N 3 ×T SO =N 3・T M・N 2 -T S /N 2 T S −T 2 (9) Then, the counter circuit 22 counts the pulse train of the average period T MO1 for each average period T SO1 . The pulse train with this average period T MO1 and T SO1 is shown in Fig. 4 i, j
(The time scale in FIG. 4 is smaller than that in FIG. 3.) The count value N of the counter circuit 22 changes as shown in FIG. 4 k, and the following (10)
It becomes a ceremony.

N=TMO1×TSO1 =N2/N4・N3/N1×N1・TM−T1/N2・TS−T2 =N3/N4・1/BM・CM−T1/(BM・N1)/BS・CS−T2
/N2……(10) 上記(10)式中、前記(5)式との関係から N3/N4・1/BM=AO(容器容積) BM・T1/N1=T2/N2=CO BS=K を満たすよう分周器14,15,20,21の分
周比N1〜N4と発振器比例定数BM・BSと単安定マ
ルチバイブレータ16,17のパルス幅T1,T2
を設定することにより、カウンタ回路22の内容
は(第4図l)液量に比例した数値を得ることが
できる。
N=T MO1 ×T SO1 =N 2 /N 4・N 3 /N 1 ×N 1・T M −T 1 /N 2・T S −T 2 =N 3 /N 4・1/B M・C M −T 1 / (B M・N 1 ) / B S・C S −T 2
/N 2 ...(10) In the above formula (10), from the relationship with the above formula (5), N 3 /N 4・1/B M = A O (container volume) B M・T 1 /N 1 = The frequency division ratios N 1 to N 4 of the frequency dividers 14, 15, 20, and 21, the oscillator proportionality constant B MB S , and the monostable multivibrator 16, so as to satisfy T 2 /N 2 = C O B S = K, 17 pulse widths T 1 , T 2
By setting , the contents of the counter circuit 22 (FIG. 4l) can obtain a numerical value proportional to the liquid amount.

ここで、分周器20は分周比N4=1、即ち分
周器20を省略することもできるが、静電容量
CMは小さいので、ゲート回路19を通過するパ
ルスの周期が小さくなり自動車のガソリンタンク
に適用する場合など振動により電極対3の静電容
量が常に揺動しているので表示が不安定になつて
しまう。このために分周器20を設けてその分周
比を大きくし、これに伴い分周器21の分周比も
大きくして、表示を行なつた方がよい。
Here, the frequency divider 20 has a frequency division ratio N 4 =1, that is, the frequency divider 20 can be omitted, but the capacitance
Since C M is small, the period of the pulse passing through the gate circuit 19 becomes small, and when applied to a gasoline tank of an automobile, the capacitance of the electrode pair 3 constantly fluctuates due to vibration, making the display unstable. I end up. For this purpose, it is better to provide the frequency divider 20 and increase its frequency division ratio, and accordingly increase the frequency division ratio of the frequency divider 21 for display.

以上のとおり、本発明による液量計測回路は、
誘電率測定用電極対2と液量測定用電極対3の静
電容量に比例した周期のパルスを得る2つの発振
回路のほかには2つの分周器14,15と2つの
単安定マルチバイブレータ16,17とゲート回
路18,19と分周器21とカウンタ回路22を
用意し、ゲート回路18,19でパルス幅の減
算、分周器14,15でパルス幅の乗算、カウン
タ回路でパルス数の除算を行なうよう構成したた
め、従来液量計測回路に比して少しの論理回路素
子構成による高精度な液量計測が低価格てい可能
となる。
As described above, the liquid amount measuring circuit according to the present invention has the following features:
In addition to two oscillation circuits that obtain pulses with a period proportional to the capacitance of the dielectric constant measurement electrode pair 2 and the liquid volume measurement electrode pair 3, there are two frequency dividers 14 and 15 and two monostable multivibrators. 16, 17, gate circuits 18, 19, frequency divider 21, and counter circuit 22 are prepared, the gate circuits 18 and 19 subtract the pulse width, the frequency dividers 14 and 15 multiply the pulse width, and the counter circuit calculates the number of pulses. Since the structure is configured to perform division of , it is possible to measure the liquid amount with high precision at a low cost with a smaller number of logic circuit elements than in the conventional liquid amount measuring circuit.

【図面の簡単な説明】[Brief explanation of drawings]

第1図Aは液量計の電極対配置を示す概略図、
第1図Bは従来の液量計の演算回路図、第2図は
本発明の一実施例を示す演算回路図、第3図及び
第4図は第2図の動作を説明するためのタイムチ
ヤートである。 1……容器、2……誘電率測定用電極対、3…
…液量測定用電極対、5,6……発振回路、1
4,15……分周器、16,17……単安定マル
チバイブレータ、18,19……ゲート回路、2
0,21……分周器、22……カウンタ回路、2
3……ラツチ回路。
FIG. 1A is a schematic diagram showing the arrangement of electrode pairs of a liquid meter;
Fig. 1B is an arithmetic circuit diagram of a conventional liquid meter, Fig. 2 is an arithmetic circuit diagram showing an embodiment of the present invention, and Figs. 3 and 4 are timing diagrams for explaining the operation of Fig. 2. It's a chat. 1... Container, 2... Electrode pair for dielectric constant measurement, 3...
... Electrode pair for liquid volume measurement, 5, 6 ... Oscillation circuit, 1
4, 15... Frequency divider, 16, 17... Monostable multivibrator, 18, 19... Gate circuit, 2
0, 21... Frequency divider, 22... Counter circuit, 2
3...Latch circuit.

Claims (1)

【特許請求の範囲】 1 容器容積V0をもち測定対象液が入れられる
容器と、 該容器内に面積S3かつ電極間距離d3の一対の電
極を前記測定対象液の液量に応じて当該一対の電
極による静電容量CMが変化する位置に設けられ、
液量ゼロのときは静電容量C0となるとともに前
記対象液量に応じた前記静電容量CMに比例定数
BMを乗じて決まる周期TMのパルス信号を発生す
る第一のパルス発生手段と、 前記容器内で常時前記測定対象液中となる位置
に設けられた面積S2かつ電極間距離d2の一対の電
極により前記対象液に応じた静電容量CSに比例定
数BSを乗じて決まる周期TSのパルス信号を発生
する第二のパルス発生手段と、 前記第一のパルス発生手段からのパルス信号を
分周比N1で分周したパルスに同期してパルス幅
T1のパルス信号を出力する第三のパルス発生手
段と、前記第二のパルス発生手段からのパルス信
号を分周比N2で分周したパルスに同期してパル
ス幅T2のパルス信号を出力する第四のパルス発
生手段と、 前記第三のパルス発生手段からのパルス幅T1
のパルス信号立ち下がり後次の立ち上がりまでの
間、前記第二のパルス発生手段からの周期TS
パルス信号を通過させる第一の通過手段と、 前記第四のパルス発生手段からのパルス幅T2
のパルス信号立ち下がり後次の立ち下がりまでの
間、前記第一のパルス発生手段からの周期TM
パルス信号を通過させる第二の通過手段と、 該第二の通過手段を通過したパルス信号を分周
比N3で分周したパルス信号の平均周期のパルス
間隔ごとに、前記第一の通過手段を通過したパル
ス信号を分周比N4で分周したパルス信号の平均
周期のパルス信号を計数する計数手段とを備え、 N3/BM・N4=V0 T1/BM・N1=T2/N2=C0 BS=d2・S3/d3・S2 の関係を満足して前記計数手段に、前記容器内の
液量に比例した計数値を得ることを特徴とする液
量計測回路。
[Claims] 1. A container having a container volume V 0 into which a liquid to be measured is placed, and a pair of electrodes having an area S 3 and an inter-electrode distance d 3 in the container according to the amount of the liquid to be measured. Provided at a position where the capacitance C M of the pair of electrodes changes,
When the liquid volume is zero, the capacitance C becomes 0 , and there is a proportional constant to the capacitance C M according to the target liquid volume.
a first pulse generating means that generates a pulse signal with a period T M determined by multiplying by B M ; a second pulse generating means for generating a pulse signal with a period T S determined by multiplying a capacitance C S corresponding to the target liquid by a proportionality constant B S by a pair of electrodes; The pulse width is changed in synchronization with the pulse that is obtained by dividing the pulse signal by the frequency division ratio N 1 .
A third pulse generating means outputs a pulse signal with a pulse width T 1 , and a pulse signal with a pulse width T 2 is generated in synchronization with a pulse obtained by dividing the pulse signal from the second pulse generating means by a frequency division ratio N 2 . A fourth pulse generating means to output, and a pulse width T 1 from the third pulse generating means.
a first passing means for passing a pulse signal with a period T S from the second pulse generating means from the falling edge of the pulse signal until the next rising edge; and a pulse width T from the fourth pulse generating means. 2
a second passing means for passing the pulse signal with a period T M from the first pulse generating means from the falling edge of the pulse signal until the next falling edge; and a pulse signal passed through the second passing means. A pulse signal having an average period of a pulse signal obtained by dividing a pulse signal that has passed through the first passing means by a frequency division ratio N 4 for each pulse interval of an average period of a pulse signal obtained by dividing the frequency by a frequency division ratio N 3. N 3 /B M・N 4 =V 0 T 1 /B M・N 1 =T 2 /N 2 =C 0 B S =d 2・S 3 /d 3・S 2. A liquid amount measuring circuit characterized in that the counting means obtains a count value proportional to the amount of liquid in the container by satisfying the relationship ( 2 ).
JP56096350A 1981-03-18 1981-06-22 Liquid quantity measuring circuit Granted JPS57211018A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP56096350A JPS57211018A (en) 1981-06-22 1981-06-22 Liquid quantity measuring circuit
US06/357,585 US4444051A (en) 1981-03-18 1982-03-12 Electronic liquid level gauge
DE8282102185T DE3272970D1 (en) 1981-03-18 1982-03-17 Electronic liquid level gauge
EP82102185A EP0061148B1 (en) 1981-03-18 1982-03-17 Electronic liquid level gauge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56096350A JPS57211018A (en) 1981-06-22 1981-06-22 Liquid quantity measuring circuit

Publications (2)

Publication Number Publication Date
JPS57211018A JPS57211018A (en) 1982-12-24
JPH0113523B2 true JPH0113523B2 (en) 1989-03-07

Family

ID=14162548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56096350A Granted JPS57211018A (en) 1981-03-18 1981-06-22 Liquid quantity measuring circuit

Country Status (1)

Country Link
JP (1) JPS57211018A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4947689A (en) * 1989-01-13 1990-08-14 Hochstein Peter A Capacitive liquid sensor
US5051921A (en) * 1989-11-30 1991-09-24 David Sarnoff Research Center, Inc. Method and apparatus for detecting liquid composition and actual liquid level

Also Published As

Publication number Publication date
JPS57211018A (en) 1982-12-24

Similar Documents

Publication Publication Date Title
EP0061148B1 (en) Electronic liquid level gauge
EP0183454B1 (en) Tilt angle detection device
US8474315B2 (en) Capacitive liquid-level sensor
JPS6236161B2 (en)
US4399699A (en) Electrostatic type fuel measuring device
GB2058364A (en) Capacitance measuring apparatus
WO1983002322A1 (en) Fuel gauge for automobile
US3115615A (en) Measuring systems
JPH0476408B2 (en)
JPH0113523B2 (en)
US3622764A (en) Method of determining the drift of a gyrocompass
US4531407A (en) Fuel gauge for an automotive vehicle
US3114267A (en) Doubly integrating accelerometer
US4055082A (en) Net oil computer
SU498495A1 (en) A device for measuring the level of liquid in a tank
EP0122984B1 (en) Time measuring circuit
RU2042928C1 (en) Capacitor level meter
SU930010A1 (en) Device for measuring non-electric values
SU1437764A1 (en) Apparatus for automatic measurement of moistire content of loose materials
JPS60213822A (en) Liquid-level measuring device
JPS6310771B2 (en)
SU587339A1 (en) Digital ultrasonic level indicator
SU824900A3 (en) Humudity gage
JPS6341003B2 (en)
SU607162A1 (en) Device for measuring frequency variation rate