JPH01134182A - Method of controlling expansion valve - Google Patents

Method of controlling expansion valve

Info

Publication number
JPH01134182A
JPH01134182A JP29103187A JP29103187A JPH01134182A JP H01134182 A JPH01134182 A JP H01134182A JP 29103187 A JP29103187 A JP 29103187A JP 29103187 A JP29103187 A JP 29103187A JP H01134182 A JPH01134182 A JP H01134182A
Authority
JP
Japan
Prior art keywords
temperature
valve
valve opening
defrosting
expansion valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29103187A
Other languages
Japanese (ja)
Inventor
Masahiko Kagami
香美 雅彦
Katsuhiko Fujiwara
克彦 藤原
Seiji Fukui
誠二 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP29103187A priority Critical patent/JPH01134182A/en
Publication of JPH01134182A publication Critical patent/JPH01134182A/en
Pending legal-status Critical Current

Links

Landscapes

  • Defrosting Systems (AREA)

Abstract

PURPOSE: To make it reach the objective value of the discharge temperature in a short time, by changing the opening of an expansion valve from the initial valve aperture to a valve aperture large in refrigerant circulation resistance, when the temperature of an evaporator tops the set temperature for defrosting. CONSTITUTION: A controller 11b consists of controllers 9a and 10b, and the controller 9a receives the input of the discharge temperature of a compressor detected with a discharge temperature sensor 7, and computes the valve aperture of an electronic expansion valve 3, according to the difference from the objective temperature, and controls it. On the other hand, the controller 10b opens a solenoid valve 6 fully to perform defrosting operation when the temperature of the evaporator 4 detected by a defrosting temperature sensor 8 reaches the defrosting temperature. Then, in case that the defrosting operation terminates, and that the temperature of the evaporator 4 is higher than the defrosting set temperature, it changes the aperture of the expansion valve 3 to the optimum aperture, that is, to the valve opening larger in refrigerant circulation resistance than the initial valve aperture at the time of having turned on power source to the controller, and closes the solenoid valve 6, and then, the controller 9a performs usual discharge temperature control. In this way, the objective discharge temperature can be reached in a short time.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、空気調和機等の冷凍サイクルに用いる膨張弁
の制御方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of controlling an expansion valve used in a refrigeration cycle of an air conditioner or the like.

従来の技術 近年、冷凍サイクルの冷媒流量を制御する電子式膨張弁
を除霜運転に利用する方式の開発が進んでいる。
BACKGROUND OF THE INVENTION In recent years, advances have been made in the development of systems that utilize electronic expansion valves for defrosting operations that control the flow rate of refrigerant in refrigeration cycles.

以下、図面を参照しながら、上述した従来の電子式膨張
弁を利用した除霜運転の制御装置の一例について説明す
る。
Hereinafter, an example of a defrosting operation control device using the above-mentioned conventional electronic expansion valve will be described with reference to the drawings.

第6図は冷凍サイクルの構成を示すものである。FIG. 6 shows the configuration of the refrigeration cycle.

出温度を検出する吐出温度センサー、8は蒸発器4の温
度を検出する除霜温度検知センサー、9aは吐出温度セ
ンサー7の信号により、電子式膨張弁3を制御する制御
装置、10 aは除霜温度検知センサーの信号により、
電子膨張弁3を制御する制御装置である。制御装置9a
−,10aで制御装置11aとする。
8 is a defrosting temperature detection sensor that detects the temperature of the evaporator 4; 9a is a control device that controls the electronic expansion valve 3 based on the signal from the discharge temperature sensor 7; Based on the signal from the frost temperature detection sensor,
This is a control device that controls the electronic expansion valve 3. Control device 9a
-, 10a is the control device 11a.

第6図は制御装置11aのブロック図である。FIG. 6 is a block diagram of the control device 11a.

制御装置9aは吐出温度センサー7等からなる温度検出
手段12、冷凍サイクルの運転状況に応じて吐出温度の
目標値を設定する目標温度設定手段13、温度検出手段
12の出力と目標温度設定手段13の出力を比較する温
度比較手段14、温度比較手段14の出力によって弁開
度を演算する弁開度演算手段15、弁開度演算手段15
の出力に応じた弁開度を出力する弁開度出力手段16で
構成されている。一方、制御装置10aは蒸発器の温度
を検出する除霜温度検出手段17、除霜運転開始、ある
いは復帰の温度を設定する除霜温度設定手段18、除霜
温度検出手段17の出力と除霜温度設定手段18の出力
を比較する温度比較手段19の出力によって、除霜運転
時には全開の弁開度、除霜運転終了時は、制御装置11
aに電源を投入したときの初期弁開度を指示する弁開度
設定手段2oで構成されている。なお、除霜運転時には
制御装置9aの動作は行なわれない。
The control device 9a includes a temperature detection means 12 including a discharge temperature sensor 7 and the like, a target temperature setting means 13 that sets a target value of the discharge temperature according to the operating status of the refrigeration cycle, and an output of the temperature detection means 12 and a target temperature setting means 13. temperature comparison means 14 for comparing the outputs of the temperature comparison means 14; valve opening degree calculation means 15 for calculating the valve opening degree based on the output of the temperature comparison means 14;
The valve opening output means 16 outputs a valve opening according to the output of the valve opening. On the other hand, the control device 10a includes a defrosting temperature detecting means 17 for detecting the temperature of the evaporator, a defrosting temperature setting means 18 for setting the temperature for starting or returning the defrosting operation, and the output of the defrosting temperature detecting means 17 and the defrosting temperature detecting means 17 for detecting the temperature of the evaporator. Depending on the output of the temperature comparison means 19 that compares the output of the temperature setting means 18, the valve opening is fully open during defrosting operation, and the control device 11 is set to a fully open valve opening at the end of defrosting operation.
The valve opening setting means 2o instructs the initial valve opening when the power is turned on. Note that the control device 9a does not operate during the defrosting operation.

以上のように構成された冷凍サイクルおよび制御装置の
動作について第7図、第8図を参照しながら説明する。
The operation of the refrigeration cycle and control device configured as above will be explained with reference to FIGS. 7 and 8.

第7図は電子式膨張弁3の動作を表わすフローチャート
であり、第8図は代表的な吐出温度、蒸発器温度、電子
式膨張弁3の弁開度の変化特性を示したものである。
FIG. 7 is a flowchart showing the operation of the electronic expansion valve 3, and FIG. 8 shows typical characteristics of changes in discharge temperature, evaporator temperature, and valve opening degree of the electronic expansion valve 3.

動作としては、まず、吐出温度センサーTからなる温度
検出手段12で検出した温度Tdと、目標温度設定手段
13で設定した温度T8との温度差を、温度比較手段1
4で求める。そして、この温度差に応じた弁開度演算手
段16により決定し、弁開度出力手段16により、電子
式膨張弁3の弁開度を変更する。弁開度演算手段15で
の演算内容は、吐出温度Tdが目標値T8より低い場合
にはΔPパルス弁開度を小さくシ(冷媒流通抵抗大λ吐
出温度Tdが目標値T、より高い場合にはΔPパルス弁
開度を大きクシ(冷媒流通抵抗率)、吐出温度Tdを目
標値で8に近づけようとするものである。なお、−度設
定された弁開度は最低ある時間保持される。
In operation, first, the temperature difference between the temperature Td detected by the temperature detection means 12 consisting of the discharge temperature sensor T and the temperature T8 set by the target temperature setting means 13 is determined by the temperature comparison means 1.
Find it in 4. Then, the valve opening calculation means 16 determines the opening according to this temperature difference, and the valve opening output means 16 changes the valve opening of the electronic expansion valve 3. The calculation contents of the valve opening degree calculating means 15 are as follows: When the discharge temperature Td is lower than the target value T8, the ΔP pulse valve opening is decreased. is intended to increase the ΔP pulse valve opening degree (refrigerant flow resistance) and bring the discharge temperature Td closer to the target value of 8.The valve opening degree set at -degree is maintained for at least a certain period of time. .

一方、蒸発器4の温度を検出する除霜温度検知センサー
8の温度を除霜温度設定手段18で設定される温度を温
度比較手段19で比較し、蒸発器4の温度T が、除霜
設定温度T。8より低い場合は、弁開度設定手段2oよ
り全開の弁開度を出力し、電磁弁6を開とし、除霜運転
を行う。除霜運転が終了し、蒸発器4の温度T。が、除
霜設定温度”esより高い場合、弁開度設定手段20よ
り制御装置11aに電源を投入したときの初期弁開度を
指示し、通常の吐出温度制御を行なう。
On the other hand, the temperature of the defrosting temperature detection sensor 8 that detects the temperature of the evaporator 4 is compared with the temperature set by the defrosting temperature setting means 18, and the temperature T of the evaporator 4 is compared with the temperature set by the defrosting temperature setting means 18. Temperature T. If it is lower than 8, the valve opening setting means 2o outputs a fully open valve opening, the solenoid valve 6 is opened, and defrosting operation is performed. After the defrosting operation is completed, the temperature of the evaporator 4 is T. is higher than the defrosting set temperature "es", the valve opening degree setting means 20 instructs the control device 11a to set the initial valve opening degree when the power is turned on, and performs normal discharge temperature control.

発明が解決しようとする問題点 しかしながら、電子式膨張弁3の初期弁開度は、室外温
度が7℃程度の条件のもとて冷凍サイクルが最適になる
よう設定されており、蒸発器4に着霜が発生するような
室外気温で、冷凍サイクルを最適にする電子式膨張弁3
の弁開度は、初期弁開度は小さな値となるため、従来の
ように除霜運転終了時に初期弁開度に戻すと、吐出温度
制御により最適な電子式膨張弁3の弁開度に倒達するの
に時間がかがシ、除霜運転からの復帰時に充分な暖房能
力が得られないという問題点があった。
Problems to be Solved by the Invention However, the initial valve opening degree of the electronic expansion valve 3 is set so that the refrigeration cycle is optimized under the condition that the outdoor temperature is about 7°C. Electronic expansion valve 3 that optimizes the refrigeration cycle at outdoor temperatures where frost formation occurs.
Since the initial valve opening is a small value, if the initial valve opening is returned to the initial valve opening at the end of defrosting operation as in the conventional method, the valve opening of the electronic expansion valve 3 will be set to the optimum value by discharge temperature control. There was a problem in that it took a long time to reach the full temperature and sufficient heating capacity could not be obtained when returning from defrosting operation.

問題点を解決するための手段 上記問題点を解決するために本発明は、除霜運転終了後
に膨張弁の弁開度を初期弁開度より冷謀流通抵抗の大き
い弁開度に変更するものである。
Means for Solving the Problems In order to solve the above problems, the present invention changes the valve opening degree of the expansion valve after the defrosting operation is completed to a valve opening degree that provides greater cooling flow resistance than the initial valve opening degree. It is.

作  用 本発明は上記手段によって、除霜が完了し蒸発器4の温
度T。が除霜設定温度T。llを上まわった場合、弁開
度設定手段2oより初期弁開度よυ小さい最適な弁開度
を出力し、電磁弁6を閉とすることで、除霜運転終了後
、短時間で吐出温度の目標値に到達することができ、充
分な暖房能力が確保できる。
Operation The present invention uses the above-mentioned means to complete defrosting and reduce the temperature T of the evaporator 4. is the defrost set temperature T. If the value exceeds ll, the valve opening setting means 2o outputs an optimal valve opening smaller than the initial valve opening, and the solenoid valve 6 is closed, so that the discharge can be performed in a short time after the defrosting operation is completed. It is possible to reach the target temperature value and ensure sufficient heating capacity.

実施例 以下、本発明の一実施例の冷凍サイクルについて説明す
る。
EXAMPLE A refrigeration cycle according to an example of the present invention will be described below.

第1図は冷凍サイクルの構成を示すものである。FIG. 1 shows the configuration of a refrigeration cycle.

第1図において1は圧縮機、2は凝縮器、3は電子式膨
張弁、4は蒸発器、5は絞り装置、6は電磁弁、7は吐
出温度を検出する吐出温度センサー8は蒸発器4の温度
を検出する除霜温度検知センサー、9&は吐出温度セン
サー7の信号により、電子式膨張弁3を制御する制御装
置、10bは除霜温度検知センサーの信号により、電子
膨張弁3を制御する制御装置である。制御装置9a、1
0bで制御装置11bとする。
In Fig. 1, 1 is a compressor, 2 is a condenser, 3 is an electronic expansion valve, 4 is an evaporator, 5 is a throttle device, 6 is a solenoid valve, and 7 is a discharge temperature sensor 8 that detects the discharge temperature of the evaporator. 4 is a defrosting temperature detection sensor that detects the temperature, 9 & is a control device that controls the electronic expansion valve 3 according to the signal of the discharge temperature sensor 7, and 10b is a control device that controls the electronic expansion valve 3 according to the signal of the defrosting temperature detection sensor. It is a control device that Control device 9a, 1
0b is the control device 11b.

第2図は制御装置11bのブロック図である。FIG. 2 is a block diagram of the control device 11b.

制御装置9aは吐出温度センサー7等からなる温度検出
手段12、冷凍サイクルの運転状況に応じて吐出温度の
目標値を設定する目標温度設定手段13温度検出手段1
2の出力と目標温度設定手段13の出力を比較する温度
比較手段14、温度比較手段14の出力によって弁開度
を演算する弁開度演算手段16、弁開度演算手段15の
出力に応じた弁開度を出力する弁開度出力手段16で構
成されている。一方、制御装置10bは蒸発器4の温度
を検出する除霜温度検出手段1了、除霜運転開始、ある
いは復帰の温度を設定する除霜温度設定手段1B、除霜
温度検出手段17の出力と除霜温度設定手段18の出力
を比較する温度比較手段19の出力によって、除霜運転
時には全開の弁開度、除霜運転終了時は、制御装置に電
源を投入したときの初期弁開度を指示する弁開度設定手
段2oで構成されている。なお、除霜運転時には制御装
置9aの動作は行なわれない。
The control device 9a includes a temperature detection means 12 consisting of a discharge temperature sensor 7, etc., a target temperature setting means 13 for setting a target value of the discharge temperature according to the operating status of the refrigeration cycle, and a temperature detection means 1.
temperature comparison means 14 which compares the output of the target temperature setting means 13 with the output of the temperature comparison means 13; a valve opening calculation means 16 which calculates the valve opening according to the output of the temperature comparison means 14; It is comprised of a valve opening degree output means 16 that outputs the valve opening degree. On the other hand, the control device 10b controls the output of the defrosting temperature detecting means 1 which detects the temperature of the evaporator 4, the defrosting temperature setting means 1B which sets the temperature for starting or returning the defrosting operation, and the output of the defrosting temperature detecting means 17. The output of the temperature comparison means 19 that compares the output of the defrosting temperature setting means 18 determines the full valve opening during defrosting operation, and the initial valve opening when the power is turned on to the control device at the end of defrosting operation. It is composed of a valve opening degree setting means 2o for instructing. Note that the control device 9a does not operate during the defrosting operation.

以上のように構成された冷凍サイクルおよび制御装置の
動作について第3図、第4図を参照しながら説明する。
The operation of the refrigeration cycle and control device configured as described above will be explained with reference to FIGS. 3 and 4.

第3図は電子式膨張弁の動作を表わすフローチャートで
あシ、第4図は代表的な吐出温度、蒸発器温度、電子式
膨張弁3の弁開度の変化特性を示したものである。
FIG. 3 is a flowchart showing the operation of the electronic expansion valve, and FIG. 4 shows typical characteristics of changes in discharge temperature, evaporator temperature, and valve opening degree of the electronic expansion valve 3.

動作としては、まず、吐出温度センサー6からなる温度
検出手段12で検出した温度Tdと、目標温度設定手段
13で設定した温度T8との温度差を、温度比較手段1
4で求める。そして、この温度差に応じた弁開度を弁開
度演算手段15により決定し、弁開度出力手段16によ
り、電子式膨張弁3の弁開度を変更する。弁開度演算手
段15での演算内容は、吐出温度Tdが目標値Tsより
低い場合にはΔPバ〃ス弁開度を小さくシ(冷媒流通抵
抗大)、吐出温度Tdが目標値Tsより高い場合にはΔ
Pパルス弁開度を大きくシ(冷媒流通抵抗小)、吐出温
度Tdを目標値T、に近づけようとするものである。な
お、−度設定された弁開度は最低ある時間保持される。
In operation, first, the temperature difference between the temperature Td detected by the temperature detection means 12 consisting of the discharge temperature sensor 6 and the temperature T8 set by the target temperature setting means 13 is determined by the temperature comparison means 1.
Find it in 4. Then, the valve opening degree calculation means 15 determines the valve opening degree according to this temperature difference, and the valve opening degree of the electronic expansion valve 3 is changed by the valve opening degree outputting means 16. The calculation contents of the valve opening calculation means 15 are as follows: When the discharge temperature Td is lower than the target value Ts, the ΔP bus valve opening is made smaller (refrigerant flow resistance is large), and when the discharge temperature Td is higher than the target value Ts. Δ if
The purpose is to increase the opening degree of the P pulse valve (lower refrigerant flow resistance) and bring the discharge temperature Td closer to the target value T. Note that the valve opening degree set to - degree is maintained for at least a certain period of time.

一方、蒸発器4の温度を検出する除霜温度検知センサー
8の温度と除霜温度設定手段18で設定される温度を温
度比較手段19で比較し、蒸発器4の温度T。が、除霜
設定温度T。8より低い場合は、弁開度設定手段21よ
り全開の弁開度を出力し、電磁弁6を開とし、除霜運転
を行う。除霜運転が終了し、蒸発器4の温度T。が、除
霜設定温度T より高い場合、弁開度設定手段21より
最通弁開度を指示し、以後通常の吐出温度制御を行なう
。次に冷媒の流れについて説明する。
On the other hand, the temperature of the defrosting temperature detection sensor 8 that detects the temperature of the evaporator 4 and the temperature set by the defrosting temperature setting means 18 are compared by the temperature comparison means 19, and the temperature T of the evaporator 4 is determined. However, the defrosting set temperature T. If it is lower than 8, the valve opening setting means 21 outputs a fully open valve opening, the solenoid valve 6 is opened, and defrosting operation is performed. After the defrosting operation is completed, the temperature of the evaporator 4 is T. is higher than the defrosting set temperature T 1 , the valve opening setting means 21 instructs the open valve opening, and thereafter normal discharge temperature control is performed. Next, the flow of refrigerant will be explained.

通常の吐出温度制御時には、圧縮機1より吐出された高
温高圧のガス冷媒が凝縮器2に流入し冷却液化される。
During normal discharge temperature control, high-temperature, high-pressure gas refrigerant discharged from the compressor 1 flows into the condenser 2 and is cooled and liquefied.

この高圧の液冷媒あるいは気液二相冷媒は電子式膨張弁
3で減圧されて、蒸発器4に流入する。ここで冷媒は吸
熱し、圧縮機1へと戻る。このとき電磁弁6は閉のまま
であり吐出管から吸入管への冷媒の流れはない。
This high-pressure liquid refrigerant or gas-liquid two-phase refrigerant is depressurized by the electronic expansion valve 3 and flows into the evaporator 4 . Here, the refrigerant absorbs heat and returns to the compressor 1. At this time, the solenoid valve 6 remains closed and no refrigerant flows from the discharge pipe to the suction pipe.

一方、除霜運転時には、圧縮機1から吐出された冷媒の
一部は凝縮器3から電子式膨張弁3、蒸発器4を通って
圧縮機1へ戻る。残りの一部は絞り装置5.電磁弁6を
介して直接、圧縮機1の吸入管へ戻され、凝縮器2から
の放熱を続けながら暖房を行うものである。
On the other hand, during defrosting operation, a part of the refrigerant discharged from the compressor 1 returns to the compressor 1 from the condenser 3 through the electronic expansion valve 3 and the evaporator 4. The remaining part is squeezed out by the squeezing device 5. The heat is returned directly to the suction pipe of the compressor 1 via the electromagnetic valve 6, and heating is performed while continuing heat radiation from the condenser 2.

発明の効果 以上のように本発明は、冷凍サイクルの所定箇所の温度
を温度検出手段で検出し、目標温度設定手段の出力と温
度比較手段で比較し、温度比較手段の出力に応じて弁開
度演算手段により弁開度を決定し、弁開度出力手段より
出力し初期弁開度よりミ子式膨張弁の弁開度を変更する
制御装置において、蒸発器の温度検出手段の出力が設定
温度以下の場合に、電子式膨張弁の弁開度を全開とし、
電磁弁を開とし除霜運転を行い、蒸発器の温度が上昇し
、設定温度より高い場合には電子式膨張弁の弁開度を、
制御装置に電源を投入したときの初勘弁開度よりも、冷
媒流通抵抗の大きい最適弁開度に変更し、電磁弁を閉と
することで、除霜運転終了後、短時間で吐出温度の目標
値に到達することができ、充分な暖房能力を確保するこ
とができる。
Effects of the Invention As described above, the present invention detects the temperature at a predetermined point in the refrigeration cycle using the temperature detection means, compares it with the output of the target temperature setting means using the temperature comparison means, and opens the valve according to the output of the temperature comparison means. In a control device that determines the valve opening degree by a temperature calculation means, outputs it from the valve opening output means, and changes the valve opening degree of the Miko expansion valve based on the initial valve opening degree, the output of the evaporator temperature detection means is set. When the temperature is below, the electronic expansion valve is fully opened,
Open the solenoid valve to perform defrosting operation, and if the temperature of the evaporator rises and is higher than the set temperature, the valve opening of the electronic expansion valve is changed.
By changing the initial valve opening to the optimum valve opening with greater refrigerant flow resistance than the initial valve opening when power is turned on to the control device, and closing the solenoid valve, the discharge temperature can be lowered in a short time after the defrosting operation is completed. The target value can be reached and sufficient heating capacity can be ensured.

なお、除霜運転時の復帰弁開度は、除霜運転開始直前の
弁開度となるようにしても同様の効果が得られる。
Note that the same effect can be obtained even if the return valve opening degree during the defrosting operation is set to the valve opening degree immediately before the start of the defrosting operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す冷凍サイクル図、第2
図は同制御装置のブロック図、第3図は同制御装置の制
御内容を示すフローチャート、第4図は同冷凍サイクル
における代表的な吐出温度、蒸発器温度、電子式膨張弁
の弁開度を示すタイムチャート、第6図は従来例の冷凍
サイクル図、第6図は従来例の制御装置の10ツク図、
第7図は従来例の制御内容を示すフローチャート、第8
図は従来例の代表的な吐出温度、蒸発器温度、電子膨張
弁の弁開度の変化を示すタイムチャートである。 1・・・・・・圧縮機、2・・・・・・凝縮器、3・・
・・・・電子式膨張弁、4・・・・・・蒸発器、5・・
・・・・絞シ装置、6・・・−・・電磁弁、12・・・
・・・温度検出手段、13・・・・−・目標温度設定手
段、14・・・・・・温度比較手段、16・・・・・・
弁開度演算手段、1e・・・・・・弁開度出力手段、1
7・・・・・・除霜温度検出手段、18・・・・・・除
霜温度設定手段、21・・・・・・弁開度設定手段。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名!−
・−圧縮機 2− 擬柵機 3−・−電子式膨張弁 4− 厘発器 5 〜−  絞  リ  十を 1【 6− 電磁弁 11b −−一削御兼! 第 2  tU a 第 3 図 第 4 口 0                      時 
關第5図 第6図 a 第7図 第8図 Um闇
Fig. 1 is a refrigeration cycle diagram showing one embodiment of the present invention;
The figure is a block diagram of the control device, Figure 3 is a flowchart showing the control contents of the control device, and Figure 4 shows typical discharge temperatures, evaporator temperatures, and valve opening degrees of the electronic expansion valve in the refrigeration cycle. Fig. 6 is a refrigeration cycle diagram of a conventional example, Fig. 6 is a 10-step diagram of a conventional control device,
FIG. 7 is a flowchart showing the control contents of the conventional example;
The figure is a time chart showing typical changes in discharge temperature, evaporator temperature, and valve opening degree of an electronic expansion valve in a conventional example. 1... Compressor, 2... Condenser, 3...
...electronic expansion valve, 4...evaporator, 5...
... Throttle device, 6...--Solenoid valve, 12...
...Temperature detection means, 13...-Target temperature setting means, 14...Temperature comparison means, 16...
Valve opening calculation means, 1e...Valve opening output means, 1
7... Defrost temperature detection means, 18... Defrost temperature setting means, 21... Valve opening degree setting means. Name of agent: Patent attorney Toshio Nakao and 1 other person! −
- Compressor 2 - False fence machine 3 - - Electronic expansion valve 4 - Generator 5 ~ - Restrictor 1 [ 6 - Solenoid valve 11b -- One reduction! 2nd tU a 3rd figure 4th mouth 0 o'clock
Figure 5 Figure 6 a Figure 7 Figure 8 Um Darkness

Claims (1)

【特許請求の範囲】[Claims]  圧縮機,凝縮器,電子式膨張弁,蒸発器を環状に連結
して冷凍サイクルを構成し、前記冷凍サイクルの所定箇
所の温度を温度検出手段で検出し、目標温度設定手段の
出力と温度比較手段で比較し、前記温度比較手段の出力
に応じて弁開度演算手段により前記膨張弁の弁開度を決
定し、膨開度出力手段より出力し、初期弁開度より前記
膨張弁の弁開度を変更する制御装置を設け、前記蒸発器
の除霜温度検出手段の出力が除霜温度設定手段の出力以
下の場合に、弁開度設定手段により前記膨張弁の弁開度
を全開として除霜運転を行い、この除霜運転後前記膨張
弁の弁開度を、初期弁開度より冷媒流通抵抗の大きい弁
開度に変更する膨張弁の制御方法。
A refrigeration cycle is constructed by connecting a compressor, a condenser, an electronic expansion valve, and an evaporator in a ring, and the temperature at a predetermined point of the refrigeration cycle is detected by a temperature detection means, and the temperature is compared with the output of a target temperature setting means. The valve opening of the expansion valve is determined by the valve opening calculating means according to the output of the temperature comparing means, and the valve opening of the expansion valve is determined from the initial valve opening. A control device for changing the opening degree is provided, and when the output of the defrosting temperature detection means of the evaporator is less than the output of the defrosting temperature setting means, the valve opening degree setting means sets the valve opening degree of the expansion valve to full open. A control method for an expansion valve, which performs a defrosting operation, and after the defrosting operation, changes the opening degree of the expansion valve to a valve opening degree that has greater refrigerant flow resistance than an initial valve opening degree.
JP29103187A 1987-11-18 1987-11-18 Method of controlling expansion valve Pending JPH01134182A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29103187A JPH01134182A (en) 1987-11-18 1987-11-18 Method of controlling expansion valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29103187A JPH01134182A (en) 1987-11-18 1987-11-18 Method of controlling expansion valve

Publications (1)

Publication Number Publication Date
JPH01134182A true JPH01134182A (en) 1989-05-26

Family

ID=17763550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29103187A Pending JPH01134182A (en) 1987-11-18 1987-11-18 Method of controlling expansion valve

Country Status (1)

Country Link
JP (1) JPH01134182A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100484802B1 (en) * 2002-07-03 2005-04-22 엘지전자 주식회사 Frost removing method of air conditioner hanving two compressor
JP2011102678A (en) * 2009-11-11 2011-05-26 Daikin Industries Ltd Heat pump device
WO2015182196A1 (en) * 2014-05-30 2015-12-03 シャープ株式会社 Air conditioner and air conditioner control method
JP2016099055A (en) * 2014-11-21 2016-05-30 シャープ株式会社 Refrigeration device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60114661A (en) * 1983-11-25 1985-06-21 株式会社東芝 Method of operating heat-pump air conditioner
JPS62233657A (en) * 1986-04-01 1987-10-14 松下電器産業株式会社 Heat pump type air conditioner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60114661A (en) * 1983-11-25 1985-06-21 株式会社東芝 Method of operating heat-pump air conditioner
JPS62233657A (en) * 1986-04-01 1987-10-14 松下電器産業株式会社 Heat pump type air conditioner

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100484802B1 (en) * 2002-07-03 2005-04-22 엘지전자 주식회사 Frost removing method of air conditioner hanving two compressor
JP2011102678A (en) * 2009-11-11 2011-05-26 Daikin Industries Ltd Heat pump device
WO2015182196A1 (en) * 2014-05-30 2015-12-03 シャープ株式会社 Air conditioner and air conditioner control method
JP2015224860A (en) * 2014-05-30 2015-12-14 シャープ株式会社 Air conditioner, control method of air conditioner, and control program for air conditioner
CN106062486A (en) * 2014-05-30 2016-10-26 夏普株式会社 Air conditioner and air conditioner control method
CN106062486B (en) * 2014-05-30 2019-09-03 夏普株式会社 The control method of air conditioner and air conditioner
JP2016099055A (en) * 2014-11-21 2016-05-30 シャープ株式会社 Refrigeration device

Similar Documents

Publication Publication Date Title
JP4654828B2 (en) Air conditioner
CN100516711C (en) Expansion valve control method for multiple type airconditioner
JPH079331B2 (en) Operation control method for heat pump type air conditioner
EP0676601A1 (en) Operation control device for air conditioning equipment
JP3737357B2 (en) Water heater
JPH01134182A (en) Method of controlling expansion valve
JPH04270876A (en) Defrosting controller for heat pump type air-conditioning machine
US20030136137A1 (en) System and method for rapid defrost or heating in a mobile refrigeration unit
JP2002098451A (en) Heat pump type air conditioner
JPH06331202A (en) Heat pump type air conditioner
JPH0752031B2 (en) Heat pump type air conditioner
JP3330017B2 (en) Air conditioner
JP2003207237A (en) Refrigerator
JPH01123966A (en) Refrigerator
JPH11153363A (en) Device for controlling refrigerating cycle having injection function
JP4084272B2 (en) Heat pump water heater
JP2503636B2 (en) Refrigeration system operation controller
JPH08285393A (en) Air conditioner for multi-room
JPS6346350B2 (en)
JPS63290355A (en) Method of controlling refrigerant for heat pump type air conditioner
JP3326898B2 (en) Control device for heat pump device
JP2005090843A (en) Heat pump hot-water supply device
JPH06341741A (en) Defrosting controller for refrigerating device
JPH04187931A (en) Air conditioner
KR20030064559A (en) Quick freezing method