JPH01134166A - Heat-pump hot-water supply device - Google Patents

Heat-pump hot-water supply device

Info

Publication number
JPH01134166A
JPH01134166A JP62292330A JP29233087A JPH01134166A JP H01134166 A JPH01134166 A JP H01134166A JP 62292330 A JP62292330 A JP 62292330A JP 29233087 A JP29233087 A JP 29233087A JP H01134166 A JPH01134166 A JP H01134166A
Authority
JP
Japan
Prior art keywords
heat
water
refrigerant
heat storage
hot water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62292330A
Other languages
Japanese (ja)
Inventor
Kazuhiko Miyamoto
和彦 宮本
Masahisa Tajima
田島 正久
Masaji Hattori
服部 正次
Yoshitsugu Fujimoto
藤本 佳嗣
Naoki Yamanaka
直樹 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62292330A priority Critical patent/JPH01134166A/en
Publication of JPH01134166A publication Critical patent/JPH01134166A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To reduce the manufacturing cost by stopping a water circulation pump and operating a condenser fan when the temperature of hot supply water in a heat storage tank reaches a set level thereby performing heat storage/hot water supply and indoor cooling surely. CONSTITUTION: When a temperature sensor 9 detects the temperature of hot supply water in a heat storage tank 5 exceeding a set level and delivers a controller 10 with a signal for switching to heat radiating operation, a water circulation pump 6 operating during heat storage/hot water supply operation is stopped and a condenser fan 20 is operated. When the hot supply water is not required to be heated, heat can be radiated from a refrigerant/water heat exchanger 2 to the outer air by stopping the pump 6 and operating the fan 20. Since an extra refrigerant circuit is not required during heat radiating operation, the installation space can be reduced while simplifying the system and heat storage/hot water supply and indoor cooling operations can be performed surely while reducing the cost significantly.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ヒートポンプ給湯装置に関するものである。[Detailed description of the invention] Industrial applications The present invention relates to a heat pump water heater.

従来の技術 従来のこの種のヒートポンプ給湯装置は、第3図に示す
ように、圧縮機1、冷媒対水熱交換器2、膨張弁3、室
内蒸発器4、前記圧縮機1を順次環状連結してなる冷媒
回路と、蓄熱槽5、水循環ポンプ6、冷媒対水熱交換器
2を順次環状連結してなる水循環回路を備え、蓄熱槽5
に給湯水を貯わえながら、室内を冷房するものであった
。蓄熱槽5に蓄熱する時には、圧縮機1、水循環ポンプ
6を駆動させることにより、圧縮機1で圧縮された高温
・高圧な状態の冷媒が、閉じた状態にある電磁弁A15
には流れず、開いた状態にある電磁弁816を介し冷媒
対水熱交換器2に流入する。ここで冷媒は伝熱関係にあ
る水循環回路の給湯水を加熱し、凝縮液化する。一方、
加熱された給湯水は水循環ポンプ6によって蓄熱槽5に
送水され貯わえられる。凝縮された冷媒は、膨張弁3に
至り減圧されながら通過し、低温・低圧な状態で室内蒸
発器4に流入する。室内蒸発器4に流入した冷媒は、室
内ファン(蒸発器用ファンともいう)7からの送風を受
けながら室内の大気熱より吸熱し室内温度を下げながら
蒸発気化する。気化した冷媒は、圧縮機1に吸入され再
度圧縮される構成になっている。
2. Description of the Related Art As shown in FIG. 3, a conventional heat pump water heater of this type connects a compressor 1, a refrigerant-to-water heat exchanger 2, an expansion valve 3, an indoor evaporator 4, and the compressor 1 in an annular manner. The heat storage tank 5
It was designed to cool the room while storing hot water. When storing heat in the heat storage tank 5, by driving the compressor 1 and the water circulation pump 6, the high temperature and high pressure refrigerant compressed by the compressor 1 is transferred to the closed electromagnetic valve A15.
The refrigerant does not flow into the refrigerant-to-water heat exchanger 2 through the solenoid valve 816, which is in the open state. Here, the refrigerant heats the hot water in the water circulation circuit, which is in a heat transfer relationship, and condenses and liquefies it. on the other hand,
The heated hot water supply water is sent to the heat storage tank 5 by the water circulation pump 6 and stored therein. The condensed refrigerant passes through the expansion valve 3 while being depressurized, and flows into the indoor evaporator 4 at a low temperature and low pressure. The refrigerant that has flowed into the indoor evaporator 4 absorbs heat from the indoor air while being blown by an indoor fan (also referred to as an evaporator fan) 7, and evaporates while lowering the indoor temperature. The vaporized refrigerant is sucked into the compressor 1 and compressed again.

しかし、長時間この蓄熱及び室内冷房運転を続けると、
蓄熱槽5に貯わえられた給湯水の温度が著しく上昇して
しまう。そこで、蓄熱槽5に貯えられた給湯水の温度を
温度センサー9等で検知し、設定温度に達した場合、そ
れ以上蓄熱しないように水循環回路を停止し、室外に設
けた室外凝縮器17において放熱する構成が望ましい。
However, if this heat storage and indoor cooling operation continues for a long time,
The temperature of the hot water stored in the heat storage tank 5 will rise significantly. Therefore, the temperature of the hot water stored in the heat storage tank 5 is detected by a temperature sensor 9, etc., and when the set temperature is reached, the water circulation circuit is stopped to prevent further heat accumulation, and A configuration that dissipates heat is desirable.

室外凝縮器17において放熱するためには、第4図に示
すように、蓄熱槽5に貯えられた給湯水の温度を温度セ
ンサー9が検知し制御器10へ信号を伝送する。制御器
10は圧縮機1を吐出した冷媒が室外凝縮器17に送ら
れるように、電磁弁^15を開くと同時に、電磁弁81
6を閉じる命令を伝送し、さらに水循環回路を停止する
ように水循環ポンプ6の運転を止め、室外凝縮器17で
冷媒が効率よく放熱するように、室外ファン18の運転
開始をそれぞれ命令するのである。このことから冷媒の
循環回路が変更され室外凝縮器17において冷媒を凝縮
させるのである。すなわち、圧縮機1で圧縮された高温
・高圧な状態の冷媒は、電磁弁B16が閉じているため
直接冷媒対水熱交換器2に流入せず、開いている電磁弁
A15を流れ室外凝縮器17に至るのである。ここで冷
媒は室外ファン18からの送風を受けながら外気へ放熱
し、凝縮・液化する。この後冷媒対水熱交換器2へ送ら
れるが、冷媒はすでに凝縮・液化しており伝熱関係にあ
る給湯水にも放熱しない。又、水循環ポンプ6も停止し
ているので、蓄熱槽5に貯わえられた給湯水から吸熱す
ることもないのである。なぜならば、本実施例の冷媒対
水熱交換器2は、第4図に示すようにそれぞれ偏平され
た冷媒側管11と水側管12とが交互に接触し伝熱関係
を維持するように、2つの固定板13をセンターボルト
14が締結する構成になっている、このため水循環ポン
プ6が停止している時には、蓄熱槽5に貯えられた給湯
水から冷媒への伝熱はない。冷媒対水熱交換器2を出た
低温・高圧な状態の冷媒は、膨張弁3を介して室内蒸発
器4に送られ蓄熱槽5に蓄熱する時と同じようにして、
室内の温度を下げながら蒸発気化し、圧縮機1に再び吸
入される構成になっており、この冷媒のサイクルが、室
内を冷房するようになっている。
In order to radiate heat in the outdoor condenser 17, the temperature sensor 9 detects the temperature of the hot water stored in the heat storage tank 5 and transmits a signal to the controller 10, as shown in FIG. The controller 10 opens the solenoid valve ^15 and at the same time opens the solenoid valve 81 so that the refrigerant discharged from the compressor 1 is sent to the outdoor condenser 17.
6, the water circulation pump 6 is stopped to stop the water circulation circuit, and the outdoor fan 18 is ordered to start operation so that the outdoor condenser 17 can efficiently radiate heat from the refrigerant. . For this reason, the refrigerant circulation circuit is changed and the refrigerant is condensed in the outdoor condenser 17. That is, the high-temperature, high-pressure refrigerant compressed by the compressor 1 does not directly flow into the refrigerant-to-water heat exchanger 2 because the solenoid valve B16 is closed, but flows through the open solenoid valve A15 to the outdoor condenser. This brings us to 17. Here, the refrigerant radiates heat to the outside air while being blown by the outdoor fan 18, and is condensed and liquefied. After that, the refrigerant is sent to the refrigerant-to-water heat exchanger 2, but the refrigerant has already condensed and liquefied and does not radiate heat to the hot water, which is in a heat transfer relationship. Furthermore, since the water circulation pump 6 is also stopped, no heat is absorbed from the hot water stored in the heat storage tank 5. This is because, as shown in FIG. 4, in the refrigerant-to-water heat exchanger 2 of this embodiment, the refrigerant side pipes 11 and the water side pipes 12, which are each flattened, are alternately in contact with each other to maintain a heat transfer relationship. The center bolt 14 fastens the two fixing plates 13. Therefore, when the water circulation pump 6 is stopped, there is no heat transfer from the hot water stored in the heat storage tank 5 to the refrigerant. The low-temperature, high-pressure refrigerant that exits the refrigerant-to-water heat exchanger 2 is sent to the indoor evaporator 4 via the expansion valve 3 and stored in the heat storage tank 5 in the same manner as when
The refrigerant is evaporated while lowering the indoor temperature and is sucked into the compressor 1 again, and this refrigerant cycle cools the indoor room.

従来のヒートポンプ給湯装置は、前記蓄熱槽5へ蓄熱す
るサイクルと、室外凝縮器17において放熱するサイク
ルとを繰り返えすことで、蓄熱槽5内の給湯水の温度を
設定された温度まで上昇させながら、室内の冷房を行な
うのである。
The conventional heat pump water heater increases the temperature of hot water in the heat storage tank 5 to a set temperature by repeating a cycle of storing heat in the heat storage tank 5 and a cycle of releasing heat in the outdoor condenser 17. At the same time, it cools the room.

発明が解決しようとする問題点 しかしながら、前記のような構成では、蓄熱槽5の給湯
水の温度が設定の温度に上昇した時、室外凝縮器17に
おいて放熱する必要があるため、室外凝縮器17をはじ
めとする数種類の部品から構成される室外ユニットを設
けなければならず、部品の材料費や室外ユニットを構成
するための部材の費用など、著しいコストアップが見込
まれる。
Problems to be Solved by the Invention However, in the above configuration, when the temperature of hot water in the heat storage tank 5 rises to a set temperature, it is necessary to dissipate heat in the outdoor condenser 17. It is necessary to provide an outdoor unit made up of several types of parts, including the following, and a significant increase in costs is expected, including the cost of materials for the parts and the costs of members for constructing the outdoor unit.

又、製品設置時にも、この室外ユニットを設けるための
スペースが必要になるうえ、冷媒配管の接続や電気、信
号の配線も複雑になり、好ましくない。一方、システム
の制御についても、温度センサー9が検知し制御器10
へ伝達した信号を、電磁弁A15、電磁弁816、室外
ファン18、水循環ポンプ6のすべてに命令として伝え
なければならず、すべての部品が正常に作動しなければ
、室外凝縮器17での放熱サイクルは盲動に動作しない
。このため、命令によって作動する部品の数が少なく、
制御が簡素の方が、製品の不良発生の可能性が少ないと
考えられる。
Furthermore, when installing the product, a space is required for installing the outdoor unit, and the connection of refrigerant piping and wiring of electricity and signals become complicated, which is not preferable. On the other hand, regarding the control of the system, the temperature sensor 9 detects the temperature and the controller 10
The signal transmitted to the solenoid valve A15, the solenoid valve 816, the outdoor fan 18, and the water circulation pump 6 must all be transmitted as a command, and if all parts do not operate normally, the heat dissipation in the outdoor condenser 17 Cycles do not operate blindly. For this reason, the number of parts that operate according to commands is small,
It is thought that the simpler the control, the less likely the product will be defective.

したがって、従来例の示す構成においては、蓄熱槽5内
の給湯水の温度を設定された温度まで上昇させながら、
室内の冷房を行なうために、次に示す問題点を有する。
Therefore, in the configuration shown in the conventional example, while increasing the temperature of hot water in the heat storage tank 5 to a set temperature,
In order to cool the room, there are the following problems.

(1)部品数が多く、システム構成が複雑である。(1) The number of parts is large and the system configuration is complicated.

(2)部品、部材のコストが高い。(2) The cost of parts and members is high.

(3)  製品設置に伴なう工数が多く、設置に広いス
ペースが必要である。
(3) It takes a lot of man-hours to install the product, and a large space is required for installation.

(4システムの制御が複雑である。(The control of the four systems is complicated.

本発明は、かかる従来の問題点を解決するもので、少な
い部品で構成されるため狭いスペースに設置することが
可能な簡素化されたシステムにおいて、蓄熱・給湯及び
室内冷房を確実に行ない、製品のコストを大幅に低減す
るヒートポンプ給湯装置を提供する。
The present invention solves these conventional problems, and is a simplified system that can be installed in a narrow space because it is composed of a small number of parts. To provide a heat pump water heater that significantly reduces costs.

問題点を解決するための手段 上記問題点を解決するために、本発明のヒートポンプ給
湯装置は、蓄熱槽内の給湯水の温度が設定の温度まで上
昇した時、水循環ポンプを停止し、凝縮器用ファンを運
転するように命令する制御器を備えたものである。
Means for Solving the Problems In order to solve the above problems, the heat pump water heater of the present invention stops the water circulation pump when the temperature of the hot water in the heat storage tank rises to a set temperature, and It is equipped with a controller that commands the fan to operate.

作  用 本発明は上記した構成によって、蓄熱槽内の給湯水の温
度が設定の温度まで上昇した時、室外凝縮器より放熱す
る必要がなく、室外凝縮器や室外ファンを設けるための
室外ユニットを具備しないでも、冷媒対水熱交換器から
の放熱できる。すなわち、蓄熱槽内の給湯水の温度が上
昇し、冷媒対水熱交換器内において、給湯水の加熱が必
要な(なった時に、水循環ポンプを停止し、凝縮器用フ
ァンを運転することによって前記冷媒対水熱交換器から
外気へ放熱することが可能になる。このことから、放熱
運転時に冷媒の別回路を形成する必要がなく、製品の小
スペース化、システムの簡素化、さらに大幅なコスト低
減を図りながら、蓄熱・給湯及び室内冷房を確実に行な
うことが出来るのである。
Effect of the Invention With the above-described configuration, the present invention eliminates the need to radiate heat from the outdoor condenser when the temperature of hot water in the heat storage tank rises to a set temperature, and does not require an outdoor unit for installing an outdoor condenser or an outdoor fan. Heat can be radiated from the refrigerant-to-water heat exchanger even without it. In other words, when the temperature of the hot water in the heat storage tank rises and it becomes necessary to heat the hot water in the refrigerant-to-water heat exchanger, the water circulation pump is stopped and the condenser fan is operated. It becomes possible to radiate heat from the refrigerant-to-water heat exchanger to the outside air.This eliminates the need to form a separate refrigerant circuit during heat radiation operation, resulting in smaller product space, system simplification, and significant cost savings. This makes it possible to reliably store heat, supply hot water, and cool the room while reducing energy consumption.

実施例 以下、本発明の第1の実施例を添付図面にもとづいて説
明する。
Embodiment A first embodiment of the present invention will be described below with reference to the accompanying drawings.

なお、第3図、第4図に示す従来例との同一部品につい
ては同一符号を付し、その説明は省略する。
Note that the same parts as those in the conventional example shown in FIGS. 3 and 4 are given the same reference numerals, and the explanation thereof will be omitted.

又、本実施例の蓄熱・給湯運転時と放熱運転時の冷媒循
環系路は同一で、第1図の実線の矢印で示されるが、従
来例の糸路は先に述べたとおり、蓄熱・給湯運転時は実
線(イ)で、放熱運転時は破線(ロ)の矢印に示される
ものである。
In addition, the refrigerant circulation system path during the heat storage/hot water supply operation and the heat radiation operation in this embodiment is the same and is indicated by the solid arrow in Fig. 1, but the thread path in the conventional example is the heat storage/hot water supply operation and the heat dissipation operation. The solid line (A) indicates the hot water supply operation, and the broken line (B) indicates the heat dissipation operation.

第1図において、20は冷媒対水熱交換器2に送風する
凝縮器用ファン、6は冷媒対水熱交換器2に送水する水
循環ポンプである。これらは蓄熱槽5内部の給湯水の温
度を検知する温度センサー9からの信号で制御される。
In FIG. 1, 20 is a condenser fan that blows air to the refrigerant-to-water heat exchanger 2, and 6 is a water circulation pump that sends water to the refrigerant-to-water heat exchanger 2. These are controlled by a signal from a temperature sensor 9 that detects the temperature of hot water inside the heat storage tank 5.

温度センサー9が給湯水の温度が設定の温度に上昇した
ことを検知し、放熱運転に切り換えるように制御器10
に信号を伝送すると、蓄熱・給湯運転時に作動していた
水循環ポンプ6を停止させ、凝縮器用ファン20を運転
させる。このようにして強制的に送水を停止された冷媒
対水熱交換器2から加熱された給湯水が蓄熱槽5に戻る
ことはなくなる。又、水循環回路内に設けられた逆止弁
24によって蓄熱槽5内の加熱された給湯水が逆流する
こともない。
When the temperature sensor 9 detects that the temperature of hot water has risen to the set temperature, the controller 10 switches to heat dissipation operation.
When the signal is transmitted to , the water circulation pump 6 that was operating during the heat storage/hot water supply operation is stopped, and the condenser fan 20 is operated. In this way, the hot water heated from the refrigerant-to-water heat exchanger 2 whose water supply has been forcibly stopped does not return to the heat storage tank 5. Furthermore, the check valve 24 provided in the water circulation circuit prevents the heated hot water in the heat storage tank 5 from flowing backward.

ここで、本実施例の冷媒対水熱交換器2、凝縮器用ファ
ン20を示した第2図にもとづいて説明を続ける。
Here, the explanation will be continued based on FIG. 2, which shows the refrigerant-to-water heat exchanger 2 and the condenser fan 20 of this embodiment.

圧縮機1を吐出した高温・高圧な状態な冷媒は第2図に
示される冷媒対水熱交換器2の冷媒側管21に流入する
。蓄熱・給湯運転時には伝熱関係にあった水側管22内
を流通する給湯水を加熱していたが、放熱運転時には、
給湯水は循環することができない。一方、凝縮器用ファ
ン20が運転するため、冷媒側管21と接触(本実施例
においては機械的に接触させたが、ロー付等で接続させ
ても同様効果が得られることも容易に考えられるので、
ここでは特に述べない。)している放熱用フィン23に
送風される。送風は、放熱用フィン23に任意に設けら
れた通路(穴状のもの)を通り抜け、冷媒対水熱交換器
2の冷媒側管21から熱を奪う構成になっている。すな
わち、高温・高圧な状態の冷媒が流れる冷媒側管21と
しっかり接続している放熱用フィン23は、冷媒と伝熱
関係にあり、しだいに温度が上昇する。しかし、前記凝
縮器用ファン20が運転し送風を開始すると、この放熱
用フィン°23(一部冷媒側管21から直接)から熱を
奪うのである。この時、先述したよ−うに給湯水は循環
していないので、蓄熱・給湯作用は行なわれず、結果と
して、室内を冷房しながら冷媒対水熱交換器2から放熱
していることになる。
The high temperature and high pressure refrigerant discharged from the compressor 1 flows into the refrigerant side pipe 21 of the refrigerant-to-water heat exchanger 2 shown in FIG. During the heat storage/hot water supply operation, the hot water flowing through the water side pipe 22, which was in a heat transfer relationship, was heated, but during the heat dissipation operation,
Hot water cannot be circulated. On the other hand, since the condenser fan 20 is operated, it comes into contact with the refrigerant side pipe 21 (in this example, it is brought into mechanical contact, but it is easily possible that the same effect can be obtained by connecting it with brazing, etc.) So,
I will not specifically discuss it here. ) is blown to the heat dissipation fins 23. The air is configured to pass through a passage (hole-shaped) arbitrarily provided in the heat radiation fins 23 and remove heat from the refrigerant side pipe 21 of the refrigerant-to-water heat exchanger 2. That is, the heat dissipation fins 23, which are firmly connected to the refrigerant side pipe 21 through which a high temperature and high pressure refrigerant flows, are in a heat transfer relationship with the refrigerant, and the temperature gradually increases. However, when the condenser fan 20 operates and starts blowing air, heat is taken away from the heat radiation fins 23 (partly directly from the refrigerant side pipe 21). At this time, as mentioned earlier, hot water is not being circulated, so no heat storage or hot water supply is performed, and as a result, heat is radiated from the refrigerant-to-water heat exchanger 2 while cooling the room.

第2図において、本実施例の冷媒対水熱交換器2及び凝
縮器用ファン20の構成部品についてさらに詳細に説明
する。
In FIG. 2, the components of the refrigerant-to-water heat exchanger 2 and the condenser fan 20 of this embodiment will be explained in more detail.

25は凝縮用ファン20を運転させるためのモータで、
冷媒対水熱交換器2に固定されている。
25 is a motor for driving the condensing fan 20;
It is fixed to the refrigerant-to-water heat exchanger 2.

又26は冷媒対水熱交換器2を断熱するための断熱材で
、特に蓄熱・給湯運転時に外気への熱放出を防止し、効
率の高い熱交換を行なう。27はセンターボルト28を
締め付けることで、冷媒側管21、水側管22を固定す
る固定板で、上下に各−枚づつ設けられている。この固
定板27が、前記冷媒側管21、水側管22を機械的に
固定することで冷媒対水熱交換器2の強度を維持するば
かりか、冷媒側管21と水側管22の密着度を向上させ
、伝熱効果を促進している。さらに本実施例では、逆器
型に成形された放熱用フィン23も同固定板27の締結
によって保持され、冷媒側管21との密着度を向上させ
ている。
Further, 26 is a heat insulating material for insulating the refrigerant-to-water heat exchanger 2, which prevents heat release to the outside air especially during heat storage/hot water supply operation, and performs highly efficient heat exchange. Reference numeral 27 designates fixing plates for fixing the refrigerant side pipe 21 and the water side pipe 22 by tightening the center bolt 28, and these plates are provided on the upper and lower sides. This fixing plate 27 not only maintains the strength of the refrigerant-to-water heat exchanger 2 by mechanically fixing the refrigerant side pipe 21 and the water side pipe 22, but also maintains the tightness between the refrigerant side pipe 21 and the water side pipe 22. It improves the temperature and promotes the heat transfer effect. Furthermore, in this embodiment, the heat dissipation fins 23 formed in an inverted vessel shape are also held by fastening the fixing plate 27, thereby improving the degree of contact with the refrigerant side pipe 21.

29は冷媒対水熱交換器2の下部に設けられたダンパー
で、蓄熱・給湯運転時には閉じていて、熱交換時の外気
への熱放出を防止し、放熱運転時には開いていて、凝縮
器用ファン20からの送風の通過を助け、より効率のよ
い放熱効果を得るものである。ただし本ダンパー29は
、制御器10からの信号で、凝縮器用ファン20が運転
すると同時に開くように制御されている。
29 is a damper installed at the bottom of the refrigerant-to-water heat exchanger 2. It is closed during heat storage and hot water supply operation to prevent heat release to the outside air during heat exchange, and is open during heat dissipation operation and is used as a condenser fan. This helps the passage of air from 20 and provides a more efficient heat dissipation effect. However, the main damper 29 is controlled by a signal from the controller 10 to open at the same time as the condenser fan 20 operates.

本実施例では、冷媒対水熱交換器2の下部にダンパー2
9を設けるとしたけれど、蓄熱・給湯運転時の放熱によ
るロスが小さく、固定板27に通風用の穴等を設けると
するならば、前記ダンパー29は必要ないが、容易に考
えられるので、ここでは特に述べていない。
In this embodiment, a damper 2 is installed at the bottom of the refrigerant-to-water heat exchanger 2.
However, if the loss due to heat radiation during heat storage and hot water supply operation is small and the fixing plate 27 is provided with holes for ventilation, the damper 29 is not necessary, but it can be easily considered. It's not specifically mentioned.

又、本実施例では、室内蒸発器4によって室内を冷房し
ながら蓄熱・給湯及び放熱をするとしたけれど、冬季室
内が十分低温な状態では、ダクト等で外気から吸熱する
構成にすれば室内の温度を下げずに運転することが可能
になる。
Furthermore, in this embodiment, the indoor evaporator 4 is used to store heat, supply hot water, and radiate heat while cooling the room. However, in the winter when the indoor temperature is sufficiently low, a configuration in which heat is absorbed from the outside air using a duct etc. can be used to reduce the indoor temperature. It becomes possible to drive without lowering the vehicle.

発明の効果 以上のように本発明のヒートポンプ給湯装置によれば次
の効果が得られる。
Effects of the Invention As described above, the heat pump water heater of the present invention provides the following effects.

(1)蓄熱槽内の給湯水の温度が設定の温度に上昇し、
室内冷房を続ける場合、水循環ポンプが停止し、凝縮器
用ファンが運転することで、冷媒対水熱交換器へ送風さ
れ十分な放熱効果が得られるので、従来必要だった室外
凝縮器、室外ファン、電磁弁等の放熱運転用室外ユニッ
トを具備せず、製品の小スペース化、部品、部材の大幅
なコスト低減の実現という効果がある。
(1) The temperature of the hot water supply in the heat storage tank rises to the set temperature,
When indoor cooling continues, the water circulation pump stops and the condenser fan operates, blowing air to the refrigerant-to-water heat exchanger and achieving sufficient heat dissipation. It does not include an outdoor unit for heat dissipation operation such as a solenoid valve, which has the effect of reducing the space required for the product and significantly reducing the cost of parts and materials.

(2)前述の室外ユニットを具備しないので、冷媒循環
回路が簡素化され、製品組立て時、設置時の冷媒配管接
続が容易なうえ、電気、信号の配線も簡略化され、シス
テム動作の不良発生要因を低減するという効果がある。
(2) Since the above-mentioned outdoor unit is not included, the refrigerant circulation circuit is simplified, making it easier to connect refrigerant piping during product assembly and installation, as well as simplifying electrical and signal wiring, which reduces the possibility of system malfunctions. This has the effect of reducing the factors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例のヒートポンプ給湯装置
のシステム構成図、第2図は本発明の第1の実施例の要
素部品である冷媒対水熱交換器の要部断面図、第3図は
従来のヒートポンプ給湯装置のシステム構成図、第4図
は同従来例の冷媒対水熱交換器の要部断面図である。 1・・・・・・圧縮機、2・・・・・・冷媒対水熱交換
器、3・・・・・・膨張弁、4・・・・・・室内蒸発器
、5・・・・・・蓄熱槽、6・・・・・・水循環ポンプ
、7・・・・・・室内ファン(蒸発器用ファン)、9・
・・・・・温度センサー、10・・・・・・制御器、2
0・・・・・・凝縮器用ファン、24・・・・・・逆止
弁。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第 
2 図 第3図 第4図 /4 手続補正書 昭和63年 5月 2B番
FIG. 1 is a system configuration diagram of a heat pump water heater according to a first embodiment of the present invention, and FIG. 2 is a sectional view of a main part of a refrigerant-to-water heat exchanger, which is an elemental component of the first embodiment of the present invention. FIG. 3 is a system configuration diagram of a conventional heat pump hot water supply device, and FIG. 4 is a sectional view of essential parts of a refrigerant-to-water heat exchanger of the conventional example. 1... Compressor, 2... Refrigerant-to-water heat exchanger, 3... Expansion valve, 4... Indoor evaporator, 5... ... Heat storage tank, 6 ... Water circulation pump, 7 ... Indoor fan (evaporator fan), 9.
...Temperature sensor, 10...Controller, 2
0... Condenser fan, 24... Check valve. Name of agent: Patent attorney Toshio Nakao and 1 other person
2 Figure 3 Figure 4/4 Procedural Amendment May 1988 No. 2B

Claims (2)

【特許請求の範囲】[Claims] (1)圧縮機、冷媒対水熱交換器、膨張弁、室内蒸発器
、前記圧縮機の順に環状連結された冷媒循環回路と、蓄
熱槽、水循環ポンプ、前記冷媒対水熱交換器、逆止弁の
順に環状連結された水循環回路と、前記室内蒸発器に送
風する蒸発器用ファンと、前記冷媒対水熱交換器に送風
する凝縮器用ファンと、温度センサーからの信号を検知
し前記水循環ポンプを停止させた後、前記凝縮器用ファ
ンを運転するよう命令する制御器とを設けてなるヒート
ポンプ給湯装置。
(1) A refrigerant circulation circuit in which a compressor, a refrigerant-to-water heat exchanger, an expansion valve, an indoor evaporator, and the compressor are connected in order in a ring, a heat storage tank, a water circulation pump, the refrigerant-to-water heat exchanger, and a check check. A water circulation circuit in which the valves are connected in an annular manner in this order, an evaporator fan that blows air to the indoor evaporator, a condenser fan that blows air to the refrigerant-to-water heat exchanger, and a signal from a temperature sensor that detects a signal from the water circulation pump. A heat pump water heater comprising: a controller that commands to operate the condenser fan after the condenser fan is stopped.
(2)冷媒対水熱交換器はその冷媒側管に放熱用のフィ
ンを具備してなる特許請求の範囲第1項記載のヒートポ
ンプ給湯装置。
(2) The heat pump water heater according to claim 1, wherein the refrigerant-to-water heat exchanger is provided with heat radiation fins on its refrigerant side pipe.
JP62292330A 1987-11-19 1987-11-19 Heat-pump hot-water supply device Pending JPH01134166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62292330A JPH01134166A (en) 1987-11-19 1987-11-19 Heat-pump hot-water supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62292330A JPH01134166A (en) 1987-11-19 1987-11-19 Heat-pump hot-water supply device

Publications (1)

Publication Number Publication Date
JPH01134166A true JPH01134166A (en) 1989-05-26

Family

ID=17780391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62292330A Pending JPH01134166A (en) 1987-11-19 1987-11-19 Heat-pump hot-water supply device

Country Status (1)

Country Link
JP (1) JPH01134166A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009008505A1 (en) 2007-07-12 2009-01-15 Sekisui Chemical Co., Ltd. Device for curling strip member with reinforcing material, method for making spiral pipe, and device for making spiral pipe

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009008505A1 (en) 2007-07-12 2009-01-15 Sekisui Chemical Co., Ltd. Device for curling strip member with reinforcing material, method for making spiral pipe, and device for making spiral pipe
AU2008273303B2 (en) * 2007-07-12 2012-04-19 Sekisui Chemical Co., Ltd. Device for curling strip member with reinforcing material, method for making spiral pipe, and device for making spiral pipe

Similar Documents

Publication Publication Date Title
US7155927B2 (en) Exhaust heat utilizing refrigeration system
JPS6155018B2 (en)
JPS58200945A (en) Heat source device for water heat-source heat pump type air-conditioning unit
KR100389267B1 (en) Air conditioner
KR100367176B1 (en) Heat pump type air conditioning apparatus
JPH01134166A (en) Heat-pump hot-water supply device
KR100215283B1 (en) Cooling system with heat pump
KR100796373B1 (en) Constant temperature/humidity device
JPH083889Y2 (en) Cooling water heater
JP2017133727A (en) Heat pump type water heater
JP2004044818A (en) Air conditioner
JPS5922460Y2 (en) Refrigeration equipment
JP3710093B2 (en) Defrost method and system
JP2003072362A (en) Adsorption type refrigerator
JP4402235B2 (en) Reheat dry operation start control method and reheat type air conditioner for reheat type air conditioner
JP3448682B2 (en) Absorption type cold heat generator
KR920006287Y1 (en) Air-conditioner
JP3407182B2 (en) Absorption type cold heat generator
JPS5913573Y2 (en) Heat pump air conditioner
JP3594435B2 (en) Hydrogen storage type cooling device
KR101381374B1 (en) Co-generation system
CN116538590A (en) Air conditioner
KR100712856B1 (en) Electric generation air condition system and the Control method for the Same
KR100499074B1 (en) Heat pump system
JPS608290Y2 (en) Regenerative heating and cooling equipment