JPS58200945A - Heat source device for water heat-source heat pump type air-conditioning unit - Google Patents

Heat source device for water heat-source heat pump type air-conditioning unit

Info

Publication number
JPS58200945A
JPS58200945A JP8266482A JP8266482A JPS58200945A JP S58200945 A JPS58200945 A JP S58200945A JP 8266482 A JP8266482 A JP 8266482A JP 8266482 A JP8266482 A JP 8266482A JP S58200945 A JPS58200945 A JP S58200945A
Authority
JP
Japan
Prior art keywords
heat
water
cooling
source
type air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8266482A
Other languages
Japanese (ja)
Inventor
Yoshinobu Okada
岡田 嘉信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP8266482A priority Critical patent/JPS58200945A/en
Publication of JPS58200945A publication Critical patent/JPS58200945A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • F25B29/003Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the compression type system

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

PURPOSE:To maintain the cooling efficiency of heat-source water, and to improve heating efficiency by cooling heat-source water introduced to a water heat-source heat pump type air conditioner by a cooling tower and heating said water by a condenser of a refrigeration cycle. CONSTITUTION:The water heat-source type air-conditioning units 20 are communicated with the heat source device 21 consisting of the cooling tower 22, a heat accumulating tank 23, a circulating pump 24 and a piping 25. The cooling tower 22 is provided with a cooling fan 26, an evaporator 27, a water spray pipe 28, a cooling coil 29, a water tank 30 and a receiving chamber 31 from an upper end, the water spray pipe 28 and the water tank 30 are connected through a pump 32, and a compressor 33, the condenser 34 and an expansion valve 35 are arranged into the receiving chamber 31, and communicated with the evaporator 27. The draw-out sides of the units 20 are branched partially to the cooling coil 29 and joined in a three-way valve 37, and communicated with the heat accumulating tank 23 through a heat exchange section 32 heat-exchanging with the condenser 34.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、たとえばピルのごと考多数の被空調室を備え
たものに対し、各被空調室を個別に空気調和する水熱源
ヒートポンプ式空気調和ユニットに係り、特にこれら空
気調和ユニヅNC冷却もしくは加熱した熱源水を循環す
る熱源装置の改良に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a water heat source heat pump type air conditioner that individually air-conditions each air-conditioned room in a device equipped with a large number of air-conditioned rooms, such as a pill. The present invention relates to air conditioning units, and particularly relates to improvements in heat source devices that circulate cooled or heated heat source water.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

この種装置は従来第1図に示すようにlI成される。す
なわち1・・・は各被空調室に配置される水熱源ヒート
ポンプ式空気調和ユニット(以下、単にユニットと称す
る)である。2は熱源装置であり、以下に述べるものか
らitされる。すなわち、冷却ファン3、散水管4.冷
却コイル5、水槽6および冷却へボンデ7を備えた冷却
塔8と、加熱コイル9を備えた加熱器1oと、循環Iン
デ11およびジスターン12と、これら各構成部品に連
通ずる配管系統13である。
This type of device is conventionally constructed as shown in FIG. That is, 1... is a water heat source heat pump type air conditioning unit (hereinafter simply referred to as a unit) arranged in each air-conditioned room. 2 is a heat source device, which will be described below. That is, a cooling fan 3, a water sprinkler pipe 4. A cooling tower 8 equipped with a cooling coil 5, a water tank 6, and a cooling bonder 7, a heater 1o equipped with a heating coil 9, a circulation inlet 11 and a distern 12, and a piping system 13 communicating with each of these components. It is.

配管系統13について説明すると、各ユニット1°°・
の導出側は冷却コイル5に接続される。この中途部と冷
却コイル5の導出側は@1の三方切換弁14に接続され
、残りの臼体は逆止弁15を介して加熱器10に接続さ
れる。またこれらの中途部は加熱器10の導出側ととも
に第2の三方切換弁16に接続される。残りの臼体は循
1ボンデ11を介してユニットト・・の導入側に接続さ
れるうなおジスターン12と加熱器10とは連通し、か
つ冷却塔8の+46、冷却ボンデ7および散水管4は連
通している。
To explain the piping system 13, each unit is 1°°.
The outlet side of is connected to the cooling coil 5. This midway portion and the outlet side of the cooling coil 5 are connected to the three-way switching valve 14 of @1, and the remaining mortar body is connected to the heater 10 via the check valve 15. Further, these intermediate portions are connected to the second three-way switching valve 16 together with the outlet side of the heater 10 . The remaining mortar body is connected to the inlet side of the unit through the circulation 1 bonder 11, and the heating device 10 is in communication with the heating device 10. are in communication.

しかして、ユニットト・・の作用開始とともに循環ポン
プ11は駆動され、図示しない各種センナの検知信号に
もとづいて第1.第2の三方切換弁14.16の切換方
間が定り、ユニットト・・に熱@水を供給できる。冷房
運転時は、熱源水はユニットト・・から熱を吸収して所
定水温より上昇する。したがって図中実線矢印に示すよ
うにユニット1から冷却塔8に導びかれ、温度低下する
。そして第1.1iII2の三方切換弁14.16を介
してイ盾環チンプ11に吸込まれ、再び各ユニットト・
・へ導出される。
The circulation pump 11 is driven at the same time as the units start working, and the first unit... is activated based on detection signals from various sensors (not shown). The switching method of the second three-way switching valve 14, 16 is determined, and heat@water can be supplied to the unit. During cooling operation, the heat source water absorbs heat from the unit and rises above a predetermined water temperature. Therefore, as shown by the solid line arrow in the figure, the air is guided from the unit 1 to the cooling tower 8, and its temperature is lowered. Then, it is sucked into the shield ring chimp 11 via the three-way switching valve 14.16 of No. 1.
・Derived to.

暖房運転時は、熱!原水はユニットト・・へ燕を救出し
て所定水温より低下する。したがって図中実線矢印に示
すように勇1の三方切換弁14は′T:JJ4す、71
T]熱器10へ4びかれる。ここで加熱コイル9によっ
て暖められ@2の三方切換弁16を介して循環ポンプ1
1に吸込まれ、再び各ユニットト・・へ導出される。な
お熱S+が太発して水看が不足すると[亘ちにジスター
ン12から補給されるようになっている。
When heating is in operation, heat! The raw water is sent to Unitt... to rescue the swallow and the water temperature drops below the predetermined temperature. Therefore, as shown by the solid line arrow in the figure, the three-way switching valve 14 of the valve 1 is 'T:JJ4S, 71
T] 4 into the heating device 10. Here, the circulation pump 1 is heated by the heating coil 9 and then passed through the three-way switching valve 16 @2.
1 and then led out to each unit again. Furthermore, if the fever S+ is too high and water is insufficient, water will be supplied from Jistern 12.

ところで、熱源水を冷却する場合に必要なエネルギは、
冷却水ボンデ7と冷却ファン3とを駆動する電気エネル
ギであり、比較的少くてすむ。これに対して熱′a水を
加熱する場合に必要なエネルギは、加熱コイル9へ加熱
源から送られるようになっていて、ふつう電気温水器も
しくはがス・石油等を利用した温水ノイフが使用される
。したがって必要なエネルギは大であり、ランニングコ
ストが高いという欠点がある。近時省エネルギ1ヒが促
進されていて、上記熱源装置2においてもその要望が強
いが、光分t4逆されないのが現状である。しかも当然
据付はスペースが大で、大型である、 〔発明の目的〕 本宅間は、熱源水の冷却効率を保持し、がっ加熱効率を
向上し、加熱時の省エネルギ化を図れるとともに据付ス
ペースの低減化を得る水熱Δ9ヒートポンプ式空気調和
ユニットにおける熱源装置を提供しようとするものであ
るっ〔発明の概要〕 本発明は、水熱硼ヒートポンプ式空気調和ユニットに導
く熱源水を、冷却塔にて冷却し、冷凍サイクル装置の、
・凝縮器にて加熱するようにしたものであり、上記冷凍
サイクル装置は全て冷却塔に組込んだものである。
By the way, the energy required to cool the heat source water is
This is the electrical energy that drives the cooling water bond 7 and the cooling fan 3, and is relatively small in amount. On the other hand, the energy required to heat the water is sent from a heating source to the heating coil 9, and is usually done using an electric water heater or a hot water neif using gas, petroleum, etc. be done. Therefore, the required energy is large and the running cost is high. Recently, energy saving has been promoted, and there is a strong demand for this in the heat source device 2, but the current situation is that the light component t4 is not reversed. Moreover, it naturally takes up a lot of space and is large in size. [Objective of the Invention] The present invention maintains the cooling efficiency of heat source water, improves heating efficiency, saves energy during heating, and saves installation space. SUMMARY OF THE INVENTION The present invention aims to provide a heat source device for a hydrothermal Δ9 heat pump type air conditioning unit that achieves a reduction in heat source water. Cooled in refrigeration cycle equipment,
・Heating is performed using a condenser, and all of the above refrigeration cycle devices are incorporated into a cooling tower.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例を5g2図にもとづいて説明する
。図中20・・・は各被空調室にそれぞれ配装置されろ
水熱源ヒートポンプ式空気調和ユニット(以下、ユニッ
トと省略する)である。これら各ユニッ)、?17・・
・はNR源装置21に連通する。この熱伸装置21は、
冷却塔22と、蓄熱槽23と、循環ボンデ24および配
管系統25とから礪或される。上記冷却fr22は、最
上端部から下端部にかけて冷却ファン26、礪発器27
、散水管28、冷却コイル29、水WI30および収容
室31が順次配役される。上記散水管28と氷槽30と
は中途部に冷却水ボンデ32を設けた配管にて連通され
る。上記収容室3ノ内には、圧縮機33、凝縮器34、
舐圧装耀であるところの電気・9ルス駆動形の電気膨張
弁35が配設され、これらおよび上記蒸発器27は冷媒
管を介して連通される。したがって冷却塔22に冷凍サ
イクル装置36が収容されることとなる。上記配管系統
25は次に述べるようになる。
An embodiment of the present invention will be described below based on Figure 5g2. In the figure, numerals 20, . . . are filter water heat source heat pump air conditioning units (hereinafter abbreviated as units) arranged in each air-conditioned room. Each of these units)? 17...
・ communicates with the NR source device 21. This heat stretching device 21 is
It is separated from the cooling tower 22 , heat storage tank 23 , circulation bonder 24 and piping system 25 . The cooling fr 22 includes a cooling fan 26 and a depression generator 27 from the top end to the bottom end.
, the water sprinkler pipe 28, the cooling coil 29, the water WI 30, and the storage chamber 31 are arranged in this order. The water sprinkler pipe 28 and the ice tank 30 are communicated with each other through a pipe provided with a cooling water bond 32 in the middle. Inside the storage chamber 3, a compressor 33, a condenser 34,
An electric expansion valve 35 of the electric 9-lux drive type, which is a low pressure device, is provided, and these and the evaporator 27 are communicated via a refrigerant pipe. Therefore, the refrigeration cycle device 36 is housed in the cooling tower 22. The piping system 25 will be described below.

すなわち各ユニット20・・・の導出側は上記冷却コイ
ル29と三方切換fF−37とに接続するよう分岐され
る。冷却コイル29の導出側は三方切換弁37の他の臼
体に接続され、残りの臼体は上記凝縮器34に沿って熱
交換可能に配管される熱交換部32を介し、蓄熱槽23
の導入1111VC接続される。蓄熱槽23の導出側は
循4Iンデ24から各ユニット20・−の導入側へ接続
されてなる。
That is, the outlet side of each unit 20... is branched to connect to the cooling coil 29 and the three-way switching fF-37. The outlet side of the cooling coil 29 is connected to the other die of the three-way switching valve 37, and the remaining die is connected to the heat storage tank 23 via the heat exchange section 32, which is piped along the condenser 34 so as to be able to exchange heat.
Introduction 1111VC is connected. The outlet side of the heat storage tank 23 is connected to the inlet side of each unit 20.

このようにしてF14agされる熱棒装置21は後述す
る電気料・佃回路40により、電気的に制御されるよう
になっている。fなわち41は冷却422の近傍に取付
けられる外気温センナ、42は各ユニット20・・・の
導出側配管に附設される熱#水センサ、43は(層重ボ
ンデ24の吸込側に設げられる吸込圧センサであり−、
これらは全て制御入力部44に眠気的に接続される。制
到へカ部44へ送られるデータは制蜀出ガ部45へ導び
かれて演算化され、これと電気的に接続する冷却ファン
26、冷却水ボンf32、圧縮機33、電気膨張弁35
および三方切換弁37(送れるようになっている。
The hot rod device 21 subjected to F14ag in this manner is electrically controlled by an electricity supply/tsukuda circuit 40 which will be described later. f, that is, 41 is an outside temperature sensor installed near the cooling 422, 42 is a heat/water sensor attached to the outlet side piping of each unit 20, and 43 is (installed on the suction side of the layered bonder 24). The suction pressure sensor is
These are all drowsily connected to a control input 44. The data sent to the control unit 44 is guided to the control output unit 45 where it is arithmeticized, and is electrically connected to the cooling fan 26, cooling water cylinder f32, compressor 33, and electric expansion valve 35.
and a three-way switching valve 37 (which can be sent.

しかして、ユニット200作用開始とともに循環ポンプ
24は駆動される。三方切換弁37の切要方向は各セン
ナ41.42.43の検知信号を受けた制御入力部44
と、この演#、納果を送る制御出力部45の電気信号を
待って決定される。各ユニット20・・・の冷房運転時
は、導びかれる熱源へは熱を吸収して規定温度以上とな
る。ここから導出される熱呻氷は図中破線矢印に示すよ
うに冷却塔22内の冷却コイル29に導びかれ、散水管
28から散水される水によって冷却される。冷却後、三
方切換弁37−熱交換器38−蓄熱槽23−循環ポンプ
24を介して再び各ユニット20・・・へ導入されるつ
このト考冷却ファン26および冷却水ポンプ32は熱a
+の水温と外気温に応じて運転・−停止がな凍サイクル
装置36は作動しない。
Thus, the circulation pump 24 is driven when the unit 200 starts working. The required direction of the three-way switching valve 37 is determined by the control input section 44 that receives the detection signals from each sensor 41, 42, and 43.
This performance number is determined after waiting for an electrical signal from the control output section 45 that sends the result. During cooling operation of each unit 20..., the guided heat source absorbs heat and reaches a specified temperature or higher. The hot melting ice drawn out from here is guided to a cooling coil 29 in the cooling tower 22 as shown by the broken line arrow in the figure, and is cooled by water sprayed from a water sprinkling pipe 28. After cooling, the heat is introduced into each unit 20 again via the three-way switching valve 37 - heat exchanger 38 - heat storage tank 23 - circulation pump 24.
The freezing cycle device 36 operates and stops depending on the water temperature (+) and the outside air temperature, but does not operate.

各ユニット20・−が暖房運転すると、熱湯水は熱を放
出して規定温度以下となる。これ力1ら導出される熱S
+は図中破線矢印に示すように切換った三方切換弁37
を介して熱交換部38に導びかれる。このとき田4礪3
3は駆動して冷凍ナイクル運転を行ない、凝縮器34に
て冷媒は凝縮液fヒし、イ疑縮熱を熱交換部38に放出
する。したがって熱偉水は温度上昇する。そして蓄熱4
23−循環ボンデ24乞介して再び各ユニット20・・
・へ導びかれるっこのとき電気膨張弁35は熱呻水を一
定の水温に保持すべく冷媒循4壊を制御する。またこの
電気膨張弁35の開度調節1言号は制御出力部45から
出されていること言う迄もない。なお上記冷却水ボンデ
32は停止し、冷却ファン2gは駆動して蒸発器27に
対する熱交換空気を送風する。
When each unit 20.- performs heating operation, the hot water releases heat and becomes lower than the specified temperature. The heat S derived from this force 1
+ indicates the three-way switching valve 37 switched as shown by the broken line arrow in the figure.
is guided to the heat exchange section 38 via. At this time, rice field 4 field 3
3 is driven to perform refrigerating operation, the refrigerant is heated to condensate in the condenser 34, and the heat of condensation is released to the heat exchange section 38. Therefore, the temperature of hot water increases. and heat storage 4
23 - Circulating bond 24 and each unit 20 again...
When the water is being led to the water, the electric expansion valve 35 controls the refrigerant circulation in order to maintain the heated water at a constant temperature. It goes without saying that the one word for adjusting the opening degree of the electric expansion valve 35 is output from the control output section 45. Note that the cooling water bond 32 is stopped, and the cooling fan 2g is driven to blow heat exchange air to the evaporator 27.

このように上記実施例においては、外気温セン?41、
熱源水センサ42および吸込圧センサ43などの各種セ
ンナ類と、マイボンを利用した人、出方制御部44.4
5を備えることにより、冷却ファン26その他機器を自
動的に、かつ゛散剤な制(資)が可能となり、運転管理
面での効果が大である。
In this way, in the above embodiment, the outside temperature sensor? 41,
Various sensors such as the heat source water sensor 42 and the suction pressure sensor 43, the person using Maibon, and the output control unit 44.4
5, it becomes possible to control the cooling fan 26 and other equipment automatically and in a non-dispersive manner, which is highly effective in terms of operation management.

また電気膨張弁35は、負荷変動、外気に件等の変(ヒ
に比例して対応できる電気パルス駆動形であるから、冷
凍サイクル運転の信頼性が同上し、省エネルギ効果が犬
である。
Furthermore, the electric expansion valve 35 is of an electric pulse drive type that can respond proportionally to changes in load, outside air conditions, etc., so the reliability of refrigeration cycle operation is the same as above, and the energy saving effect is excellent.

〔発明の効果〕〔Effect of the invention〕

本発明は、熱5埠水が所定温度よりも高い場合は冷却塔
に導びいて冷却し、所定温(よりも低い゛場声は冷凍サ
イクル授産の凝ml器に4二(いて加熱するようKした
から、年間を通じて熱椋水を一定温度に保持でき、従来
のような這気温水器、がス・石油の温水ディジのごとき
熱機器が不要となり、安全性が向上し、保守点検が4易
で頑公薔〔ヒを得る。しかも冷凍サイクル装置を冷却塔
内に配設したから、据付ス4−・スが縮小し、小型1ヒ
を得るなどの効果を奏する。
In the present invention, if the water is higher than a predetermined temperature, it is guided to a cooling tower to cool it, and if the water is lower than the predetermined temperature, it is heated by heating it in a refrigeration cycle condenser. Because of this, hot water can be maintained at a constant temperature throughout the year, eliminating the need for conventional heating devices such as water heaters and gas/oil hot water heaters, improving safety and reducing maintenance and inspection times. It is easy and durable.Moreover, since the refrigeration cycle device is installed inside the cooling tower, the installation space is reduced and the system is compact.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の従来例を示す配管系読図、W7IJ2
図は本発明の一実施例を示す配管系統3よび電気制碕回
路図である。 20・−水熱渾ヒート、+=ンデ式空気調和ユニット、
29・・・冷却コイル、26・・・冷却ファン、28・
・・散水管、30・−・水槽、32・・・冷却ポンプ、
22・・・冷却塔、34・・・凝縮器、36・−・冷凍
サイクル装置。 出願人代理人  弁理士 鈴 江 武 彦−転 C’JI                     
           (N2
Figure 1 is a piping system reading diagram showing a conventional example of the present invention, W7IJ2
The figure is a piping system 3 and an electric sill circuit diagram showing an embodiment of the present invention. 20・-Hydrothermal heat, +=Nde type air conditioning unit,
29... Cooling coil, 26... Cooling fan, 28.
・・Water pipe, 30・−・Water tank, 32・・Cooling pump,
22... Cooling tower, 34... Condenser, 36... Refrigeration cycle device. Applicant's agent Patent attorney Suzue Takehiko - Ten C'JI
(N2

Claims (1)

【特許請求の範囲】 複数の被空調室をそれぞれ個別に空気調和する水熱源ヒ
ートポンプ式空気調和ユニットに熱#水を循環するもの
において、熱S水が所定温度以上になったとき導びき冷
却する冷却フィル。 冷却ファン、散水管、水槽および冷却Iンデ等を育する
冷却塔と、この冷却塔内に配設され上記熱源水が所定温
度以上になったとき導びき加熱する凝縮器等を宵する冷
凍ナイクルg装置を具備したことを特徴とする水熱源ヒ
ートポンプ式空気調和ユニットの熱g装置。
[Claims] In a device that circulates heat and water in a water heat source heat pump type air conditioning unit that individually air-conditions a plurality of air-conditioned rooms, when the heat S water reaches a predetermined temperature or higher, it is guided and cooled. cooling fill. A cooling tower that grows cooling fans, water pipes, water tanks, cooling inlets, etc., and a refrigeration system that includes a condenser, etc. that is installed in this cooling tower and heats the heat source water when it reaches a predetermined temperature or higher. A thermal g device for a water heat source heat pump type air conditioning unit, characterized in that it is equipped with a Nycle g device.
JP8266482A 1982-05-17 1982-05-17 Heat source device for water heat-source heat pump type air-conditioning unit Pending JPS58200945A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8266482A JPS58200945A (en) 1982-05-17 1982-05-17 Heat source device for water heat-source heat pump type air-conditioning unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8266482A JPS58200945A (en) 1982-05-17 1982-05-17 Heat source device for water heat-source heat pump type air-conditioning unit

Publications (1)

Publication Number Publication Date
JPS58200945A true JPS58200945A (en) 1983-11-22

Family

ID=13780696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8266482A Pending JPS58200945A (en) 1982-05-17 1982-05-17 Heat source device for water heat-source heat pump type air-conditioning unit

Country Status (1)

Country Link
JP (1) JPS58200945A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997019301A1 (en) * 1995-11-21 1997-05-29 Yamato Kosan Co., Ltd. Small cooling equipment and small cooling and heating equipment
CN101876473A (en) * 2010-06-13 2010-11-03 湖南大学 Control method and control device of heat-source tower-coupled heat pump heating system
CN102418972A (en) * 2011-11-28 2012-04-18 马利娜 Full fresh air evaporative refrigeration household central air conditioner
CN102564159A (en) * 2010-12-16 2012-07-11 西安井上人工环境有限公司 Tubular device and method for producing cold water by means of indirect evaporation and direct evaporation
CN102818326A (en) * 2012-08-22 2012-12-12 清华大学 Large temperature difference air conditioning system for heat extraction of data center and using method thereof
CN103411352A (en) * 2013-08-30 2013-11-27 东南大学 Heat source tower heat pump device achieving solution low-pressure boiling regeneration through heat of subcooling
CN103411351A (en) * 2013-08-19 2013-11-27 东南大学 Heat-source tower heat pump for realizing solution regeneration and heat reutilization on basis of vacuum boiling
CN103743013A (en) * 2013-12-23 2014-04-23 韦文潮 Tower-type condensing air purifier
CN104132478A (en) * 2014-07-11 2014-11-05 江苏海雷德蒙新能源有限公司 Energy tower heat pump multiplex unit
CN106765739A (en) * 2015-11-19 2017-05-31 新疆霭励志环保科技有限公司 A kind of vaporation-type handpiece Water Chilling Units using mechanical refrigeration as compensation low-temperature receiver
CN106969536A (en) * 2017-03-31 2017-07-21 浙江陆特能源科技股份有限公司 The three-source integrated source pump of ground aqueous vapor

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997019301A1 (en) * 1995-11-21 1997-05-29 Yamato Kosan Co., Ltd. Small cooling equipment and small cooling and heating equipment
CN101876473A (en) * 2010-06-13 2010-11-03 湖南大学 Control method and control device of heat-source tower-coupled heat pump heating system
CN102564159A (en) * 2010-12-16 2012-07-11 西安井上人工环境有限公司 Tubular device and method for producing cold water by means of indirect evaporation and direct evaporation
CN102418972A (en) * 2011-11-28 2012-04-18 马利娜 Full fresh air evaporative refrigeration household central air conditioner
CN102818326A (en) * 2012-08-22 2012-12-12 清华大学 Large temperature difference air conditioning system for heat extraction of data center and using method thereof
CN103411351A (en) * 2013-08-19 2013-11-27 东南大学 Heat-source tower heat pump for realizing solution regeneration and heat reutilization on basis of vacuum boiling
CN103411351B (en) * 2013-08-19 2015-06-17 东南大学 Heat-source tower heat pump for realizing solution regeneration and heat reutilization on basis of vacuum boiling
CN103411352A (en) * 2013-08-30 2013-11-27 东南大学 Heat source tower heat pump device achieving solution low-pressure boiling regeneration through heat of subcooling
CN103743013A (en) * 2013-12-23 2014-04-23 韦文潮 Tower-type condensing air purifier
CN103743013B (en) * 2013-12-23 2016-07-06 韦文潮 A kind of tower condensation air purifier
CN104132478A (en) * 2014-07-11 2014-11-05 江苏海雷德蒙新能源有限公司 Energy tower heat pump multiplex unit
CN106765739A (en) * 2015-11-19 2017-05-31 新疆霭励志环保科技有限公司 A kind of vaporation-type handpiece Water Chilling Units using mechanical refrigeration as compensation low-temperature receiver
CN106969536A (en) * 2017-03-31 2017-07-21 浙江陆特能源科技股份有限公司 The three-source integrated source pump of ground aqueous vapor

Similar Documents

Publication Publication Date Title
US4070870A (en) Heat pump assisted solar powered absorption system
US6871509B2 (en) Enhanced cooling system
JPS58200945A (en) Heat source device for water heat-source heat pump type air-conditioning unit
CN103697614B (en) Air conditioner heat pump system
CN106455440A (en) Server cabinet with air conditioner
CN104266417B (en) Refrigeration operating method of multi-split air conditioner in high temperature environment
US3608625A (en) Closed loop heat pump systems
US20130199222A1 (en) High Efficiency Cooling System
US6260366B1 (en) Heat recycling air-conditioner
US20110314847A1 (en) Dual duty compression machine
CN214250050U (en) Heat recovery air conditioning system
JP2006010137A (en) Heat pump system
CN101929770B (en) Control circuit of hot water air conditioner
KR100991843B1 (en) Air Compressor Waste Heat Recovery Device
US20040134218A1 (en) Air conditioning system, interior heat exchanger coil unit and method for conditioning ambient air
CN111594962A (en) Fluorine pump energy-saving indirect evaporative cooling air conditioning unit and control method
CN215832055U (en) Indoor air processing system
JPS5986846A (en) Hot water supply device of heat pump type
CN206556302U (en) Long-term refrigeration mode net for air-source heat pump units
CN103925743A (en) Novel air source heat pump heat exchange system
JPH09105539A (en) Air-conditioning system and air conditioner
JPH11316038A (en) Air conditioning system
JPS63156980A (en) Heat pump type air conditioner
JPS6118374Y2 (en)
JPH0471142B2 (en)