JPH01133899A - Controller for lift - Google Patents
Controller for liftInfo
- Publication number
- JPH01133899A JPH01133899A JP28929587A JP28929587A JPH01133899A JP H01133899 A JPH01133899 A JP H01133899A JP 28929587 A JP28929587 A JP 28929587A JP 28929587 A JP28929587 A JP 28929587A JP H01133899 A JPH01133899 A JP H01133899A
- Authority
- JP
- Japan
- Prior art keywords
- load
- switching valve
- pressure
- control
- valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 7
- 230000007935 neutral effect Effects 0.000 description 5
- 230000001276 controlling effect Effects 0.000 description 3
- 230000033228 biological regulation Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000037303 wrinkles Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000008844 regulatory mechanism Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
Landscapes
- Forklifts And Lifting Vehicles (AREA)
- Fluid-Pressure Circuits (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明はフォートリフトのリフト装置に適用される電気
油圧制御に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electro-hydraulic control applied to a fortlift lifting device.
従来り7ト制御装蓋は、第4図に示すごとく油圧源l、
流量制御機能付切換弁3、リフト用油圧シリンダ6及び
切換弁3の制御用装置であるコントロールレバー 12
.レバー12の操作量に比例した切換弁作動用の出力を
出す電気制御ボックス11等から構成され、切換弁上流
の油路20には、固定のリリーフ弁23が、切換弁と油
圧シリンダの間の油路21には7c1−レギュレターバ
ルグ22がそれぞれ設けられている。切換弁3け上げ、
下げ作業時の油路の切シ換え及び、流量を制御して油圧
シリンダの速度制御を行う機能を持つ。またフローレギ
ュレターバルプ22は下げ時、切換弁を無造作に大きく
開弁じても、常に一定の下降速度に制御するものであシ
、通常は油圧式の圧力補償構造となっているため、ある
程度の負荷変動に対してはシリンダ下降速度が補償され
ている。As shown in Fig. 4, the conventional 7-tooth control system has a hydraulic power source l,
A control lever 12 that is a control device for the switching valve 3 with a flow rate control function, the hydraulic cylinder 6 for lift, and the switching valve 3
.. It is composed of an electric control box 11 that outputs an output for operating the switching valve in proportion to the amount of operation of the lever 12, and a fixed relief valve 23 is installed in the oil passage 20 upstream of the switching valve between the switching valve and the hydraulic cylinder. The oil passages 21 are provided with 7c1-regulator valves 22, respectively. Switching valve 3 raised,
It has the function of switching the oil path during lowering work and controlling the flow rate to control the speed of the hydraulic cylinder. Furthermore, when lowering the flow regulator valve 22, even if the switching valve is casually opened wide, the flow regulator valve 22 always controls the lowering speed to a constant level. The cylinder lowering speed is compensated for variations.
(1)従来のフォークリフトの上げ速度制御は、切換弁
3の開口量を変化させることKよ少油圧源1から、油圧
シリンダ6への流量制御によシ行われている。しかしこ
の弁の開口面積特性は、固定されたものであるため、負
荷7の大きさによシ、流量制御特性は大きく変化する。(1) Conventional lifting speed control of a forklift is performed by controlling the flow rate from the hydraulic pressure source 1 to the hydraulic cylinder 6 by changing the opening amount of the switching valve 3. However, since the opening area characteristics of this valve are fixed, the flow rate control characteristics vary greatly depending on the magnitude of the load 7.
すなわち大負荷時は、開度を太き目に、小負荷の場合は
小さくせねば、同じ速度特性には制御出来ない。この様
に負荷の大小によって、上げ速度特性が変化することは
オペレータの負担となる。In other words, the same speed characteristics cannot be achieved unless the opening degree is widened when the load is large and the opening degree is made small when the load is small. This change in raising speed characteristics depending on the magnitude of the load places a burden on the operator.
(2)フローレギュレ−ト制御は、圧力補償ではあるが
、空荷と最大負荷時の特性はかな夛の速度差が出てしま
う。つまシ空荷の時下げが遅いので速い方へ調整すると
、次には最大負荷時に速過ぎるというような不具合が発
生する。又この70−レギヱレート調整値に安定するま
での応答時間がかな力比てしまうことは、油圧式圧力補
償機構である従来技術ではやむをえぬことであった。(2) Flow regulation control is pressure compensation, but there is a significant speed difference between the characteristics at no load and at maximum load. The lowering of the tab is slow when the load is empty, so if you adjust it to a faster speed, the next problem will occur, such as the lowering speed being too fast when the load is at maximum. Furthermore, it is unavoidable that the response time required to stabilize at the 70-regular rate adjustment value is relatively long in the prior art, which is a hydraulic pressure compensation mechanism.
〔問題点を解決するための手段〕
(1) 切換弁の流量制御部(しぼシ部)を通過する
流量は、しぼシ部の上流と下流の圧力差の平方根に比例
する。そこでこの圧力差ΔP1が一定であれば負荷が変
動しても一定の流量を制御することが、出来る。すなわ
ち負荷によ多発生するしぼシ部下流側圧力P2に対しし
ぼシ部上流側の圧力P1t−常にP1=P2+ΔP1の
関係に制御すれば圧力補償の流量制御が可能となる。本
装置は前記P2を圧力センサ9によシ、P1ffi同1
0によシそれぞれ電気信号にてピックアップし、制御ボ
ックス11に入力される。p1=pz+ΔP1どなる出
力信号を、Plを制御する電磁リリーフ弁4に及ぼすこ
とによシ、フィート9バツク回路が構成され、上記制御
が可能となる。[Means for Solving the Problems] (1) The flow rate passing through the flow control section (graining section) of the switching valve is proportional to the square root of the pressure difference between the upstream and downstream of the graining section. Therefore, if this pressure difference ΔP1 is constant, a constant flow rate can be controlled even if the load fluctuates. That is, by controlling the pressure P1t on the upstream side of the graining portion to the pressure P2 on the downstream side of the graining portion, which often occurs due to the load, - P1=P2+ΔP1, it becomes possible to control the flow rate with pressure compensation. This device uses the pressure sensor 9 to input the P2, and the P1ffi to the pressure sensor 9.
0 and 0 respectively as electrical signals and input into the control box 11. By applying an output signal such as p1=pz+ΔP1 to the electromagnetic relief valve 4 that controls P1, a foot 9 back circuit is constructed and the above control becomes possible.
(2)70−レギユレターバルプ22の代わシに、回路
に直列に設けた固定しぼ夛5を通過する流量Qはしぼシ
部の上下流の圧力差ΔPoとは、q=c、f九の関係に
ある。(Cは、諸係数)よって負荷が変動しても、シリ
ンダ下降速度の上限を一定にするフローレギュレート制
御には、このΔPoを常に一定値以上にならぬ様に制御
すればよい。本装置は、圧力センサ8.9によシ前記Δ
POを感知し、これが常に一定値以上になるのを防ぐ制
御を制御ボックス11を介して、切換弁3の操作部3−
2へ出力を及ぼすものである。さて、この様にしぼシ部
5の圧力降下へPOは、圧力センサによシミ気的にセン
シングするものであるため、非常に小さい値まで検出し
、信号となシ得るため、しぼシ5の圧力降下値の絶対値
を極端に小さい値にすることが出来る。このため圧力損
失をきわめて小さく出来、従来の様に流量特性に影響し
て空荷と重負荷時のスピード差が大きく出るという問題
は発生しない。又ΔPoは当然任意に変更調整出来るも
のであるから作業、オペレータの好みに容易にマツチす
ることが可能であるからリフト作業性向上になる。(2) The flow rate Q passing through the fixed grain 5 installed in series in the circuit in place of the 70-regulator valve 22 is the pressure difference ΔPo upstream and downstream of the grain part, q=c, f9 There is a relationship between (C is a coefficient) Therefore, for flow regulation control that keeps the upper limit of the cylinder descending speed constant even if the load fluctuates, it is sufficient to control this ΔPo so that it does not always exceed a certain value. This device uses the pressure sensor 8.9 to
The control unit 3- of the switching valve 3 detects the PO and controls the control to prevent it from always exceeding a certain value through the control box 11.
2. Now, since the pressure drop of the wrinkled portion 5 is sensed by the pressure sensor, it is possible to detect even a very small value and obtain a signal. The absolute value of the pressure drop value can be made extremely small. For this reason, the pressure loss can be made extremely small, and the problem of the conventional problem of affecting the flow rate characteristics and causing a large speed difference between empty load and heavy load does not occur. Further, since ΔPo can of course be changed and adjusted as desired, it can be easily matched to the work and operator's preferences, resulting in improved lift work efficiency.
第1図乃至第3図において、lは油圧源、2は油圧タン
ク、3は流量制御機能付昇降制御用切換弁、3−1は上
昇用切換補助装置、3−2は下げ切換用補助装置4は電
磁リリーフ弁、5はしぼシ部、6は荷7の昇降用のり7
トシリンダ、8はしぼシ部5に対してシリンダ側の圧力
センサ、9は同じく切換弁側の圧力センサ、10は切換
弁3に対して油圧源側に設けた圧力センサである。油圧
源1からの圧油は油路20で切換弁3と連結し、油路2
1を介して油圧シリンダ6へ連通している。In Figures 1 to 3, l is a hydraulic source, 2 is a hydraulic tank, 3 is a switching valve for elevation control with a flow rate control function, 3-1 is an auxiliary device for switching upwards, and 3-2 is an auxiliary device for switching downwards. 4 is an electromagnetic relief valve, 5 is a wrinkle part, and 6 is a glue 7 for lifting and lowering a load 7.
8 is a pressure sensor provided on the cylinder side with respect to the grained portion 5, 9 is a pressure sensor also provided on the switching valve side, and 10 is a pressure sensor provided on the hydraulic pressure source side with respect to the switching valve 3. Pressure oil from the hydraulic source 1 is connected to the switching valve 3 through an oil path 20, and
1 to a hydraulic cylinder 6.
電気信号式コントロールレバー12と電気制御ボックス
11は信号線で結ばれ、又圧力センサ8.9、10の信
号はそれぞれ信号線14.15.18にて制御ボックス
IIK入力され、制御された出力信号は信号線16で切
換装置3−1へ、信号線17で、切換装置3−2へさら
に信号線19にて電磁す←フ弁4へそれぞれ連絡されて
いる。The electric signal type control lever 12 and the electric control box 11 are connected by a signal line, and the signals of the pressure sensors 8.9 and 10 are input to the control box IIK through signal lines 14, 15, and 18, respectively, and the controlled output signal is connected to the switching device 3-1 via a signal line 16, to the switching device 3-2 via a signal line 17, and further to the electromagnetic valve 4 via a signal line 19.
第1図は中立状態を示す。コントロールレバー12は中
立、したがって切換弁3も中立のため油圧シリンダ6内
とじ込み圧油は、切換弁3でブロックされ荷7の動きは
ない。一方油圧源lからの圧油は、切換弁3を通過しタ
ンク2ヘトレーンされている。Figure 1 shows the neutral state. Since the control lever 12 is neutral and therefore the switching valve 3 is also neutral, the pressure oil trapped in the hydraulic cylinder 6 is blocked by the switching valve 3 and the load 7 does not move. On the other hand, pressure oil from the hydraulic source 1 passes through the switching valve 3 and is transferred to the tank 2.
第2図は上昇時を表わす。コントロールレバー12を上
げ側に操作すると、この操作量に比例した出力信号が制
御ボックス11を介して、切換弁3の切換装置3−1に
送られ、切換弁のスプールが比例制御され、すなわち油
圧源からの圧油のシリンダ6への流量が、コントロール
レバー12の操作量に比例して制御され、荷7の上昇が
行なわれる。このとき荷7の重さが変った場合、この荷
の変動を圧力センサ9が圧力変化としてすみやかにキャ
ッチし、これを制御ボックス11に送る。Figure 2 shows the rise. When the control lever 12 is operated to the upward side, an output signal proportional to this operation amount is sent to the switching device 3-1 of the switching valve 3 via the control box 11, and the spool of the switching valve is proportionally controlled, that is, the hydraulic pressure is The flow rate of pressure oil from the source to the cylinder 6 is controlled in proportion to the amount of operation of the control lever 12, and the load 7 is lifted. If the weight of the load 7 changes at this time, the pressure sensor 9 quickly detects the change in the load as a pressure change and sends it to the control box 11.
一方切換弁3の上流側圧力センサioからも常に電気信
号に変換された圧力値が制御ボックス11に送られてお
シ、制御ボックスは圧力センサ9と10との圧力差が常
に一定値ΔP1となる様に電磁リリーフ弁4に出力を送
っている。つまシ負荷が変動すると、圧力センサ9の圧
力値の変化に対して、圧力差が常に八P1となる様に電
磁リリーフ弁4を制御する構造となっている。このため
切換弁3の流量制御部の前後の圧力差ΔP1が常に一定
にだもたれるので切換弁3のスプールの流量特性は負荷
変動憧響を受けず一定となる。ここにメータイン流量制
御時の圧力補償機構が成立する。On the other hand, the pressure value converted into an electric signal is always sent from the upstream pressure sensor io of the switching valve 3 to the control box 11, and the control box keeps the pressure difference between the pressure sensors 9 and 10 at a constant value ΔP1. The output is sent to the electromagnetic relief valve 4 so that The electromagnetic relief valve 4 is configured to be controlled so that the pressure difference is always 8P1 in response to a change in the pressure value of the pressure sensor 9 when the load on the knob changes. Therefore, the pressure difference ΔP1 before and after the flow control section of the switching valve 3 always remains constant, so that the flow rate characteristics of the spool of the switching valve 3 remain constant without being influenced by load fluctuations. Here, a pressure compensation mechanism is established during meter-in flow rate control.
第3図は下降時を表わす。コントロールレバー12を下
げ側に操作すると、上げの場合と同じく制御ボックス1
1から切換弁30制御装置部3−2に出力され切換えら
れると油圧源lからの圧油は、タンク2へドレーンされ
一方シリンダ内とじ込み油は、しぼシ部5、切換弁3の
流量制御部を通pタンクへドレーンされ荷の下降がなさ
れる。Figure 3 shows the descent. When the control lever 12 is operated to the lower side, the control box 1
1 to the control device section 3-2 of the switching valve 30, and when the switch is made, the pressure oil from the hydraulic source 1 is drained to the tank 2, while the oil trapped in the cylinder is transferred to the wrinkle section 5 and the flow rate control section of the switching valve 3. is drained to the p-tank and the load is lowered.
しぼシ部5の前後に設置しである圧力センサ8.9の信
号は制御ボックス11に送られてお夛、圧力センサ8.
9の圧力差がΔPoiこえると、切換弁スプールを中立
側へもどそうと出力信号値が減少方向に制御ボックス1
1内で制御される。このため、荷70大小にかかわらず
しぼシ部5を通過する流量すなわち、荷の下降速度は、
ある一定の設定置をこえることなく制御される。ここに
フローレギュレート機構が成立する。Signals from the pressure sensors 8.9 installed before and after the graining section 5 are sent to the control box 11, and the pressure sensors 8.9 are sent to the control box 11.
When the pressure difference of 9 exceeds ΔPoi, the output signal value decreases in the control box 1 in order to return the switching valve spool to the neutral side.
Controlled within 1. Therefore, regardless of the size of the load 70, the flow rate passing through the wrinkled portion 5, that is, the descending speed of the load is:
Controlled without exceeding a certain set point. A flow regulation mechanism is established here.
(1)負荷の大小を問わず、常に最適のスビーr制御特
性で荷の昇降作業が出来る。(1) Regardless of the size of the load, lifting and lowering of the load can always be done with the optimum speed control characteristics.
(2)フローレギュレート作用の応答性及び圧力補償精
度の向上、調整の容易化によシ、リフト作業の効率化が
計れる。(2) Improving the responsiveness of flow regulating action and pressure compensation accuracy, and making adjustment easier, making lifting work more efficient.
(3)従来回路から油圧式フローレギュレターノZルプ
を削除出来るので経済的である。(3) It is economical because the hydraulic flow regulator knob can be removed from the conventional circuit.
(4)回路の圧力損失低下が計られ、省エネとなる。(4) Pressure loss in the circuit is reduced, resulting in energy savings.
第1図乃至第3図は本発明の実施例における油圧回路図
であシ、
第1図は中立時、
第2図は上げ操作時、
第3図は下げ操作時を示す。
第4図は従来装置の油圧回路図である。
l・・・油圧源、 3・・・切換弁、4・・
・電磁リリーフ弁、 5・・・しぼ9部、6・・・油圧
シリンダ、 8.9.10・・・圧力センサ、11・・
・制御ボックス、1 to 3 are hydraulic circuit diagrams according to an embodiment of the present invention, in which FIG. 1 shows the state in neutral, FIG. 2 shows the state in the raising operation, and FIG. 3 shows the state in the lowering operation. FIG. 4 is a hydraulic circuit diagram of a conventional device. l...Hydraulic power source, 3...Switching valve, 4...
・Electromagnetic relief valve, 5... Grain 9 part, 6... Hydraulic cylinder, 8.9.10... Pressure sensor, 11...
・Control box,
Claims (1)
21)に直列に配置したしぼり部(5)の弁(3)側に
圧力センサ(9)、シリンダ(6)側に圧力センサ(8
)、弁(3)の油圧源(1)側に圧力センサ(10)を
設け、各々のセンサ電気信号を入力し、切換弁操作用装
置(3−1)、(3−2)及び切換弁(3)の上流に設
けた電磁リリーフ弁(4)へ制御した出力信号を出す制
御ボックス(11)、さらに制御ボックス(11)を介
して切換弁(3)へ出力する電気信号式昇降用コントロ
ールレバー(12)とで構成した電気油圧制御式のリフ
ト制御装置。An oil passage connecting the switching valve (3) and the hydraulic cylinder (6)
A pressure sensor (9) is placed on the valve (3) side of the throttle part (5) arranged in series with the cylinder (6), and a pressure sensor (8) is placed on the cylinder (6) side.
), a pressure sensor (10) is provided on the hydraulic pressure source (1) side of the valve (3), and each sensor electric signal is inputted, and the switching valve operating device (3-1), (3-2) and the switching valve A control box (11) that outputs a controlled output signal to the electromagnetic relief valve (4) installed upstream of (3), and an electric signal type lifting control that outputs to the switching valve (3) via the control box (11). An electro-hydraulic control type lift control device consisting of a lever (12).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28929587A JPH01133899A (en) | 1987-11-18 | 1987-11-18 | Controller for lift |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28929587A JPH01133899A (en) | 1987-11-18 | 1987-11-18 | Controller for lift |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01133899A true JPH01133899A (en) | 1989-05-25 |
Family
ID=17741332
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28929587A Pending JPH01133899A (en) | 1987-11-18 | 1987-11-18 | Controller for lift |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01133899A (en) |
-
1987
- 1987-11-18 JP JP28929587A patent/JPH01133899A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6390751B2 (en) | Adaptive load-clamping system | |
EP1657031B1 (en) | Adaptive load-clamping system | |
US7018159B2 (en) | Adaptive load-clamping system | |
JPH10310394A (en) | Tilt control device for fork lift truck | |
JP3552735B2 (en) | Hydraulic circuit of construction machinery | |
JPH01133899A (en) | Controller for lift | |
JP2822907B2 (en) | Hydraulic control device | |
JP2637437B2 (en) | Hydraulic pressure control circuit | |
JP2668754B2 (en) | Industrial vehicle cargo handling control method | |
US4204460A (en) | Arrangement for influencing the operating quantity of a servo-motor | |
JP2548797B2 (en) | Forklift hydraulic controller | |
JPH07109098A (en) | Controller of fork-lift truck | |
JP3018788B2 (en) | Hydraulic pump control circuit | |
JP2579571B2 (en) | Hydraulic circuit with flow control of hydraulic machine | |
JPH04351304A (en) | Hydraulic driving device | |
JPH06117408A (en) | Oil pressure circuit for construction machine | |
JPH0932042A (en) | Oil pressure control method and its circuit | |
JPH0439279Y2 (en) | ||
CA2445567C (en) | Adaptive load-clamping system | |
CA2421986C (en) | Adaptive load-clamping system | |
CA2563025C (en) | Adaptive load-clamping system | |
JPH0544702A (en) | Elevatable cylinder proportional control circuit | |
JP2569305B2 (en) | Flow control system with pressure compensation | |
JPH04202000A (en) | Balanced cargo handling device | |
JPH0689762B2 (en) | Actuator speed controller |