JPH01133351A - Manufacture of semiconductor integrated circuit - Google Patents

Manufacture of semiconductor integrated circuit

Info

Publication number
JPH01133351A
JPH01133351A JP62292415A JP29241587A JPH01133351A JP H01133351 A JPH01133351 A JP H01133351A JP 62292415 A JP62292415 A JP 62292415A JP 29241587 A JP29241587 A JP 29241587A JP H01133351 A JPH01133351 A JP H01133351A
Authority
JP
Japan
Prior art keywords
resist pattern
pattern
region
forming
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62292415A
Other languages
Japanese (ja)
Inventor
Kazuo Takeda
竹田 和男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP62292415A priority Critical patent/JPH01133351A/en
Priority to US07/271,748 priority patent/US4898837A/en
Priority to KR1019880015291A priority patent/KR920004174B1/en
Publication of JPH01133351A publication Critical patent/JPH01133351A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8222Bipolar technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0641Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region without components of the field effect type
    • H01L27/0647Bipolar transistors in combination with diodes, or capacitors, or resistors, e.g. vertical bipolar transistor and bipolar lateral transistor and resistor
    • H01L27/0652Vertical bipolar transistor in combination with diodes, or capacitors, or resistors
    • H01L27/0658Vertical bipolar transistor in combination with resistors or capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Bipolar Integrated Circuits (AREA)

Abstract

PURPOSE:To allow a plurality of kinds of highly accurate in-plant resistance regions to coexist together in an IC and the IC to perform simplification of processes as well as a reduction in the production cost, by making use of a pattern as it is, which is formed with high accuracy according to a first resist pattern, thereby carrying out a second ion implantation. CONSTITUTION:An oxide film 26 is formed at the whole surface of an epitaxial layer 23 and a first resist pattern 27 is formed by coating, baking, and developing a positive type photoresist and then, a pattern of the oxide film 26 corresponding to the first resist pattern 27 is formed by treating the oxide film 26 with an anisotropic etching process. Then, a first ion implantation with boron B is carried out to form first and second resistance regions 28 and 29 which have the same impurity concentration at the surface of two islands 25. Further, a second resist pattern 30 is formed by coating, baking, and developing a negative type photoresist film in a state that the first resist pattern 27 is removed or left and a second ion implantation with boron B is performed by using again the first resist pattern 27 or the pattern of the oxide film 26 as a mask.

Description

【発明の詳細な説明】 くイ)産業上の利用分野 本発明はイオン注入法による抵抗素子を組み込んだ半導
体集積回路のNPN トランジスタのh□制御を容易な
らしめた製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION B) Field of Industrial Application The present invention relates to a manufacturing method that facilitates h□ control of an NPN transistor in a semiconductor integrated circuit incorporating a resistance element formed by ion implantation.

(ロ)従来の技術 バイポーラ型ICは、コレクタとなる半導体層表面にベ
ース・エミッタを2重拡散して形成した縦型のNPN 
トランジスタを主体として構成されている。その為、前
記NPN トランジスタを製造するベース及びエミッタ
拡散工程は必要不可欠の工程であり、コレクタ直列抵抗
を低減する為の高濃度埋込層形成工程やエピタキシャル
層成長工程、各素子を接合分離する為の分離領域形成工
程や電気的接続の為の電極形成工程等と並んでバイポー
ラ型ICを製造するのに欠かせない工程(基本工程)で
ある。
(b) Conventional technology A bipolar IC is a vertical NPN formed by doubly diffusing a base and an emitter on the surface of a semiconductor layer that serves as a collector.
It is mainly composed of transistors. Therefore, the base and emitter diffusion processes for manufacturing the NPN transistor are essential processes, as well as the high-concentration buried layer formation process and epitaxial layer growth process to reduce the collector series resistance, and the junction isolation process for each element. This is an essential process (basic process) for manufacturing bipolar ICs, along with the isolation region forming process and the electrode forming process for electrical connection.

一方、回路的な要求から他の素子、例えばPNPトラン
ジスタ、抵抗、容量、ツェナーダイオード等を同一基板
上に組み込みたい要求がある。この場合、工程の簡素化
という点から可能な限り前記基本工程を流用した方が好
ましいことは言うまでもない。しかしながら、前記ベー
ス及びエミッタ拡散工程はNPNトランジスタの特性を
最重要視して諸条件が設定される為、前記基本工程だけ
では集積化が困難な場合が多い。そこで、基本的なNP
N トランジスタの形成を目的とせず、他の素子を組み
込む為もしくは他素子の特性を向上することを]]的と
して新規な工程を追加することがある。例えば前記エミ
ッタ拡散によるカソード領域とでツェナーダイオードの
ツェナー電圧を制御するアノード領域を形成する為のP
+拡散工程、ベース領域とは比抵抗が異る抵抗領域を形
成する為のR拡散工程やインプラ抵抗形成工程、MOS
型よりも大きな容量が得られる窒化膜容量を形成する為
の窒化膜形成工程、NPN)−ランジスタのコレクタ直
列抵抗を更に低減する為のコレクタ低抵抗領域形成工程
等がそれであり、全てバイポーラICの用途や目的及び
コスト的な面から検討して追加するか否かが決定される
工程(オブション工程)である。
On the other hand, due to circuit requirements, there is a demand for incorporating other elements such as PNP transistors, resistors, capacitors, Zener diodes, etc. on the same substrate. In this case, it goes without saying that it is preferable to utilize the basic steps as much as possible in terms of process simplification. However, since the conditions for the base and emitter diffusion steps are set with the most important consideration being given to the characteristics of the NPN transistor, it is often difficult to integrate the base and emitter diffusion steps using only the basic steps. Therefore, basic NP
A new process may be added not for the purpose of forming a transistor, but for incorporating other elements or improving the characteristics of other elements. For example, P is used to form an anode region that controls the Zener voltage of the Zener diode together with the cathode region formed by the emitter diffusion.
+ Diffusion process, R diffusion process to form a resistance region with a different resistivity from the base region, implant resistance formation process, MOS
These include the nitride film formation process to form a nitride film capacitor that provides a larger capacitance than the type, and the collector low resistance region formation process to further reduce the collector series resistance of NPN) transistors. This is a process (optional process) in which it is decided whether or not to add it after considering the use, purpose, and cost aspects.

上記オブション工程を利用して形成したインプラ抵抗を
第3図に示す。同図において、(1)はP型半導体基板
、(2)はN+型埋込層、(3)はN型エピタキシA・
ル層、(4)はP1型分離領域、(5)はアイランド、
(6)はNPN)ランジスタのP型ベース領域、(7)
及び(8)はNPN トランジスタのN+型エミッタ領
域及びコレクトコンタクト領域、(9)はイオン注入に
よる抵抗領域、(10)はベース拡散で形成したコンタ
クト領域である。
FIG. 3 shows an implant resistor formed using the above optional process. In the same figure, (1) is a P-type semiconductor substrate, (2) is an N+ type buried layer, and (3) is an N-type epitaxy A.
(4) is a P1 type isolation region, (5) is an island,
(6) is the P-type base region of the NPN) transistor, (7)
and (8) are the N+ type emitter region and collector contact region of the NPN transistor, (9) is a resistance region formed by ion implantation, and (10) is a contact region formed by base diffusion.

尚、第3図のインプラ抵抗は例えば特公昭57−218
2号公報に記載されている。
Incidentally, the implant resistance shown in Fig. 3 is, for example, manufactured by Japanese Patent Publication Publication No. 57-218.
It is described in Publication No. 2.

(ハ)発明が解決しようとする問題点 しかしながら、近年のICの多種・多様化の要望からイ
オン注入法を利用した高精度のインプラ抵抗を不純物濃
度を異ならしめて複数種類組み込みたい要求がある。こ
の様な場合、単純に工程を追加すれば可能ではあるが、
工程の複雑化及びコスト高という欠点がある。その為、
本願は高精度に制御した複数種類のインプラ抵抗を効率
良く組み込むことを目的とする。
(c) Problems to be Solved by the Invention However, due to the recent demand for greater variety and diversification of ICs, there is a demand for incorporating multiple types of high-precision implant resistors using ion implantation with different impurity concentrations. In such a case, it is possible to simply add a process, but
This method has the drawbacks of complicating the process and increasing costs. For that reason,
The purpose of this application is to efficiently incorporate multiple types of implant resistances that are controlled with high precision.

(ニ)問題点を解決するための手段 本発明は衛士した欠点に鑑みてなされ、ポジ型レジスト
による1回目のレジストパターン(27)を形成し、こ
のパターン(27)を利用してボロン(B)の1回目の
イオン注入を行う工程と、ネガ型レジストによって前記
1回目のイオン注入で形成した領域の不純物濃度を変え
たくない領域を覆う2回[1のレジストパターン(30
)を形成し、前回の工程で形成した酸化膜(26)パタ
ーン又は1回目レジストパターン(30)をマスクとし
て再度ホロン(B)の2回目のイオン注入を行う工程と
を具備することを特徴とする。
(d) Means for Solving the Problems The present invention was made in view of the above-mentioned drawbacks, and a first resist pattern (27) is formed using a positive resist, and this pattern (27) is used to form boron (B). ), and then two steps [1 resist pattern (30
) and performing a second ion implantation of holons (B) using the oxide film (26) pattern formed in the previous step or the first resist pattern (30) as a mask. do.

(ホ)作用 本発明によれば、1回目のレジストパターン(27)に
よって高精度に形成したパターンをそのまま利用して2
回目のイオン注入を行うので、2回目のレジストパター
ン(30)は1回目程高い精度で制御せずに済む。また
、2つの領域を形成するのに酸化膜パターン(26)の
形成が1回で済む。
(E) Function According to the present invention, the pattern formed with high precision by the first resist pattern (27) is used as it is to create a second resist pattern.
Since the second ion implantation is performed, the resist pattern (30) for the second time does not need to be controlled as precisely as the first time. Further, the oxide film pattern (26) only needs to be formed once to form two regions.

(へ)実施例 以下、本発明の一実施例を図面を参照しながら詳細に説
明する。
(F) Example Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

先4′第1図Aに示す如く、P型のシリコン半導体基板
(21)の表面にアンチモン(Sb)又はヒ素(As)
等のN型不純物を―択的にドープしてN+型埋込層(2
2)を形成し、基板(21)全面に厚さ5〜10μのN
型のエピタキシャル層(23)を積層する。
4' As shown in FIG. 1A, antimony (Sb) or arsenic (As) is added to the surface of the P-type silicon semiconductor substrate (21).
An N+ type buried layer (2
2) with a thickness of 5 to 10 μm on the entire surface of the substrate (21).
A mold epitaxial layer (23) is deposited.

次に第1図Bに示す如く、エピタキシャル層(23)表
面からボロン(B)を選択的に拡散することによって、
埋込M!J(22)を夫々取囲むようにエピタキシャル
層(23)を貫通するP+型の分離領域(24)を形成
する。分離領域(24)で囲まれたエピタキシャル層(
23)が夫々の回路素子を形成する為のアイランド(2
5)となる。
Next, as shown in FIG. 1B, by selectively diffusing boron (B) from the surface of the epitaxial layer (23),
Embedded M! P+ type isolation regions (24) penetrating the epitaxial layer (23) are formed so as to surround each J (22). an epitaxial layer (
23) is an island (2) for forming each circuit element.
5).

次に第1図Cに示す如く、熱酸化を行ってエピタキシャ
ル層(23)全面に酸化膜(26)を形成し、スピンオ
ン塗布によって酸化膜(26)上にポジ型のフォトレジ
ストを塗布、続いて反射型投影方式又は縮小投影露光方
式等の1μm以下の重ね合せ精度を有する露光装置を用
いて所望形状のパターンを焼付け、現像することによっ
て1回目のレジストパターン(27〉を形成する。
Next, as shown in FIG. 1C, an oxide film (26) is formed on the entire surface of the epitaxial layer (23) by thermal oxidation, and a positive photoresist is applied on the oxide film (26) by spin-on coating. A first resist pattern (27>) is formed by printing and developing a pattern of a desired shape using an exposure apparatus having an overlay accuracy of 1 μm or less, such as a reflection projection method or a reduction projection exposure method.

次に第1図りに示す如く、リアクティブ・イオン・エツ
チング等のドライエツチングで酸化膜(26)を異方性
エツチングすることにより1回目レジストパターン(2
7〉に対応する酸化膜(26)パターンを形成し、その
後1回目レジストパターン(27)を除去又は残存させ
た状態でエピタキシャルJffl(23)表面から1回
目のボロン(B)のイオン注入を行うことにより2つの
アイランド(25)表面に同一の不純物濃度を有する第
1と第2の抵抗領域(28)(29)を夫々形成する。
Next, as shown in the first diagram, the oxide film (26) is anisotropically etched by dry etching such as reactive ion etching to form the first resist pattern (26).
An oxide film (26) pattern corresponding to 7> is formed, and then the first boron (B) ion implantation is performed from the epitaxial Jffl (23) surface with the first resist pattern (27) removed or left. As a result, first and second resistance regions (28) and (29) having the same impurity concentration are formed on the surfaces of the two islands (25), respectively.

尚、電位的な問題が無ければ2つの抵抗領域(28)(
29)は同一アイランド(25)に設けても良い。1回
目のイオン注入は比抵抗を高くする側の第1の抵抗領域
(28)の不純物濃度に合わせてボロン(B)のドーズ
量と加速電圧が選択される。
In addition, if there is no potential problem, two resistance regions (28) (
29) may be provided on the same island (25). In the first ion implantation, the boron (B) dose and acceleration voltage are selected in accordance with the impurity concentration of the first resistance region (28) on the side where the specific resistance is to be increased.

次に第1図Eに示す如く、1回目のレジストパターン(
27)を除去又は残した状態でその表面にネガ型のフォ
トレジスト膜をスピンオン塗布し、今度はプロキシミテ
ィ露光方式や投影露光方式によって所望形状のパターン
を焼付け、現像することによって2回目のレジストパタ
ーン(30)を形成する。2回目のレジストパターン(
30)は1回目のレジストパターン(27)より遮へい
部分を小さくし、酸化膜(26)パターンの開孔部分を
前回のパターンより拡大して開孔する。その為、2回目
のレジストパターン(30)の開孔部分には前の工程で
イオン注入した領域の表面と1回目レジストパターン(
27)又は酸化膜(26)パターンのエツジ部分が露出
することになる。2回目のレジストパターン(30)の
一部分(31)は抵抗領域(28)の両端を除く表面を
直接覆い、第1の抵抗領域(28)のコンタクト部分だ
けを露出する。
Next, as shown in FIG. 1E, the first resist pattern (
27) is removed or left, a negative photoresist film is applied on the surface by spin-on coating, and a pattern of a desired shape is printed using a proximity exposure method or a projection exposure method, and developed to create a second resist pattern. (30) is formed. Second resist pattern (
In step 30), the shielding part is made smaller than that of the first resist pattern (27), and the opening part of the oxide film (26) pattern is made larger than that of the previous pattern. Therefore, the opening part of the second resist pattern (30) has the surface of the region where ions were implanted in the previous step and the first resist pattern (30).
27) or the edge portion of the oxide film (26) pattern is exposed. A portion (31) of the second resist pattern (30) directly covers the surface of the resistive region (28) except for both ends, exposing only the contact portion of the first resistive region (28).

そして、エピタキシャル層(23)表面から前回の工程
で形成した1回目レジストパターン(27)又は酸化膜
(26)パターンを再びマスクとして2回目のボロン(
B)のイオン注入を行う。第2の抵抗領域(29)には
ボロン(B)が重ねてイオン注入されるので、この段階
で比抵抗を低くする側即ち第2の抵抗領域(29)の不
純物濃度を決めるように2回目イオン注入のドーズ量が
設定される。また、第2の抵抗領域(29)の不純物濃
度は後で形成する電極とのオーミックコンタクトが行え
るような不純物濃度とし、それ由第1の抵抗領域(28
)の両端にも2回目のイオン注入をすることによって第
2の抵抗領域(29)と同一不純物濃度を有する電極配
設用のコンタクト領域(32)を形成する。コンタクト
領域(32)の間の第1の抵抗領域(28)は2回目レ
ジストパターン(30)の一部分(31)で覆われてい
るので2回目のボロン(B)がイオン注入されない。そ
の為、2回目レジストパターン(30)の一部分(31
)で覆われた部分の不純物濃度は1回目のイオン注入に
より設定された不純物濃度がそのまま残り、この領域が
インプラ抵抗の抵抗値を実質的に決定する領域となる。
Then, using the first resist pattern (27) or oxide film (26) pattern formed in the previous step from the surface of the epitaxial layer (23) as a mask, a second boron (
Perform B) ion implantation. Since boron (B) is ion-implanted into the second resistance region (29) in a layered manner, the impurity concentration on the side that lowers the specific resistance, that is, the second resistance region (29), is determined at this stage. The ion implantation dose is set. Further, the impurity concentration of the second resistance region (29) is set to such an impurity concentration that ohmic contact can be made with the electrode to be formed later, and therefore the impurity concentration of the first resistance region (28
) to form a contact region (32) for electrode arrangement having the same impurity concentration as the second resistance region (29). The first resistive region (28) between the contact regions (32) is covered with a portion (31) of the second resist pattern (30), so that the second boron (B) ion implantation is not performed. Therefore, part of the second resist pattern (30) (31
The impurity concentration in the portion covered by ) remains the same as the impurity concentration set by the first ion implantation, and this region becomes a region that substantially determines the resistance value of the implant resistor.

また、不純物濃度が低いので前述したコンタクト領域(
32)が必要となる。その後1回目及び2回目レジスト
パターン(27)(30)を除去し、全体をCVDの酸
化膜(26)で覆うと共にコンタクト領域(32)を一
定深さにまで拡散する熱処理を行う。尚、2回目のイオ
ン注入の段階で1回目レジストパターン(27)の有無
は問わないが、残しておいた場合にはエツチング工程が
1回省ける利点と酸化膜(26)の膜厚を薄くできる利
点を有する。
In addition, since the impurity concentration is low, the contact region (
32) is required. Thereafter, the first and second resist patterns (27) and (30) are removed, the entire structure is covered with a CVD oxide film (26), and a heat treatment is performed to diffuse the contact region (32) to a certain depth. It does not matter whether or not the first resist pattern (27) is present at the stage of the second ion implantation, but if it is left, the advantage is that one etching step can be omitted and the thickness of the oxide film (26) can be made thinner. has advantages.

次に第1図Fに示す如く、第1と第2の抵抗領域(28
)(29)の両端に酸化膜(26)を開孔したコンタク
トホールを設け、エピタキシャル層(23)全面に周知
の蒸着又はスパッタ技術によりアルミニウム層を形成し
た後、このアルミニウム層をパターニングすることによ
って所定の電極(33)を配設する。
Next, as shown in FIG. 1F, the first and second resistance regions (28
) (29) by providing contact holes in the oxide film (26), forming an aluminum layer on the entire surface of the epitaxial layer (23) by well-known vapor deposition or sputtering techniques, and then patterning this aluminum layer. Predetermined electrodes (33) are arranged.

上述した製法により形成した第1の抵抗領域(28)の
平面図は第2図の如くになる。同図において、(25)
はアイランド、(28)は第1の抵抗領域、(32)は
コンタクト領域、(34)はコンタクトホール、そして
(31)は第1図りにおける2回目レジストパターン(
30)の一部分の形状を示す。第1の抵抗領域(28)
の線幅とコンタクト領域(32)の大きさは第1図Cの
1回目のレジストパターン(27)によって既に決定さ
れるので、このインプラ抵抗の抵抗値はフンタクト領域
(32)間の距離では無く2回目レジストパターン(3
0)の一部分(31)が覆う抵抗領域(28)の長さで
決まる。その為本実施例ではコンタクト孔(34)の大
きさを第1の抵抗領域(28)の線幅以下とすることに
よってフンタクト領域(32)の不純物濃度の変化によ
る抵抗値の変動が最も少い構造とし、この構造とするこ
とにより2回目レジストパターン(30)の一部分(3
1〉の側端部(35)をコンタクト領域(32)の側端
部(36)と一致させである。その為、インプラ抵抗の
占有面積を最も小さくでき、マスクずれによる抵抗値の
変動を僅ど無視できると共にポジ型レジストとRIHに
よる高精度の1回目のフォトエツチングの精度を損うこ
とが無い。
A plan view of the first resistance region (28) formed by the above manufacturing method is shown in FIG. In the same figure, (25)
(28) is the first resistor region, (32) is the contact region, (34) is the contact hole, and (31) is the second resist pattern in the first drawing (
30) shows the shape of a part of it. First resistance region (28)
Since the line width and the size of the contact area (32) are already determined by the first resist pattern (27) in Figure 1C, the resistance value of this implant resistance is not the distance between the contact areas (32). Second resist pattern (3
0) is determined by the length of the resistive region (28) covered by the portion (31). Therefore, in this embodiment, by making the size of the contact hole (34) smaller than the line width of the first resistance region (28), the variation in resistance value due to the change in impurity concentration of the contact region (32) is minimized. With this structure, a part (3) of the second resist pattern (30) is formed.
1> side edge (35) is aligned with the side edge (36) of the contact area (32). Therefore, the area occupied by the implant resistor can be minimized, and variations in resistance value due to mask displacement can be slightly ignored, and the precision of the first photoetching, which is highly accurate using a positive resist and RIH, is not impaired.

衛士した本願の製造方法によれば、1回目のフォトエツ
チングを高精度に行って第1と第2の抵抗領域(28)
(29)を形成した後、1回目のレジストパターン(2
7)をそのまま利用して第2の抵抗領域(29)だけに
2回目のイオン注入を行うので、高精度の比抵抗の異る
複数種類のインプラ抵抗を簡単に組み込むことができる
。しかも高精度のフォトエツチングを2回繰り返さず済
むので、工程の簡略化とコストダウンが図れる。
According to the manufacturing method of the present invention, the first photo-etching is performed with high precision to form the first and second resistance regions (28).
After forming (29), the first resist pattern (2
Since the second ion implantation is performed only in the second resistance region (29) using 7) as is, it is possible to easily incorporate a plurality of types of implant resistances having different specific resistances with high precision. Moreover, since high-precision photoetching does not need to be repeated twice, the process can be simplified and costs can be reduced.

(ト)発明の詳細 な説明した如く、本発明によれば比抵抗の異る複数種類
の高精度のインプラ抵抗をIC内に共存させることがで
きる利点を有する。また、高精度のフォトエツチングを
2回繰り返さず番ζ済むので、工程の簡略化とコストダ
ウンが図れる利点を有する。
(g) As described in detail, the present invention has the advantage that a plurality of types of high-precision implantable resistors having different specific resistances can coexist in an IC. Further, since high-precision photoetching can be completed without repeating it twice, there is an advantage that the process can be simplified and costs can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A乃至第1図Fは本発明を説明する為の断面図、
第2図は本発明を説明する為の平面図、第3図は従来例
を説明する為の断面図である。 (21)はP型半導体基板、 (27)は1回目のレジ
ストパターン、 (28)は第1の抵抗領域、 (29
)は第2の抵抗領域、(30)は2回目のレジストパタ
ーンである。
1A to 1F are cross-sectional views for explaining the present invention,
FIG. 2 is a plan view for explaining the present invention, and FIG. 3 is a sectional view for explaining a conventional example. (21) is a P-type semiconductor substrate, (27) is the first resist pattern, (28) is the first resistance region, (29)
) is the second resistance region, and (30) is the second resist pattern.

Claims (1)

【特許請求の範囲】[Claims] (1)一導電型半導体基板の所望の領域に逆導電型の埋
込層を形成する工程、 前記基板の上に逆導電型のエピタキシャル層を形成する
工程、 前記エピタキシャル層を分離して複数個のアイランドを
形成する工程、 前記エピタキシャル層の表面の絶縁膜上にフォトレジス
ト膜を形成し、前記アイランド上に開孔部を有する1回
目のレジストパターンを形成する工程、 前記1回目レジストパターンを利用して前記絶縁膜を選
択的にドライエッチングすることにより絶縁膜パターン
を形成し、この絶縁膜パターン又は前記1回目レジスト
パターンをマスクとして一導電型の不、鈍物をイオン注
入することにより同一不純物濃度を有する少なくとも2
個以上の抵抗領域を形成する工程、 全面に再度フォトレジスト膜を形成し、一方の抵抗領域
の表面にはその全部又は主要部分を覆うようなレジスト
パターンを他方の抵抗領域の表面にはその全部を露出し
且つパターンのエッジ部分をも露出するような開孔部を
拡大したレジストパターンを有する2回目のレジストパ
ターンを形成し、このパターンを利用して選択的に一導
電型の不純物をイオン注入することにより前記一方の抵
抗領域の不純物濃度より前記他の抵抗領域の不純物を増
大させ、比抵抗の異なる2種類の抵抗領域を形成する工
程とを具備することを特徴とする半導体集積回路の製造
方法。
(1) A step of forming a buried layer of an opposite conductivity type in a desired region of a semiconductor substrate of one conductivity type, a step of forming an epitaxial layer of an opposite conductivity type on the substrate, and a step of separating the epitaxial layer into a plurality of layers. forming a photoresist film on the insulating film on the surface of the epitaxial layer, and forming a first resist pattern having an opening on the island; using the first resist pattern; Then, the insulating film is selectively dry-etched to form an insulating film pattern, and using this insulating film pattern or the first resist pattern as a mask, an impurity of one conductivity type is ion-implanted to form the same impurity. concentration of at least 2
The process of forming more than one resistor region, a photoresist film is formed again on the entire surface, and a resist pattern covering the entire or main part of one resistor region is placed on the surface of the other resistor region. A second resist pattern is formed with an enlarged opening to expose the edges of the pattern, and this pattern is used to selectively ion-implant impurities of one conductivity type. manufacturing a semiconductor integrated circuit, comprising the step of: increasing the impurity concentration in the other resistance region by increasing the impurity concentration in the one resistance region, thereby forming two types of resistance regions having different specific resistances; Method.
JP62292415A 1987-11-19 1987-11-19 Manufacture of semiconductor integrated circuit Pending JPH01133351A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP62292415A JPH01133351A (en) 1987-11-19 1987-11-19 Manufacture of semiconductor integrated circuit
US07/271,748 US4898837A (en) 1987-11-19 1988-11-15 Method of fabricating a semiconductor integrated circuit
KR1019880015291A KR920004174B1 (en) 1987-11-19 1988-11-19 Method of fabricating a semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62292415A JPH01133351A (en) 1987-11-19 1987-11-19 Manufacture of semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPH01133351A true JPH01133351A (en) 1989-05-25

Family

ID=17781491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62292415A Pending JPH01133351A (en) 1987-11-19 1987-11-19 Manufacture of semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPH01133351A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5773963A (en) * 1981-08-31 1982-05-08 Hitachi Ltd Manufacture of semiconductor integrated circuit
JPS6199364A (en) * 1984-10-22 1986-05-17 Fujitsu Ltd Forming method of resistance layer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5773963A (en) * 1981-08-31 1982-05-08 Hitachi Ltd Manufacture of semiconductor integrated circuit
JPS6199364A (en) * 1984-10-22 1986-05-17 Fujitsu Ltd Forming method of resistance layer

Similar Documents

Publication Publication Date Title
US3865649A (en) Fabrication of MOS devices and complementary bipolar transistor devices in a monolithic substrate
GB1573496A (en) Bipolar transistors and method of manufacturing the same
JPH0787194B2 (en) Lateral bipolar transistor and method of forming lateral p-n-p transistor, bipolar transistor and lateral p-n-p transistor
US5913114A (en) Method of manufacturing a semiconductor device
US3933528A (en) Process for fabricating integrated circuits utilizing ion implantation
US4898837A (en) Method of fabricating a semiconductor integrated circuit
JPH0536901A (en) Manufacture of semiconductor integrated circuit
JPH01133351A (en) Manufacture of semiconductor integrated circuit
JPH02352A (en) Manufacture of semiconductor integrated circuit
JP3298476B2 (en) Method for manufacturing MOS transistor
JPH01133343A (en) Manufacture of semiconductor integrated circuit
JPH01171263A (en) Manufacture of semiconductor integrated circuit
JPS6123665B2 (en)
JP3013385B2 (en) Method for manufacturing semiconductor device
JPH01133352A (en) Manufacture of semiconductor integrated circuit
KR920004174B1 (en) Method of fabricating a semiconductor integrated circuit
JPH02135770A (en) Semiconductor integrated circuit
JPH01133354A (en) Semiconductor integrated circuit and manufacture thereof
JPH01161749A (en) Manufacture of semiconductor integrated circuit
JPS6241422B2 (en)
JPH01175252A (en) Manufacture of semiconductor integrated circuit
JPH01161764A (en) Manufacture of semiconductor integrated circuit
JPH01133350A (en) Manufacture of semiconductor integrated circuit
JPH01130553A (en) Manufacture of semiconductor integrated circuit
JPH02137258A (en) Manufacture of semiconductor integrated circuit device