JPH01132934A - Method and apparatus for analyzing liquid - Google Patents

Method and apparatus for analyzing liquid

Info

Publication number
JPH01132934A
JPH01132934A JP62290828A JP29082887A JPH01132934A JP H01132934 A JPH01132934 A JP H01132934A JP 62290828 A JP62290828 A JP 62290828A JP 29082887 A JP29082887 A JP 29082887A JP H01132934 A JPH01132934 A JP H01132934A
Authority
JP
Japan
Prior art keywords
tube
liquid
pressure
liquid sample
analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62290828A
Other languages
Japanese (ja)
Other versions
JPH0638068B2 (en
Inventor
Kunio Kobayashi
小林 邦男
Hikotaka Hashimoto
橋本 彦堯
Takeshi Miura
剛 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BURAN LE-BE KK
Kikkoman Corp
Original Assignee
BURAN LE-BE KK
Kikkoman Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BURAN LE-BE KK, Kikkoman Corp filed Critical BURAN LE-BE KK
Priority to JP29082887A priority Critical patent/JPH0638068B2/en
Publication of JPH01132934A publication Critical patent/JPH01132934A/en
Publication of JPH0638068B2 publication Critical patent/JPH0638068B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To enhance not only analytical accuracy but also production efficiency by a simple means, by making the liquid sample in a near infrared analyser constant to analyze the same. CONSTITUTION:At first, the temp. of a liquid specimen is converted to predetermined temp. by a heat exchange part 3i on the way of a tube 3c to be kept constant and the liquid sample passes through a pressure controller 4. In this controller 4, the liquid sample always flows out to the outside from an overflow pipe and the pressure of the flowing liquid sample is held to a head. The open air invading in a tube 3b when the base end 3l of the tube 3b is changed over comes near to the upper part of the liquid sample along flow and floats upwardly from the vertical part of the T-tube of the apparatus 4 to flow out to the upper open air through an air vent pipe. That is, the apparatus 4 is allowed to have a simple structure to perform pressure equalizing action and air venting action. In this state, the near infrared analyser 2 analyzes the liquid specimen.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、近赤外線分析装置を用いて醤油、酒、ジュー
ス等の液体の成分を分析する方法と装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method and apparatus for analyzing the components of liquids such as soy sauce, sake, juice, etc. using a near-infrared analyzer.

(従来の技術) 近赤外線分析装置は液体の成分を多項目にわたり、迅速
に、簡便に分析できることから、最近広く利用されるよ
うになってきた。
(Prior Art) Near-infrared analyzers have recently become widely used because they can quickly and easily analyze multiple components of a liquid.

そして、能率を高めるべく、ポンプにて連続的・自動的
に近赤外線分析装置へ試料を供給する自動分析方法が普
及しつつある。
In order to improve efficiency, automatic analysis methods that continuously and automatically supply a sample to a near-infrared analyzer using a pump are becoming popular.

(発明が解決しようとする問題点) しかしながら、従来の測定技術には、ポンプの脈動が試
料の液圧を変化させ、また試料セット時に混入する空気
が作用し、近赤外線分析装置内の分析セルの分析精度を
悪化させるという不具合がある。
(Problems to be Solved by the Invention) However, in the conventional measurement technology, the pulsation of the pump changes the liquid pressure of the sample, and the air mixed in when setting the sample acts on the analysis cell in the near-infrared analyzer. There is a problem that the accuracy of analysis is deteriorated.

(問題点を解決するための手段) 上記要望に応えるべく本発明は、近赤外線分析装置と、
試料供給装置と、供給される試料液体の圧力を一定にす
る圧力制御とから分析装置を構成する。
(Means for Solving the Problems) In order to meet the above demands, the present invention provides a near-infrared analysis device,
The analysis device is composed of a sample supply device and a pressure control device that keeps the pressure of the supplied sample liquid constant.

(作用) 試料供給装置で供給する試料供給装置の圧力−を圧力制
御装置にて一定にしつつ、近赤外線分析装置にて成分分
析を実施する。
(Function) Component analysis is performed using a near-infrared analyzer while keeping the pressure of the sample supply device supplied by the sample supply device constant using a pressure control device.

(実施例) 以下に本発明の実施例を添付図面及び表に基づいて説明
する。
(Example) Examples of the present invention will be described below based on the accompanying drawings and tables.

第1図は本発明に係る液体の分析装置構成図であり、液
体の分析装置1は、大きく、液体の成分を分析する近赤
外線分新装M2と、この装置2へ液体を供給・停止する
試料供給装置3と、液体の圧力を一定に制御する圧力制
御装置4とから成る。
FIG. 1 is a configuration diagram of a liquid analyzer according to the present invention. The liquid analyzer 1 mainly includes a near-infrared separation unit M2 for analyzing liquid components, and a sample for supplying and stopping liquid to this apparatus 2. It consists of a supply device 3 and a pressure control device 4 that controls the pressure of the liquid to be constant.

更に、液体の分析装置1には、前記試料供給装置3に接
続して試料液体を提供する自動サンプラ5と、1サイク
ル毎に近赤外線分析装置2と試料供給装置3とを清掃す
る洗浄装置6とが、また試料供給装置3の途中には試料
液体を一定の温度に保つ恒温装置7が夫々付加されてい
る。
Furthermore, the liquid analysis device 1 includes an automatic sampler 5 that connects to the sample supply device 3 to provide a sample liquid, and a cleaning device 6 that cleans the near-infrared analysis device 2 and the sample supply device 3 every cycle. In addition, a constant temperature device 7 is added in the middle of the sample supply device 3 to keep the sample liquid at a constant temperature.

試料供給装置3は、チューブポンプ3aと、このチュー
ブポンプ3aから放射状に延設されるチューブ3b、3
c、3d、3eとからなる。
The sample supply device 3 includes a tube pump 3a and tubes 3b, 3 extending radially from the tube pump 3a.
It consists of c, 3d, and 3e.

チューブポンプ3aは、第2図に示すように、回転ロー
ラ3f・・・にて可撓性チューブ3g、3hを扱くが如
くして流体を一方向へ移動させる周知のポンプである。
As shown in FIG. 2, the tube pump 3a is a well-known pump that moves fluid in one direction by handling flexible tubes 3g, 3h with rotary rollers 3f.

チューブ3Cの途中には、コイル状に形成した熱交換部
31が介設され、熱交換部31は恒温装置7の恒温槽7
aに収容されている。
A heat exchange part 31 formed in a coil shape is interposed in the middle of the tube 3C, and the heat exchange part 31 is connected to the constant temperature bath 7 of the constant temperature device 7.
It is housed in a.

圧力制御装置4は、第3図に示す如く、脚部分を垂直に
起立させるT字管4aと、T字管4aの上端から水平方
向に分岐するオーバーフロ管4bと、T字管4aの上端
から更に上方に延出する空気抜き管4cとからなる。
As shown in FIG. 3, the pressure control device 4 includes a T-shaped tube 4a whose legs stand vertically, an overflow tube 4b that branches horizontally from the upper end of the T-shaped tube 4a, and an upper end of the T-shaped tube 4a. It consists of an air vent pipe 4c extending further upward from the air vent pipe 4c.

自動サンプラ5は、試料液体を収容する試験管状のカラ
ム5a、5bを起立し移動させるターンテーブル5Cと
、このターンテーブル5Cを間欠回動させるサンプラ制
御面5dとからなり、複数のカラム5a、5b・・・を
分析スケジュールに合せて前記チューブ3b端に臨ませ
る。
The automatic sampler 5 includes a turntable 5C that raises and moves test tube-shaped columns 5a and 5b containing sample liquid, and a sampler control surface 5d that rotates the turntable 5C intermittently. ... is placed facing the end of the tube 3b in accordance with the analysis schedule.

洗浄装置6は、洗浄液タンク6aと、このタンク6a中
に差し込まれるチューブ6bと、このチューブ6bの途
中に介設され、洗浄液を圧送するチューブポンプ6Cと
からなる。チューブポンプ6Cは前記したチューブポン
プ3aと同構造である。
The cleaning device 6 includes a cleaning liquid tank 6a, a tube 6b inserted into the tank 6a, and a tube pump 6C that is interposed in the middle of the tube 6b and pumps the cleaning liquid. The tube pump 6C has the same structure as the tube pump 3a described above.

チューブ6bの先端6dはカラム5a・・・の近傍に開
口し、チューブ3bの基端3文と接続可能にある。即ち
、チューブ3bの基端3文は、可撓性に豊み矢印Aの如
く揺動自在であって、例えば揺動シリンダユニットの如
き切換機構3mによってカラム5a開口とチューブ6b
の先端6dとの一方へ自由に連結し得る。
The distal end 6d of the tube 6b opens near the column 5a, and is connectable to the proximal end 3 of the tube 3b. That is, the proximal end 3 of the tube 3b is highly flexible and can swing freely as shown by arrow A, and is connected to the opening of the column 5a and the tube 6b by a switching mechanism 3m such as a swing cylinder unit.
can be freely connected to one side of the tip 6d.

図中8はコントローラであり、このコントローラ8は、
近赤外線分析装置2、試料供給装置3と、これらに連動
する切換機構3m、サンプラ制御面5d、チューブポン
プ6Cを包括して制御する。
8 in the figure is a controller, and this controller 8 is
The near-infrared analyzer 2, the sample supply device 3, the switching mechanism 3m interlocked with these, the sampler control surface 5d, and the tube pump 6C are comprehensively controlled.

以上の構成からなる液体の分析装置1の作用を以下に説
明する。
The operation of the liquid analyzer 1 having the above configuration will be explained below.

先ず、切換機構3mにてチューブ3bの基端3文を洗浄
装置6の先端6dに連結し、チューブポンプ3a 、6
cを作動し、洗浄液タンク6a内の洗浄液をチューブ6
bを介してチューブ3b→チユーブポンプ3a→チユー
ブ3C→熱交換部31→圧力制御装置4→チューブ3C
→近赤外線分析装置2→チューブ3dの順路にて流通せ
しめこれらを十分に洗浄する。
First, the three proximal ends of the tube 3b are connected to the distal end 6d of the cleaning device 6 using the switching mechanism 3m, and the tube pumps 3a, 6 are connected.
c to transfer the cleaning liquid in the cleaning liquid tank 6a to the tube 6.
b via tube 3b → tube pump 3a → tube 3C → heat exchange section 31 → pressure control device 4 → tube 3C
→Near-infrared analyzer 2 →Tube 3d, and these are thoroughly washed.

ポンプ3a、6cを停止し、切換機構3mにてチューブ
3bの基端3文をカラム5aにつなぎ替える。
The pumps 3a and 6c are stopped, and the three proximal ends of the tube 3b are connected to the column 5a using the switching mechanism 3m.

ポンプ3aを回動させることにより、カラム5a内の試
料液体はチューブ3b→ポンプ3a→チユーブ3cを介
して近赤外線分析装置2に送り込まれる。
By rotating the pump 3a, the sample liquid in the column 5a is sent to the near-infrared analyzer 2 via the tube 3b→pump 3a→tube 3c.

チューブ3Cの途中において、試料液体は、先ず熱交換
部31にて所定の温度に変換され一定温に保たれる。
In the middle of the tube 3C, the sample liquid is first converted to a predetermined temperature in the heat exchange section 31 and kept at a constant temperature.

次いで、試料液体は、圧力制御装置4を通る。The sample liquid then passes through the pressure control device 4.

圧力制御装置4では、試料液体は、第3図に示すHlの
高さにあるオーバフロー管4bから外方へ常時流出し、
偽って、流通する試料液体の圧力は水頭H1に維持され
る。また、チューブ3bの基端3文の切替えの際にチュ
ーブ3bへ侵入する大気空気は、流れに沿って液体の上
部に片寄り、圧力制御装置4のT字管4aにて、その垂
直部分から上方へ浮き上り、空気抜き管4cを介して上
方大気へ流出する。
In the pressure control device 4, the sample liquid constantly flows outward from the overflow pipe 4b located at the height of Hl shown in FIG.
The pressure of the flowing sample liquid is falsely maintained at the water head H1. In addition, the atmospheric air that enters the tube 3b when the proximal end of the tube 3b is switched is shifted to the upper part of the liquid along the flow, and is transferred from the vertical portion of the T-shaped tube 4a of the pressure control device 4 to the upper part of the liquid. It floats upward and flows out into the upper atmosphere through the air vent pipe 4c.

即ち、上記した圧力制御装置4は極めて簡単な構造にし
て、均圧と空気抜き作用を為す、この状態で近赤外線分
析装置2は試料液体分析を実施する。
That is, the above-described pressure control device 4 has an extremely simple structure and performs pressure equalization and air removal functions. In this state, the near-infrared analyzer 2 performs sample liquid analysis.

分析後、切換袋gi3 mにてチューブ3bの基端3文
をカラム5aから外し、チューブ6bの先端6dへつな
ぎかえる。
After the analysis, the three proximal ends of the tube 3b are removed from the column 5a using the switching bag gi3m and reconnected to the distal end 6d of the tube 6b.

チューブポンプ3a、6cを起動し、チューブポンプ3
a、チューブ3b、3c、近赤外線分析装置2を洗浄す
る。
Start the tube pumps 3a and 6c, and
a. Clean the tubes 3b and 3c and the near-infrared analyzer 2.

サンプラ制御面5aにてターンテーブル5cを1ピッチ
回転させる。
The turntable 5c is rotated by one pitch on the sampler control surface 5a.

チューブ3bの基端3fLをカラム5bに接続して、カ
ラム5aと同様の順にてカラム5b内の試料液体の分析
を実施する。
The proximal end 3fL of the tube 3b is connected to the column 5b, and the sample liquid in the column 5b is analyzed in the same order as the column 5a.

以上に述べた作動の全ては、コントローラ8の制御指令
によって自動で為される。
All of the operations described above are automatically performed by control commands from the controller 8.

次に上記した液体の分析装置lによる分析方法が以下に
有効であるか、実験データを基に説明する。
Next, based on experimental data, it will be explained whether the analysis method using the liquid analyzer 1 described above is effective or not.

実験は試料としては濃口醤油を用いた0本発明方法につ
いては、圧力制御装置4の前記高さHlを固定し、チュ
ーブ3Cの圧力を15+5aAqに維持し、繰り返し分
析してそれらの平均、標準偏差を算出した。
In the experiment, dark soy sauce was used as a sample.In the method of the present invention, the height Hl of the pressure controller 4 was fixed, the pressure in the tube 3C was maintained at 15+5aAq, and repeated analyzes were performed to calculate the average and standard deviation of the results. was calculated.

一方、対照法については、圧力制御装置4の高さHlを
種々変化させ、チューブ3Cの圧力を13.15.18
,20.22m層Aqに設定し、それらの夫々について
繰り返し分析してそれらの平均、標準偏差を算出した。
On the other hand, for the control method, the height Hl of the pressure control device 4 was varied, and the pressure in the tube 3C was adjusted to 13.15.18.
, 20.22m layer Aq, and the average and standard deviation were calculated by repeatedly analyzing each of them.

実験結果を第1表に示す。The experimental results are shown in Table 1.

なお近赤外線分析装置2による各成分の定量は、(財)
日本醤油研究所線「しょうゆ分析法」に記載の常用法と
対比して作成した検量線に基づいて行なった。すなわち
常用法としては窒素にはケルゾール法を、アルコールに
はガスクロマトグラフィーを、乳酸およびグルタミン酸
には酵素法を、食塩にはモール法をそれぞれ用いた。
The quantitative determination of each component using the near-infrared analyzer 2 is conducted by
This was done based on a calibration curve created in comparison with the commonly used method described in the Japan Soy Sauce Research Institute's "Soy Sauce Analysis Method." That is, as conventional methods, the Kelsol method was used for nitrogen, gas chromatography was used for alcohol, the enzyme method was used for lactic acid and glutamic acid, and the Mohr method was used for salt.

そして生醤油および火入れ済の醤油について。And about raw soy sauce and pasteurized soy sauce.

245点を2回ずつ近赤外線分析装置により測定し、各
成分について下記のような重回帰式および重回帰係数を
得た。第1表の分析値は該重回帰式を基に算出したもの
である。
245 points were measured twice using a near-infrared analyzer, and the following multiple regression equations and multiple regression coefficients were obtained for each component. The analytical values in Table 1 were calculated based on the multiple regression equation.

また、第2表は本発明の方法によって、酒類および果汁
のアルコールおよび還元糖についてそれぞれ10回ずつ
繰り返し分析した結果を示す。
Furthermore, Table 2 shows the results of repeated analysis of alcohol and reducing sugar in alcoholic beverages and fruit juices 10 times each using the method of the present invention.

(以下余白) 玉セυ1式 %式%(3) ※ABS(N)は吸光度を示す。(Margin below) Tamase υ1 type % formula % (3) *ABS (N) indicates absorbance.

※上式において単位は何れも(W/V%)である。*In the above formulas, the unit is (W/V%).

1厘旅孫1 窒素; 0.994B アルコール; 0.9940 グルタミン酸、 0.9145 乳酸、 0.8814 食塩; 0.9971 第1表 第2表 ※還元糖はHPLC法で測定し、グルコースとフラクト
ースの和で示した。
1 Nitrogen; 0.994B Alcohol; 0.9940 Glutamic acid, 0.9145 Lactic acid, 0.8814 Salt; 0.9971 Table 1 Table 2 *Reducing sugars are measured by HPLC method, and the difference between glucose and fructose Shown as sum.

前記第1表より明らかな如く、本発明方法による方が分
析値にバラツキがなく安定した結果が得られることがわ
かる。
As is clear from Table 1 above, it can be seen that the method of the present invention provides more stable results with less variation in analytical values.

また、本発明は、醤油、ワイン、清酒、ブドウ果汁の他
、ウィスキー、ビールなど酒類、ミカン、リンゴ等ジュ
ース類、さらに牛乳などの成分分析に有効である。
Furthermore, the present invention is effective for component analysis of soy sauce, wine, sake, grape juice, alcoholic beverages such as whiskey and beer, juices such as mandarin oranges and apples, and milk.

尚1本発明の圧力制御装置4は、要は近赤外線分析装置
2内の試料液体の圧力を分析タイミングにおいて一定に
維持するものであればよく、例えば第4図、第5図に示
す装置を採用してもよい。
In short, the pressure control device 4 of the present invention may be any device as long as it maintains the pressure of the sample liquid in the near-infrared analyzer 2 constant at the analysis timing, and for example, the pressure control device 4 shown in FIGS. May be adopted.

即ち、第4図の装置はチューブ3cに流れ方向に沿って
、空気抜き管4dと、圧力制御弁4eと、圧力センサ4
fとを介設する。
That is, the apparatus shown in FIG. 4 includes an air vent pipe 4d, a pressure control valve 4e, and a pressure sensor 4 along the flow direction of the tube 3c.
Interpose f.

空気抜き管4dはチューブ3cから垂直に十分高く起立
し、空気のみを上方へ放出する。
The air vent pipe 4d stands up vertically and sufficiently high from the tube 3c, and releases only air upward.

圧力制御弁4eは、圧力センサ4fの圧力信号を圧力コ
ントローラ4gに入力し、圧力コントローラ4gにて目
標圧力値と比較し、圧力コントローラ4gは実圧力値を
この目標圧力値に合せるべく圧力制御弁4eを開閉する
The pressure control valve 4e inputs the pressure signal of the pressure sensor 4f to the pressure controller 4g, which compares it with a target pressure value, and the pressure controller 4g operates the pressure control valve to adjust the actual pressure value to this target pressure value. Open and close 4e.

また第5図の装置は、第4図の圧力制御弁4eを廃し、
第1図のラインポンプ3aをチューブポンプ3nとチュ
ーブポンプ3Pに置き換えたものである。
Furthermore, the device shown in FIG. 5 eliminates the pressure control valve 4e shown in FIG.
The line pump 3a in FIG. 1 is replaced with a tube pump 3n and a tube pump 3P.

即ち、試料液体の空気は空気抜き管4dで抜かれ、圧力
センサ4fでモニタされ、圧力コントローラ4gの作用
にてチューブポンプ3nの回転数を高めて昇圧する如く
する。昇圧手段はチューブポンプに限らずギヤーポンプ
、ベーンポンプ、タービンポンプなど使用可能である。
That is, the air in the sample liquid is removed by an air vent pipe 4d, monitored by a pressure sensor 4f, and the rotational speed of the tube pump 3n is increased by the action of the pressure controller 4g to raise the pressure. The pressure increasing means is not limited to tube pumps, but gear pumps, vane pumps, turbine pumps, etc. can be used.

そして、複数の圧力制御装置4・・・をチューブ3c、
チューブ3dに介設してもよい。
Then, the plurality of pressure control devices 4... are connected to the tubes 3c,
It may be interposed in the tube 3d.

また、圧力変動を除く方法として、分析タイミング前に
チューブポンプ3aを停止させるなどして近赤外線分析
装置z内の液体を静止させ、もって圧力を静定させるも
のも有効である。
Furthermore, as a method for eliminating pressure fluctuations, it is also effective to stop the tube pump 3a before the analysis timing to make the liquid in the near-infrared analyzer z stand still, thereby stabilizing the pressure.

(発明の効果) 以上に述べた如く、本発明によれば、近赤外線分析装置
内の試料液体を一定にして分析するといラ極めて簡単な
手段で、分析精度を著しく向上させ、生産の効率化を図
ることができる。
(Effects of the Invention) As described above, according to the present invention, it is possible to significantly improve analysis accuracy and improve production efficiency by keeping the sample liquid in the near-infrared analyzer constant for analysis. can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る流体の分析装置構成図、第2図は
チューブポンプの構造説明図、第3図は圧力制御装置の
第1実施例図、第4図は同第2実施例図、第5図は同第
3実施例図である。 尚、図面中、lは液体の分析装置、2は近赤外線分析装
置、3は試料供給装置、4は圧力制御装置である。 特 許 出 願 人  キッコーマン株式会社同   
     アルファ・ラバル 産業機械株式会社
Fig. 1 is a configuration diagram of a fluid analysis device according to the present invention, Fig. 2 is a structural explanatory diagram of a tube pump, Fig. 3 is a diagram of a first embodiment of a pressure control device, and Fig. 4 is a diagram of a second embodiment of the same. , FIG. 5 is a diagram of the third embodiment. In the drawings, 1 is a liquid analyzer, 2 is a near-infrared analyzer, 3 is a sample supply device, and 4 is a pressure control device. Patent applicant: Kikkoman Corporation
Alfa Laval Industrial Machinery Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)近赤外線分析装置を通過する液体の圧力を一定に
して、この液体の成分を前記近赤外線分析装置にて分析
するようにしたことを特徴とすると液体の分析方法。
(1) A liquid analysis method, characterized in that the pressure of the liquid passing through the near-infrared analyzer is kept constant, and the components of this liquid are analyzed by the near-infrared analyzer.
(2)液体の成分を分析する近赤外線分析装置と、この
近赤外線分析装置へ液体を供給する試料供給装置と、前
記近赤外線分析装置内の液体の圧力を一定にする圧力制
御装置とから成ることを特徴とする液体の分析装置。
(2) Consisting of a near-infrared analyzer that analyzes the components of a liquid, a sample supply device that supplies liquid to the near-infrared analyzer, and a pressure control device that keeps the pressure of the liquid in the near-infrared analyzer constant. A liquid analysis device characterized by:
JP29082887A 1987-11-18 1987-11-18 Liquid analyzer Expired - Fee Related JPH0638068B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29082887A JPH0638068B2 (en) 1987-11-18 1987-11-18 Liquid analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29082887A JPH0638068B2 (en) 1987-11-18 1987-11-18 Liquid analyzer

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP23931193A Division JP2597075B2 (en) 1993-09-27 1993-09-27 Liquid analyzer

Publications (2)

Publication Number Publication Date
JPH01132934A true JPH01132934A (en) 1989-05-25
JPH0638068B2 JPH0638068B2 (en) 1994-05-18

Family

ID=17761010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29082887A Expired - Fee Related JPH0638068B2 (en) 1987-11-18 1987-11-18 Liquid analyzer

Country Status (1)

Country Link
JP (1) JPH0638068B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0624895A (en) * 1992-07-06 1994-02-01 Fujikura Ltd Cvd raw material evaporating device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5663241A (en) * 1979-10-15 1981-05-29 Shields John Apparatus for optically analysing milkklike fluid emulsion

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5663241A (en) * 1979-10-15 1981-05-29 Shields John Apparatus for optically analysing milkklike fluid emulsion

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0624895A (en) * 1992-07-06 1994-02-01 Fujikura Ltd Cvd raw material evaporating device

Also Published As

Publication number Publication date
JPH0638068B2 (en) 1994-05-18

Similar Documents

Publication Publication Date Title
EP3222705A1 (en) Method for producing beer-tasting beverage, and method for imparting hop aroma to beer-tasting beverage
Buratti et al. Alcoholic fermentation using electronic nose and electronic tongue
CN103571729B (en) Method for reducing acid and removing fusel oil of plum wine
Descoins et al. Carbonation monitoring of beverage in a laboratory scale unit with on-line measurement of dissolved CO2
JPH01132934A (en) Method and apparatus for analyzing liquid
US20090104308A1 (en) Methods and an apparatus for controlling concentrations of substances within wine
CN101748038B (en) Method for percolating and aging white spirit
WO2017171023A1 (en) Beverage in which hesperidin precipitation has been inhibited
JP2597075B2 (en) Liquid analyzer
JP6649686B2 (en) Fruit wine
CN106566743A (en) Brewing method of cabernet sauvignon low-alcohol sweet red wine
JPH01132933A (en) Method and apparatus for analyzing liquid
Kim et al. Flavor compounds of dongchimi soup by different fermentation temperature and salt concentration
US10479967B2 (en) System and method for fermentation
CN204888661U (en) Press orange juice equipment at present
JP3351685B2 (en) Positive pressure head space gas analysis method
CN208688903U (en) A kind of nitrogen evaporator
CN210419932U (en) Pickled Chinese cabbage fermentation device
CLIFF et al. Development of a vocabulary for profiling apple juices
CN104749279A (en) HPLC (high performance liquid chromatography) determination method for cyanidin-3-rutinoside chloride in blackcurrants
CN205305947U (en) Stable hot pepper belt cleaning device
CN201713514U (en) Device for percolating and aging wine
EP2053121A1 (en) Methods and an apparatus for controlling concentrations of substances within wine
CN108841477B (en) Method for brewing watermelon and muskmelon wine by adopting micro-aerobic fermentation technology
CN116792627A (en) Fruit acid detection device for fruit processing convenient to fix

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

LAPS Cancellation because of no payment of annual fees