JPH0638068B2 - Liquid analyzer - Google Patents

Liquid analyzer

Info

Publication number
JPH0638068B2
JPH0638068B2 JP29082887A JP29082887A JPH0638068B2 JP H0638068 B2 JPH0638068 B2 JP H0638068B2 JP 29082887 A JP29082887 A JP 29082887A JP 29082887 A JP29082887 A JP 29082887A JP H0638068 B2 JPH0638068 B2 JP H0638068B2
Authority
JP
Japan
Prior art keywords
tube
liquid
abs
pressure
analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29082887A
Other languages
Japanese (ja)
Other versions
JPH01132934A (en
Inventor
邦男 小林
彦堯 橋本
剛 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kikkoman Corp
Original Assignee
Kikkoman Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kikkoman Corp filed Critical Kikkoman Corp
Priority to JP29082887A priority Critical patent/JPH0638068B2/en
Publication of JPH01132934A publication Critical patent/JPH01132934A/en
Publication of JPH0638068B2 publication Critical patent/JPH0638068B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、近赤外線分析装置を用いて醤油、酒、ジュー
ス等の液体の成分を分析する方法と装置に関する。
TECHNICAL FIELD The present invention relates to a method and an apparatus for analyzing components of liquids such as soy sauce, liquor and juice by using a near infrared ray analyzing apparatus.

(従来の技術) 近赤外線分析装置は液体の成分を多項目にわたり、迅速
に、簡便に分析できることから、最近広く利用されるよ
うになってきた。
(Prior Art) Near-infrared analyzers have come to be widely used recently because they can analyze liquid components over many items quickly and easily.

そして、能率を高めるべく、ポンプにて連続的・自動的
に近赤外線分析装置へ試料を供給する自動分析方法が普
及しつつある。
Then, in order to improve efficiency, an automatic analysis method for continuously and automatically supplying a sample to a near-infrared analyzer by a pump is becoming popular.

(発明が解決しようとする問題点) しかしながら、従来の測定技術には、ポンプの脈動が試
料の液圧を変化させ、また試料セット時に混入する空気
が作用し、近赤外線分析装置内の分析セルの分析精度を
悪化させるという不具合がある。
(Problems to be Solved by the Invention) However, in the conventional measurement technique, the pulsation of the pump changes the liquid pressure of the sample, and the air mixed in at the time of setting the sample acts on the analysis cell in the near-infrared analyzer. There is a problem that the accuracy of analysis is deteriorated.

(問題点を解決するための手段) 上記要望に応えるべく本発明は、液体の成分を分析する
近赤外線分析装置と、この近赤外線分析装置へ液体を供
給する試料供給装置と、これら近赤外線分析装置と試料
供給装置とを連結するチューブに管を立て、この管の上
部を大気に連通して、この管を介して液中の空気を除く
と共にチューブの内圧が高まった時に液体を大気側に放
出することでチューブ内圧を一定にする圧力制御装置
と、から液体の分析装置を構成する。
(Means for Solving Problems) In order to meet the above-mentioned demands, the present invention provides a near-infrared analysis device for analyzing liquid components, a sample supply device for supplying a liquid to the near-infrared analysis device, and these near-infrared analysis devices. A tube is erected on the tube that connects the device and the sample supply device, the upper part of this tube is connected to the atmosphere, the air in the liquid is removed through this tube, and when the internal pressure of the tube increases, the liquid moves to the atmosphere side. A liquid analysis device is constituted by a pressure control device that keeps the tube internal pressure constant by discharging the liquid.

(作用) チューブに立てた管を介して液中の空気を抜き、更にチ
ューブの内圧が高まった時に液体を大気側へ放出するこ
とでチューブ内圧を一定に維持する。
(Operation) The air in the liquid is evacuated through the tube standing on the tube, and when the internal pressure of the tube is further increased, the liquid is discharged to the atmosphere side to keep the internal pressure of the tube constant.

(実施例) 以下に本発明の実施例を添付図面及び表に基づいて説明
する。
(Example) Below, the Example of this invention is described based on an accompanying drawing and a table.

第1図は本発明に係る液体の分析装置構成図であり、液
体の分析装置1は、大きく、液体の成分を分析する近赤
外線分析装置2と、この装置2へ液体を供給・停止する
試料供給装置3と、液体の圧力を一定に制御する圧力制
御装置4とから成る。
FIG. 1 is a block diagram of a liquid analyzer according to the present invention. The liquid analyzer 1 is roughly composed of a near-infrared analyzer 2 for analyzing liquid components and a sample for supplying / stopping the liquid to / from the device 2. It comprises a supply device 3 and a pressure control device 4 for controlling the pressure of the liquid at a constant level.

更に、液体の分析装置1には、前記試料供給装置3に接
続して試料液体を提供する自動サンプラ5と、1サイク
ル毎に近赤外線分析装置2と試料供給装置3とを清掃す
る洗浄装置6とが、また試料供給装置3の途中には試料
液体を一定の温度に保つ恒温装置7が夫々付加されてい
る。
Further, in the liquid analyzer 1, an automatic sampler 5 that is connected to the sample supply device 3 to provide a sample liquid, and a cleaning device 6 that cleans the near infrared ray analysis device 2 and the sample supply device 3 for each cycle. In addition, a constant temperature device 7 for keeping the sample liquid at a constant temperature is added in the middle of the sample supply device 3, respectively.

試料供給装置3は、チューブポンプ3aと、このチュー
ブポンプ3aから放射状に延設されるチューブ3b,3
c,3d,3eとからなる。
The sample supply device 3 includes a tube pump 3a and tubes 3b, 3 radially extending from the tube pump 3a.
c, 3d, 3e.

チューブポンプ3aは、第2図に示すように、回転ロー
ラ3f…にて可撓性チューブ3g,3hを扱くが如くし
て流体を一方向へ移動させる周知のポンプである。
As shown in FIG. 2, the tube pump 3a is a well-known pump that moves fluid in one direction as if the flexible tubes 3g and 3h are handled by rotating rollers 3f.

チューブ3cの途中には、コイル状に形成した熱交換部
3iが介設され、熱交換部3iは恒温装置7の恒温槽7
aに収容されている。
A coil-shaped heat exchanging portion 3i is provided in the middle of the tube 3c, and the heat exchanging portion 3i is a constant temperature bath 7 of the constant temperature device 7.
It is housed in a.

圧力制御装置4は、第3図に示す如く、脚部分を垂直に
起立させるT字管4aと、T字管4aの上端から水平方
向に分岐するオーバーフロ管4bと、T字管4aの上端
から更に上方に延出する空気抜き管4cとからなる。
As shown in FIG. 3, the pressure control device 4 includes a T-shaped tube 4a that vertically erects the leg portion, an overflow tube 4b that horizontally branches from the upper end of the T-shaped tube 4a, and an upper end of the T-shaped tube 4a. And an air vent pipe 4c extending further upward from.

自動サンプラ5は、試料液体を収容する試験管状のカラ
ム5a,5bを起立し移動させるターンテーブル5c
と、このターンテーブル5cを間欠回動させるサンプラ
制御函5dとからなり、複数のカラム5a,5b…を分
析するスケジュールに合せて前記チューブ3b端に臨ま
せる。
The automatic sampler 5 is a turntable 5c that erects and moves test tubular columns 5a and 5b containing a sample liquid.
And a sampler control box 5d for intermittently rotating the turntable 5c, and the plurality of columns 5a, 5b ... Are exposed to the end of the tube 3b in accordance with a schedule for analysis.

洗浄装置6は、洗浄液タンク6aと、このタンク6a中
に差し込まれるチューブ6bと、このチューブ6bの途
中に介設され、洗浄液を圧送するチューブポンプ6cと
からなる。チューブポンプ6cは前記したチューブポン
プ3aと同構造である。
The cleaning device 6 includes a cleaning liquid tank 6a, a tube 6b inserted into the tank 6a, and a tube pump 6c interposed in the middle of the tube 6b to pump the cleaning liquid under pressure. The tube pump 6c has the same structure as the tube pump 3a described above.

チューブ6bの先端6dはカラム5a…の近傍に開口
し、チューブ3bの基端3lと接続可能にある。即ち、
チューブ3bの基端3lは、可撓性に豊み矢印Aの如く
揺動自在であって、例えば揺動シリンダユニットの如き
切換機構3mによってカラム5a開口とチューブ6bの
先端6dとの一方へ自由に連結し得る。
The tip 6d of the tube 6b is opened in the vicinity of the columns 5a ... And can be connected to the base end 3l of the tube 3b. That is,
The base end 3l of the tube 3b is flexible and can swing freely as shown by the arrow A, and can be freely moved to one of the column 5a opening and the tip 6d of the tube 6b by a switching mechanism 3m such as a swing cylinder unit. Can be connected to.

図中8はコントローラであり、このコントローラ8は、
近赤外線分析装置2、試料供給装置3と、これらに連動
する切換機構3m、サンプラ制御函5d、チューブポン
プ6cを包括して制御する。
In the figure, 8 is a controller, and this controller 8 is
The near-infrared analyzer 2, the sample supply device 3, and a switching mechanism 3m interlocking with these, a sampler control box 5d, and a tube pump 6c are comprehensively controlled.

以上の構成からなる液体の分析装置1の作用を以下に説
明する。
The operation of the liquid analyzer 1 having the above configuration will be described below.

先ず、切換機構3mにてチューブ3bの基端3lを洗浄
装置6の先端6dに連結し、チューブポンプ3a,6c
を作動し、洗浄液タンク6a内の洗浄液をチューブ6b
を介してチューブ3b→チューブポンプa→チューブ3
c→熱交換部3i→圧力制御装置4→チューブ3c→近
赤外線分析装置2→チューブ3dの順路にて流通せしめ
これらを十分に洗浄する。
First, the proximal end 3l of the tube 3b is connected to the distal end 6d of the cleaning device 6 by the switching mechanism 3m, and the tube pumps 3a and 6c are connected.
To activate the cleaning liquid in the cleaning liquid tank 6a into the tube 6b.
Via tube 3b → tube pump a → tube 3
c → Heat exchange section 3i → Pressure control device 4 → Tube 3c → Near infrared analysis device 2 → Tube 3d are circulated in the normal route to thoroughly wash them.

ポンプ3a,6cを停止し、切換機構3mにてチューブ
3bの基端3lをカラム5aにつなぎ替える。
The pumps 3a and 6c are stopped, and the base end 3l of the tube 3b is connected to the column 5a by the switching mechanism 3m.

ポンプ3aを再動させることにより、カラム5a内の試
料液体はチューブ3b→ポンプ3a→チューブ3cを介
して近赤外線分析装置2に送り込まれる。
By reactivating the pump 3a, the sample liquid in the column 5a is sent to the near-infrared analyzer 2 through the tube 3b → the pump 3a → the tube 3c.

チューブ3cの途中において、試料液体は、先ず熱交換
部3iにて所定の温度に変換され一定温に保たれる。
In the middle of the tube 3c, the sample liquid is first converted into a predetermined temperature in the heat exchange section 3i and kept at a constant temperature.

次いで、試料液体は、圧力制御装置4を通る。圧力制御
装置4では、試料液体は、第3図に示すH1の高さにあ
るオーバフロー管4bから外方へ常時流出し、仍って、
流通する試料液体の圧力は水頭H1に維持される。ま
た、チューブ3bの基端3lの切替えの際にチューブ3
bへ侵入する大気空気は、流れに沿って液体の上部に片
寄り、圧力制御装置4のT字管4aにて、その垂直部分
から上方へ浮き上り、空気抜き管4cを介して上方大気
へ流出する。
The sample liquid then passes through the pressure control device 4. In the pressure control device 4, the sample liquid always flows out from the overflow pipe 4b at the height of H1 shown in FIG.
The pressure of the flowing sample liquid is maintained at the head H1. Also, when switching the proximal end 3l of the tube 3b, the tube 3
Atmospheric air entering b is offset to the upper part of the liquid along the flow, floats upward from the vertical portion of the T-shaped tube 4a of the pressure control device 4 and flows out to the upper atmosphere via the air vent tube 4c. To do.

即ち、上記した圧力制御装置4は極めて簡単な構造にし
て、均圧と空気抜き作用を為す。この状態で近赤外線分
析装置2は試料液体分析を実施する。
That is, the pressure control device 4 described above has an extremely simple structure and performs pressure equalization and air bleeding action. In this state, the near infrared ray analysis device 2 carries out the sample liquid analysis.

分析後、切換装置3mにてチューブ3bの基端3lをカ
ラム5aから外し、チューブ6bの先端6dへつなぎか
える。
After the analysis, the proximal end 3l of the tube 3b is removed from the column 5a by the switching device 3m, and is connected to the distal end 6d of the tube 6b.

チューブポンプ3a,6cを起動し、チューブポンプ3
a、チューブ3b,3c、近赤外線分析装置2を洗浄す
る。
Start the tube pumps 3a and 6c to start the tube pump 3
a, the tubes 3b and 3c, and the near-infrared analyzer 2 are washed.

サンプラ制御函5aにてターンテーブル5cを1ピッチ
回転させる。
The turntable 5c is rotated by one pitch using the sampler control box 5a.

チューブ3bの基端3lをカラム5bに接続して、カラ
ム5aと同様の順にてカラム5b内の試料液体の分析を
実施する。
The proximal end 3l of the tube 3b is connected to the column 5b, and the sample liquid in the column 5b is analyzed in the same order as the column 5a.

以上に述べた作動の全ては、コントローラ8の制御指令
によって自動で為される。
All the operations described above are automatically performed by the control command of the controller 8.

次に上記した液体の分析装置1による分析方法が以下に
有効であるか、実験データを基に説明する。
Next, it will be described based on experimental data whether the above-described analysis method of the liquid analyzer 1 is effective.

実験は試料としては濃口醤油を用いた。本発明方法につ
いては、圧力制御装置4の前記高さH1を固定し、チュ
ーブ3cの圧力を15mmAqに維持し、繰り返し分析して
それらの平均、標準偏差を算出した。
In the experiment, soy sauce was used as a sample. Regarding the method of the present invention, the height H1 of the pressure control device 4 was fixed, the pressure in the tube 3c was maintained at 15 mmAq, and repeated analysis was performed to calculate the average and standard deviation thereof.

一方、対照法については、圧力制御装置4の高さH1を
種々変化させ、チューブ3cの圧力を13,15,1
8,20,22mmAqに設定し、それらの夫々について繰
り返し分析してそれらの平均、標準偏差を算出した。実
験結果を第1表に示す。
On the other hand, in the control method, the height H1 of the pressure control device 4 is variously changed, and the pressure of the tube 3c is set to 13, 15, 1.
It was set to 8, 20, 22 mmAq, and repeated analysis was performed for each of them, and their average and standard deviation were calculated. The experimental results are shown in Table 1.

なお近赤外線分析装置2による各成分の定量は、(財)
日本醤油研究所編「しょうゆ分析法」に記載の常用法と
対比して作成した検量線に基づいて行なった。すなわち
常用法としては窒素にはケルダール法を、アルコールに
はガスクロマトグラフィーを、乳酸およびグルタミン酸
には酵素法を、食塩にはモール法をそれぞれ用いた。
Quantification of each component by the near-infrared analyzer 2 is
It was performed based on a calibration curve prepared by comparison with the conventional method described in “Soy Sauce Analysis Method” edited by Japan Soy Sauce Research Institute. That is, as a conventional method, the Kjeldahl method was used for nitrogen, the gas chromatography was used for alcohol, the enzymatic method was used for lactic acid and glutamic acid, and the Mohr method was used for salt.

そして生醤油および火入れ済の醤油について、245点
を2回ずつ近赤外線分析装置により測定し、各成分につ
いて下記のような重回帰式および重回帰係数を得た。第
1表の分析値は該重回帰式を基に算出したものである。
Then, 245 points of raw soy sauce and burned soy sauce were measured twice by a near infrared analyzer, and the following multiple regression equation and multiple regression coefficient were obtained for each component. The analysis values in Table 1 are calculated based on the multiple regression equation.

また、第2表は本発明の方法によって、酒類および果汁
のアルコールおよび還元糖についてそれぞれ10回ずつ
繰り返し分析した結果を示す。
In addition, Table 2 shows the results of repeated analysis of the alcohol and reducing sugar of liquor and fruit juice 10 times each by the method of the present invention.

重回帰式 窒素=0.796-35.83・ABS(4)+143.5・ABS(7)-87.60・ABS
(9)-165.0・ABS(13)+28.98 ・ABS(14)+122.2 ・ABS(20) アルコール=-21.96-310.9 ・ABS(2)+380.7・ABS(4)-25
0.5・ABS(6)+115.2・ABS(7)+71.75・ABS(19)+71.20 ・A
BS(20) 乳酸=22.80+489.0・ABS(6)-803.0・ABS(7)+291.4・ABS
(9)+336.1・ABS(12)-1270・ABS(13)+293.2 ・ABS(20) グルタミン酸=-5.501-157.1 ・ABS(3)+129.1・ABS(4)-
65.23・ABS(5)+288.9・ABS(7)-267.3・ABS(10)+98.46
・ABS(14) 食塩=3.389-492.8・ABS(3)+123.1・ABS(5)+767.3・ABS
(7)-390.3・ABS(10)-77.32 ・ABS(11)+109.5 ・ABS(16) ※ABS(N)は吸光度を示す。
Multiple regression equation Nitrogen = 0.796-35.83 ・ ABS (4) +143.5 ・ ABS (7) -87.60 ・ ABS
(9) -165.0 ・ ABS (13) +28.98 ・ ABS (14) +122.2 ・ ABS (20) Alcohol = -21.96-310.9 ・ ABS (2) +380.7 ・ ABS (4) -25
0.5 ・ ABS (6) +115.2 ・ ABS (7) +71.75 ・ ABS (19) +71.20 ・ A
BS (20) Lactic acid = 22.80 + 489.0 / ABS (6) -803.0 / ABS (7) + 291.4 / ABS
(9) +336.1 ・ ABS (12) -1270 ・ ABS (13) +293.2 ・ ABS (20) Glutamic acid = -5.501-157.1 ・ ABS (3) +129.1 ・ ABS (4)-
65.23 ・ ABS (5) +288.9 ・ ABS (7) -267.3 ・ ABS (10) +98.46
・ ABS (14) salt = 3.389-492.8 ・ ABS (3) +123.1 ・ ABS (5) +767.3 ・ ABS
(7) -390.3 ・ ABS (10) -77.32 ・ ABS (11) +109.5 ・ ABS (16) * ABS (N) indicates the absorbance.

※上式において単位は何れも(W/V%)である。* In the above formula, all units are (W / V%).

重回帰係数 窒素;0.9948 アルコール;0.9940 グルタミン酸;0.9145 乳酸;0.8814 食塩;0.9971 前記第1表より明らかな如く、本発明方法による方が分
析値にバラツキがなく安定した結果が得られることがわ
かる。
Multiple regression coefficient Nitrogen; 0.9948 Alcohol; 0.9940 Glutamic acid; 0.9145 Lactic acid; 0.8814 Salt; 0.9971 As is clear from Table 1, the method of the present invention provides stable results with no variation in analytical values.

また、本発明は、醤油、ワイン、清酒、ブドウ果汁の
他、ウィスキー、ビールなど酒類、ミカン、リンゴ等ジ
ュース類、さらに牛乳などの成分分析に有効である。
Further, the present invention is effective for component analysis of soy sauce, wine, sake, grape juice, whiskey, liquor such as beer, juice such as mandarin orange, apple, and milk.

尚、本発明の圧力制御装置4は、要は近赤外線分析装置
2内の試料液体の圧力を分析タイミングにおいて一定に
維持するものであればよく、例えば第4図、第5図に示
す装置を採用してもよい。
The pressure control device 4 of the present invention may be any device as long as it keeps the pressure of the sample liquid in the near infrared analysis device 2 constant at the analysis timing. For example, the device shown in FIGS. 4 and 5 is used. May be adopted.

即ち、第4図の装置はチューブ3cに流れ方向に沿っ
て、空気抜き管4dと、圧力制御弁4eと、圧力センサ
4fとを介設する。
That is, in the apparatus of FIG. 4, an air vent pipe 4d, a pressure control valve 4e, and a pressure sensor 4f are provided in the tube 3c along the flow direction.

空気抜き管4dはチューブ3cから垂直に十分高く起立
し、空気のみを上方へ放出する。
The air vent pipe 4d stands up vertically from the tube 3c at a sufficiently high level and discharges only air upward.

圧力制御弁4eは、圧力センサ4fの圧力信号を圧力コ
ントローラ4gに入力し、圧力コントローラ4gにて目
標圧力値と比較し、圧力コントローラ4gは実圧力値を
この目標圧力値に合せるべく圧力制御弁4eを開閉す
る。
The pressure control valve 4e inputs the pressure signal of the pressure sensor 4f to the pressure controller 4g, and the pressure controller 4g compares it with a target pressure value. The pressure controller 4g adjusts the actual pressure value to this target pressure value. Open and close 4e.

また第5図の装置は、第4図の圧力制御弁4eを廃し、
第1図のラインポンプ3aをチューブポンプ3nとチュ
ーブ3pに置き換えたものである。
Further, the apparatus of FIG. 5 eliminates the pressure control valve 4e of FIG.
The line pump 3a in FIG. 1 is replaced with a tube pump 3n and a tube 3p.

即ち、試料液体の空気は空気抜き管4dで抜かれ、圧力
センサ4fでモニタされ、圧力コントローラ4gの作用
にてチューブポンプ3nの回転数を高めて昇圧する如く
する。昇圧手段はチューブポンプに限らずギヤーポン
プ、ベーンポンプ、タービンポンプなど使用可能であ
る。そして、複数の圧力制御装置4…をチューブ3c、
チューブ3dに介設してもよい。
That is, the air of the sample liquid is evacuated by the air bleeder 4d, monitored by the pressure sensor 4f, and the pressure controller 4g acts to increase the rotational speed of the tube pump 3n to increase the pressure. The boosting means is not limited to the tube pump, but a gear pump, a vane pump, a turbine pump, or the like can be used. The plurality of pressure control devices 4 ... Are connected to the tubes 3c,
You may interpose in the tube 3d.

また、圧力変動を除く方法として、分析タイミング前に
チューブポンプ3aを停止させるなどして近赤外線分析
装置2内の液体を静止させ、もって圧力を静定させるも
のも有効である。
Further, as a method of eliminating the pressure fluctuation, it is effective to stop the liquid in the near infrared ray analyzer 2 by stopping the tube pump 3a before the analysis timing so that the pressure is statically settled.

(発明の効果) 以上に述べた通り、本発明の液体分析装置はチューブに
立てた管を介して液中の空気を抜くようにしたので、試
料セットの際に混入した空気の影響を排除でき、分析精
度の向上が図れる。
(Effects of the Invention) As described above, the liquid analyzer of the present invention is designed so that the air in the liquid is evacuated through the tube standing upright in the tube, so that the influence of the air mixed during the sample setting can be eliminated. The analysis accuracy can be improved.

更にチューブの内圧が高まった時に液体を大気側へ放出
することでチューブ内圧を一定に維持するようにしたの
で、ポンプの脈動の影響を排除でき、分析精度の向上が
図れる。
Further, when the internal pressure of the tube is increased, the liquid is discharged to the atmosphere side to keep the internal pressure of the tube constant, so that the influence of the pulsation of the pump can be eliminated and the accuracy of analysis can be improved.

従って、本発明は、チューブに管を立てるという極めて
簡単な手法で、分析精度を高め、生産の効率化を図るこ
とができる。
Therefore, according to the present invention, it is possible to improve analysis accuracy and improve production efficiency by a very simple method of erecting a tube.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係る流体の分析装置構成図、第2図は
チューブポンプの構造説明図、第3図は圧力制御装置の
第1実施例図、第4図は同第2実施例図、第5図は同第
3実施例図である。 尚、図面中、1は液体の分析装置、2は近赤外線分析装
置、3は試料供給装置、4は圧力制御装置、4aは管
(T字管)、4bは管(オーバーフロー管)、4cは管
(空気抜き管)である。
FIG. 1 is a configuration diagram of a fluid analyzer according to the present invention, FIG. 2 is a structural explanatory view of a tube pump, FIG. 3 is a first embodiment diagram of a pressure control device, and FIG. 4 is a second embodiment diagram thereof. FIG. 5 is a diagram of the third embodiment. In the drawings, 1 is a liquid analysis device, 2 is a near-infrared analysis device, 3 is a sample supply device, 4 is a pressure control device, 4a is a pipe (T-shaped pipe), 4b is a pipe (overflow pipe), and 4c is It is a pipe (air vent pipe).

───────────────────────────────────────────────────── フロントページの続き 審査官 平井 良憲 (56)参考文献 特公 昭62−23815(JP,B2) ─────────────────────────────────────────────────── ─── Continuation of the front page Examiner Yoshinori Hirai (56) References Japanese Patent Publication Sho 62-23815 (JP, B2)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】液体の成分を分析する近赤外線分析装置
と、 この近赤外線分析装置へ液体を供給する試料供給装置
と、 これら近赤外線分析装置と試料供給装置とを連結するチ
ューブに管を立て、この管の上部を大気に連通して、こ
の管を介して液中の空気を除くと共にチューブの内圧が
高まった時に液体を大気側に放出することでチューブ内
圧を一定にする圧力制御装置と、 から成ることを特徴とする液体の分析装置。
1. A near-infrared analyzing device for analyzing a component of a liquid, a sample supplying device for supplying a liquid to the near-infrared analyzing device, and a tube for standing a tube connecting the near-infrared analyzing device and the sample supplying device. , A pressure control device that connects the upper part of this tube to the atmosphere, removes the air in the liquid through this tube, and discharges the liquid to the atmosphere side when the internal pressure of the tube rises A liquid analysis device comprising:
JP29082887A 1987-11-18 1987-11-18 Liquid analyzer Expired - Fee Related JPH0638068B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29082887A JPH0638068B2 (en) 1987-11-18 1987-11-18 Liquid analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29082887A JPH0638068B2 (en) 1987-11-18 1987-11-18 Liquid analyzer

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP23931193A Division JP2597075B2 (en) 1993-09-27 1993-09-27 Liquid analyzer

Publications (2)

Publication Number Publication Date
JPH01132934A JPH01132934A (en) 1989-05-25
JPH0638068B2 true JPH0638068B2 (en) 1994-05-18

Family

ID=17761010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29082887A Expired - Fee Related JPH0638068B2 (en) 1987-11-18 1987-11-18 Liquid analyzer

Country Status (1)

Country Link
JP (1) JPH0638068B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3415862B2 (en) * 1992-07-06 2003-06-09 株式会社フジクラ CVD raw material vaporizer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4310763A (en) * 1979-10-15 1982-01-12 John Shields Electro-optical analyzer for measuring percentage by weight of fat, protein and lactose in milk

Also Published As

Publication number Publication date
JPH01132934A (en) 1989-05-25

Similar Documents

Publication Publication Date Title
US4116046A (en) Liquid chromatography system
JP2834224B2 (en) Sample analyzer by liquid chromatography
US4704910A (en) Method and apparatus for automatic sampling of gases
US5118626A (en) Apparatus for controlling the fermentation of moromi mash
JPH0638068B2 (en) Liquid analyzer
DE2908719A1 (en) METHOD AND DEVICE FOR MEASURING ION ACTIVITY
JP2597075B2 (en) Liquid analyzer
JPH0735997B2 (en) Liquid analyzer
JP6474747B2 (en) Automatic analyzer and cleaning method thereof
CN211013651U (en) Sampling device for liquid on-line monitoring
US4926747A (en) Apparatus for manufacturing soy sauce
US4165643A (en) Process and apparatus for automatically taking samples of beer for analysis
JP3271394B2 (en) Glycohemoglobin analyzer
US5992214A (en) Method and device for analyzing volatile substances in gases
JP2596029B2 (en) Chemical analysis method and apparatus
CN215005156U (en) Alcohol substance content measuring device in mulberry wine fermentation process
CN205593874U (en) PM2. 5 of while testing fixed source emission and device of condensable particulate matter
CN109001126A (en) A kind of Analysis of Urea instrument and its analysis method
CN112946057B (en) Method for simultaneously detecting multiple volatile organic compounds in fermentation process
JP3351685B2 (en) Positive pressure head space gas analysis method
DE102021118440A1 (en) Process and system for quality monitoring of the fermentation process in beer
JPH03134560A (en) Liquid chromatograph analyzer, sample supply apparatus and pre-label reaction treatment
US6024780A (en) Method and apparatus for degassing a fluid in a reusable vaccum chamber with microprocessor based controls
JP2003121430A (en) Automatic potassium permanganate consumption analytical device
US3152251A (en) Apparatus for automatically determining ultraviolet absorbance in a system

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

LAPS Cancellation because of no payment of annual fees