JPH01132765A - Magnetron sputtering device - Google Patents

Magnetron sputtering device

Info

Publication number
JPH01132765A
JPH01132765A JP29236987A JP29236987A JPH01132765A JP H01132765 A JPH01132765 A JP H01132765A JP 29236987 A JP29236987 A JP 29236987A JP 29236987 A JP29236987 A JP 29236987A JP H01132765 A JPH01132765 A JP H01132765A
Authority
JP
Japan
Prior art keywords
target
magnetic field
force
magnetron sputtering
bore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29236987A
Other languages
Japanese (ja)
Inventor
Kazuo Inoue
和夫 井上
Tetsuya Akiyama
哲也 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP29236987A priority Critical patent/JPH01132765A/en
Publication of JPH01132765A publication Critical patent/JPH01132765A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To uniformly sputter the surface of a target and to enhance the speed of forming a thin film by disposing an annular magnetic field generating source having the bore larger than the bore of a target shielding cover in the direction perpendicular to the target surface. CONSTITUTION:The magnetic field generating source consisting of an annular superconductive member 11 having the bore larger than the bore of the target 4 shielding cover 13 is disposed perpendicularly above the target 4. Magnetic lines b10 of force are generated by the Meissner effect to back the magnetic lines a9 of force toward the target 4 when the magnetic lines a9 of force generated on the target 4 are going to pass the inside of the ring of the superconductive member 11. The density of the magnetic lines a9 of force, therefore, increase near the target 4. As a result, the number of the times when electrons collide against gaseous carrier molecules near the target 4 increases and the efficiency of sputtering the target 4 is improved. The speed at which the thin film is formed on the substrate 12 is thus increased.

Description

【発明の詳細な説明】 産業上の利用分野 薄膜形成に用いられるマグネトロンスパッタ装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnetron sputtering apparatus used for forming thin films in an industrial field.

従来の技術 薄膜形成の一手段としてスパッタ装置が利用されている
。中でも、マグネトロンスパッタ装置はスパッタガス圧
が他のスパッタ装置より低いので高純度の膜が形成され
、かつ、膜形成速度が速いため、現在、広く用いられて
いる。マグネトロンスパッタ装置の構造図を第3図に示
す。tヤンバ16内は真空ポンプによって真空になって
いる。
BACKGROUND OF THE INVENTION Sputtering equipment is used as a means of forming thin films. Among these, magnetron sputtering equipment is currently widely used because the sputtering gas pressure is lower than that of other sputtering equipment, so a highly pure film can be formed, and the film formation rate is fast. A structural diagram of the magnetron sputtering apparatus is shown in FIG. The inside of the t-yamba 16 is evacuated by a vacuum pump.

このチャンバ16内にガス導入口17よりキャリアガス
、例えばアルゴンガスが流入する。反応性マグネトロン
スパッタ法の場合は反応ガスも流入させる。陽極18と
ターゲット19との間に高電圧を印加するとこの間に放
電が発生し、この放電中でキャリアガスはイオン化して
ターゲット19をスパッタする。バッキングプレート2
1下には永久磁石23.がちり磁力線24が発生してい
る。
A carrier gas, such as argon gas, flows into the chamber 16 from a gas inlet 17 . In the case of reactive magnetron sputtering, a reactive gas is also introduced. When a high voltage is applied between the anode 18 and the target 19, a discharge is generated between the anode 18 and the target 19, and the carrier gas is ionized during this discharge to sputter the target 19. Backing plate 2
1. Below is a permanent magnet 23. Dust magnetic lines of force 24 are generated.

この磁力線24によって他のスパッタ装置の場合より電
子がターゲット近傍に存在する時間が伸びてその電子が
中性であるキャリアガス分子に衝突する回数が増しスパ
ッタ効率が増す。また、タ一ゲット19はバッキングプ
レート21を介して冷却水22によって冷却されており
、ターゲット19以外の部分がスパッタされないようK
 シーにドカパー26がされている。チャンバ16とタ
ーゲット19の部分は絶縁体27で絶禄されている。
These magnetic lines of force 24 extend the time that electrons remain near the target compared to other sputtering devices, and the number of times the electrons collide with neutral carrier gas molecules increases, increasing sputtering efficiency. In addition, the target 19 is cooled by cooling water 22 via a backing plate 21, and the target 19 is cooled so that parts other than the target 19 are not sputtered.
There is a dokaper 26 on the sea. The chamber 16 and target 19 are insulated with an insulator 27.

発明が解決しようとする問題点     ・マグネトロ
ンスパッタ装置では電界と磁界が直交しているターゲッ
ト中央部近傍に放電が集中し、この部分がもっとも顕著
にスパッタされる。そこで、長時間スパッタを行うとタ
ーゲット表面が不均一にスパッタされ、ターゲットの利
用率が悪くなるとともに形成された薄膜の膜厚分布が変
化する問題点があった。
Problems to be Solved by the Invention - In a magnetron sputtering device, discharge is concentrated near the center of the target where the electric field and magnetic field are perpendicular to each other, and this part is sputtered most noticeably. Therefore, when sputtering is performed for a long time, the target surface is sputtered non-uniformly, resulting in poor utilization of the target and a change in the thickness distribution of the formed thin film.

また、薄膜形成速度が真空蒸着装置より遅いという間遺
点があった。
Another disadvantage was that the thin film formation speed was slower than that of a vacuum evaporation system.

本発明は、以上のような従来のマグネトロンスパッタ装
置の問題点を鑑みて、簡単な手段でターゲット表面がよ
シ均一にスパッタされてターゲットの利用率を上げると
ともにスパッタ時の薄膜形成速度を上げるマグネトロン
スパッタ装置を提供することを目的とする。
In view of the above-mentioned problems with conventional magnetron sputtering devices, the present invention provides a magnetron sputtering device that sputters more uniformly on the target surface by simple means, thereby increasing the utilization rate of the target and increasing the thin film formation rate during sputtering. The purpose is to provide a sputtering device.

問題点を解決するための手段 本発明は、上記問題点を解決するために、磁界がターゲ
ット上でターゲット方向に向かう、ターゲットのシール
ドカバー内径より大きい内径を有する環状の磁界発生源
をターゲット面に垂直方向に隔てて位置させるものであ
る。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides an annular magnetic field generation source having an inner diameter larger than the inner diameter of the shield cover of the target, where the magnetic field is directed toward the target on the target surface. They are placed vertically apart.

作用 本磁界発生源を設けることによシ、ターゲットから遠ざ
かろうとする磁力線がターゲット近傍に押しもどされ、
その結果、ターゲット近傍で磁力線密度が上がるととも
に電界と磁界が直交する領域が増加するため、電子がタ
ーゲット近傍に存在する時間が伸びてキャリアガス分子
に衝突する回数が増加しスパッタ効率が増して薄膜形成
速度が増す。また、ターゲット表面がより均一にスパッ
タされて、ターゲットの利用率が増し、膜厚分布が変化
する恐れもなくなる。
By providing a working magnetic field source, lines of magnetic force that are moving away from the target are pushed back to the vicinity of the target.
As a result, as the magnetic field line density increases near the target, the area where the electric and magnetic fields intersect perpendicularly increases, so the time that electrons remain near the target increases, the number of times they collide with carrier gas molecules increases, and the sputtering efficiency increases, resulting in a thin film. Increases formation rate. In addition, the target surface is sputtered more uniformly, the target utilization rate is increased, and there is no fear that the film thickness distribution will change.

実施例 以下に本発明の実施例について説明する。第1図は本発
明のマグネトロンスパッタ装置の第1の実施例である。
Examples Examples of the present invention will be described below. FIG. 1 shows a first embodiment of the magnetron sputtering apparatus of the present invention.

第1図において、チャンバ1内は真空ポンプで真空に引
かれている。チャンバ1にはガス導入口2があり、キャ
リアガスを流入する。反応性マグネトロン装置の場合は
反応ガスも流入する。チャンバ1内には陽極3とターゲ
ット4があシ、両者Mlに高電圧が印加されており電界
6が生じる。また、両者間に放電が発生し、この放電中
でキャリアガスはイオン化してターゲット4をスパッタ
する。そして、ターゲット4は接着剤を介してバッキン
グプレート6と接着されておシ、バッキングプレート6
を通じてターゲット4は冷却水7によって冷却されてい
る。また、バッキングプレート6の下には永久磁石8が
あり、ターゲット4上で磁力線a9が生じる。ターゲッ
ト4の垂直上方には環状の超電導部材11が位置してお
り、磁力線a9が環状の超電導部材11の環内を通過し
ようとするとマイスナー効果により磁力線b10が発生
し、磁力線IL9をターゲット4の方へ押しもどす。従
って、ターゲット4近傍で磁力線IL9の密度が上がる
。この結果、ターゲット4の近傍で電子がキャリアガス
分子と衝突する回数が増加しイオン化したキャリアガス
がターゲット4をスパッタする効率が増すので薄膜が陽
極3上に設置された基板12上に形成される速度が増す
。また、最もスパッタされる電界と磁界とが直交する領
域が増すため、ターゲット40表面がより均一にスパッ
タされてターゲット4の利用率が増すとともに膜厚分布
が変化する恐れもなくなる。超電導部材11としては例
えば、Y−Ba−Cu酸化物の焼結体がある。
In FIG. 1, the inside of a chamber 1 is evacuated by a vacuum pump. The chamber 1 has a gas inlet 2 through which a carrier gas flows. In the case of reactive magnetron devices, a reactive gas also flows in. There is an anode 3 and a target 4 in the chamber 1, and a high voltage is applied to both M1, so that an electric field 6 is generated. Further, a discharge occurs between the two, and the carrier gas is ionized during this discharge and sputters the target 4. The target 4 is bonded to the backing plate 6 via an adhesive.
The target 4 is cooled by cooling water 7 throughout. Further, there is a permanent magnet 8 under the backing plate 6, and lines of magnetic force a9 are generated on the target 4. An annular superconducting member 11 is located vertically above the target 4, and when a line of magnetic force a9 attempts to pass through the ring of the annular superconducting member 11, a line of magnetic force b10 is generated due to the Meissner effect, and the line of magnetic force IL9 is directed toward the target 4. Push it back. Therefore, the density of the magnetic lines of force IL9 increases near the target 4. As a result, the number of times electrons collide with carrier gas molecules near the target 4 increases, and the efficiency with which the ionized carrier gas sputters the target 4 increases, so that a thin film is formed on the substrate 12 placed on the anode 3. Increases speed. Furthermore, since the area where the electric field and magnetic field are most perpendicular to each other for sputtering increases, the surface of the target 40 is sputtered more uniformly, the utilization rate of the target 4 increases, and there is no fear that the film thickness distribution will change. As the superconducting member 11, for example, there is a sintered body of Y-Ba-Cu oxide.

本構成は超電導部材11を設けるだけでよく非常に簡単
である。さらに、第1図において13はシールドカバー
であって、ターゲット4以外の物質がスパッタされない
ようにするものである。また、環状の超電導部材11の
内径はシールドカバー13の内径より大きい必要がある
。これは、超電導部材11がスパッタされないようにす
るためである。
This configuration is very simple, requiring only the provision of the superconducting member 11. Furthermore, in FIG. 1, reference numeral 13 is a shield cover, which prevents substances other than the target 4 from being sputtered. Further, the inner diameter of the annular superconducting member 11 needs to be larger than the inner diameter of the shield cover 13. This is to prevent the superconducting member 11 from being sputtered.

第2図は本発明のマグネトロンスパッタ装置ノ第2の実
施例である。第2図においては、超電導部材11の代わ
りに環状の電磁コイル15を使用している。第2図に示
すように電磁コイル16にターゲット4側から見て左ま
わりに電流を流すと磁力線b10が発生し、永久磁石8
によって発生する磁力線a9はターゲット4の方へ押し
もどされ、かつ、電界と磁界とが直交する領域が増す。
FIG. 2 shows a second embodiment of the magnetron sputtering apparatus of the present invention. In FIG. 2, an annular electromagnetic coil 15 is used instead of the superconducting member 11. As shown in FIG. 2, when a current is applied to the electromagnetic coil 16 counterclockwise when viewed from the target 4 side, magnetic lines of force b10 are generated, and the permanent magnet 8
The lines of magnetic force a9 generated by this are pushed back toward the target 4, and the area where the electric field and the magnetic field are perpendicular to each other increases.

故に、スパッタ効率が増し、かつ、ターゲット4の利用
率が増すとともに膜厚分布が変化する恐れもなくなる。
Therefore, the sputtering efficiency is increased, the utilization rate of the target 4 is increased, and there is no fear that the film thickness distribution will change.

発明の効果 本発明のマグネトロンスパッタ装置を用いると、薄膜の
形成速度が増す。また、ターゲット表面がよシ均一にス
パッタされてターゲットの利用率が増し、膜厚分布が変
化する恐れもなくなる。
Effects of the Invention Using the magnetron sputtering apparatus of the present invention increases the rate of thin film formation. In addition, the target surface is sputtered more uniformly, the target utilization rate is increased, and there is no fear that the film thickness distribution will change.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のマグネトロ/スパッタ装置の第1の実
施例の構成を示す断面図、第2図は本発明のマグネトロ
ンスパッタ装置の第2の実施例の構成を示す断面図、第
3図は従来のマグネトロンスパッタ装置の構成を示す断
面図である。 1.16・・・・・・チャンバ、2.17・・・・ガス
導入口、3.18・・・・・・陽極、4.19・・・・
ターゲット、6.20・・・・・電界、6.21 ・・
・・・バッキングプレート、7.22・・・・・・冷却
水、8.23・・・・永久磁石、9・・・・・磁力線a
110・・・・・・磁力線b111・・・・・・超電導
部材、12.25・・・・・基板、13.26・・・・
シールドカバー、14.27・・・・絶縁体、16・・
・・・・電磁コイル、24・・・・磁力線。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図
FIG. 1 is a sectional view showing the structure of a first embodiment of the magnetron sputtering apparatus of the present invention, FIG. 2 is a sectional view showing the structure of the second embodiment of the magnetron sputtering apparatus of the present invention, and FIG. 1 is a cross-sectional view showing the configuration of a conventional magnetron sputtering device. 1.16...Chamber, 2.17...Gas inlet, 3.18...Anode, 4.19...
Target, 6.20... Electric field, 6.21...
... Backing plate, 7.22 ... Cooling water, 8.23 ... Permanent magnet, 9 ... Lines of magnetic force a
110... Lines of magnetic force b111... Superconducting member, 12.25... Substrate, 13.26...
Shield cover, 14.27...Insulator, 16...
...Electromagnetic coil, 24...Magnetic field lines. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)ターゲットのシールドカバー内径より大きい内径
を有する環状の磁界発生源をターゲット面に垂直方向に
隔てて位置し、前記磁界発生源がターゲット上でターゲ
ット方向へ向かう磁界を発生することを特徴とするマグ
ネトロンスパッタ装置。
(1) An annular magnetic field generation source having an inner diameter larger than the inner diameter of the shield cover of the target is located vertically apart from the target surface, and the magnetic field generation source generates a magnetic field on the target toward the target. magnetron sputtering equipment.
(2)環状の磁界発生源として超電導部材を用いること
を特徴とする特許請求の範囲第1項記載のマグネトロン
スパッタ装置。
(2) The magnetron sputtering apparatus according to claim 1, wherein a superconducting member is used as the annular magnetic field generation source.
(3)環状の磁界発生源として電磁コイルを用いること
を特徴とする特許請求の範囲第1項記載のマグネトロン
スパッタ装置。
(3) The magnetron sputtering apparatus according to claim 1, wherein an electromagnetic coil is used as the annular magnetic field generation source.
JP29236987A 1987-11-19 1987-11-19 Magnetron sputtering device Pending JPH01132765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29236987A JPH01132765A (en) 1987-11-19 1987-11-19 Magnetron sputtering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29236987A JPH01132765A (en) 1987-11-19 1987-11-19 Magnetron sputtering device

Publications (1)

Publication Number Publication Date
JPH01132765A true JPH01132765A (en) 1989-05-25

Family

ID=17780908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29236987A Pending JPH01132765A (en) 1987-11-19 1987-11-19 Magnetron sputtering device

Country Status (1)

Country Link
JP (1) JPH01132765A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007258447A (en) * 2006-03-23 2007-10-04 Aisin Seiki Co Ltd Superconducting magnetic field generator, and sputtering film forming apparatus
WO2011007830A1 (en) * 2009-07-17 2011-01-20 株式会社アルバック Film-forming apparatus
WO2011007834A1 (en) * 2009-07-17 2011-01-20 株式会社アルバック Film-forming apparatus and film-forming method
WO2011007831A1 (en) * 2009-07-17 2011-01-20 株式会社アルバック Film-forming apparatus
JPWO2009157439A1 (en) * 2008-06-26 2011-12-15 株式会社アルバック Sputtering apparatus and sputtering method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007258447A (en) * 2006-03-23 2007-10-04 Aisin Seiki Co Ltd Superconducting magnetic field generator, and sputtering film forming apparatus
JPWO2009157439A1 (en) * 2008-06-26 2011-12-15 株式会社アルバック Sputtering apparatus and sputtering method
WO2011007830A1 (en) * 2009-07-17 2011-01-20 株式会社アルバック Film-forming apparatus
WO2011007834A1 (en) * 2009-07-17 2011-01-20 株式会社アルバック Film-forming apparatus and film-forming method
WO2011007831A1 (en) * 2009-07-17 2011-01-20 株式会社アルバック Film-forming apparatus
CN102471879A (en) * 2009-07-17 2012-05-23 株式会社爱发科 Film-forming apparatus
TWI386506B (en) * 2009-07-17 2013-02-21 Ulvac Inc Apparatus for forming film
JP5373904B2 (en) * 2009-07-17 2013-12-18 株式会社アルバック Deposition equipment
JP5373903B2 (en) * 2009-07-17 2013-12-18 株式会社アルバック Deposition equipment
JP5373905B2 (en) * 2009-07-17 2013-12-18 株式会社アルバック Film forming apparatus and film forming method
US9005413B2 (en) 2009-07-17 2015-04-14 Ulvac, Inc. Film formation apparatus

Similar Documents

Publication Publication Date Title
US4282083A (en) Penning sputter source
EP0148504B2 (en) Method and apparatus for sputtering
US4724060A (en) Sputtering apparatus with film forming directivity
US4094764A (en) Device for cathodic sputtering at a high deposition rate
CA2326202C (en) Method and apparatus for deposition of biaxially textured coatings
US4716340A (en) Pre-ionization aided sputter gun
JPH0669026B2 (en) Semiconductor processing equipment
US4965248A (en) Method of fabricating thin layers from high-temperature oxide superconductors
JPH01132765A (en) Magnetron sputtering device
US3282816A (en) Process of cathode sputtering from a cylindrical cathode
JPS61221363A (en) Sputtering apparatus
JP3298180B2 (en) Thin film forming equipment
JP2975649B2 (en) Sputtering equipment
JPS6217175A (en) Sputtering device
JP2755776B2 (en) High-speed deposition sputtering equipment
JPS58199862A (en) Magnetron type sputtering device
JPS60194071A (en) Method and device for forming thin film
JPS63247366A (en) Magnetron sputtering device
JPH0159351B2 (en)
JPS6389663A (en) Sputtering device
JPS61114518A (en) Plasma adhering device
JPH0822802A (en) Plasma processor by double pressure gradient type pig discharge
JPH03193870A (en) Low-gas-pressure sputtering device
JPS6354789B2 (en)
JPS63162865A (en) Sputtering cathode