JPH01131210A - Ethylene copolymer film and molded article - Google Patents

Ethylene copolymer film and molded article

Info

Publication number
JPH01131210A
JPH01131210A JP63170015A JP17001588A JPH01131210A JP H01131210 A JPH01131210 A JP H01131210A JP 63170015 A JP63170015 A JP 63170015A JP 17001588 A JP17001588 A JP 17001588A JP H01131210 A JPH01131210 A JP H01131210A
Authority
JP
Japan
Prior art keywords
copolymer
olefin
intrinsic viscosity
ethylene
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63170015A
Other languages
Japanese (ja)
Other versions
JPH0346483B2 (en
Inventor
Yoshinori Morita
森田 好則
Hiroshi Inoue
洋 井上
Kenji Fujiyoshi
藤吉 建二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP63170015A priority Critical patent/JPH01131210A/en
Publication of JPH01131210A publication Critical patent/JPH01131210A/en
Publication of JPH0346483B2 publication Critical patent/JPH0346483B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To provide the title film composed of a copolymer of ethylene and a specific alpha-olefin, having a specific physical property, remarkably high weight- average molecular weight at the same intrinsic viscosity and excellent transparency, impact resistance and tear resistance and useful for packaging. CONSTITUTION:The objective film is composed of a random copolymer of ethylene and 1-30wt.% of a 5-18C alpha-olefin (preferably 4-methyl-1-pentene), having a density of 0.900-0.940g/cm<3>, an intrinsic viscosity [eta] of 0.8-4.0 (measured in decalin at 135 deg.C), a maximum melting point of 115-130 deg.C measured by differential thermal analysis and a viscosity ratio [eta]/[eta]l of 0.05-0.78 wherein [eta]l is intrinsic viscosity of a straight-chain polyethylene exhibiting the same weight-average molecular weight (measured by light-scattering). The average spherulite radius of the objective film is preferably <=6mum measured by laser-beam small-angle scattering. The film preferably exhibits plural melting points measured by differential thermal analysis.

Description

【発明の詳細な説明】 本発明は、透明性、耐衝撃性、耐引裂性に優れたエチレ
ン共重合体フィルムおよび成型体に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ethylene copolymer film and molded product having excellent transparency, impact resistance, and tear resistance.

高圧法のポリエチレンは比較的透明性の良い樹脂として
頗られており、フィルムや中空容器などの用途に供せら
れている。フィルム用途に関して言えば、高圧法のポリ
エチレンでは引裂強度や衝撃強度が小さいので薄肉状 で使用することはできず、またその使用分野も制限され
ている。さらにインフレーション法による成形では、透
明性の特に優れたフィルムを得ることは難しいので一層
透明性の改良された潜脂の開発が望まれていた。
High-pressure polyethylene is known as a resin with relatively good transparency, and is used for applications such as films and hollow containers. Regarding film applications, high-pressure polyethylene has low tear strength and impact strength, so it cannot be used in thin forms, and its fields of use are also restricted. Furthermore, since it is difficult to obtain a film with particularly excellent transparency by molding using the inflation method, there has been a desire to develop a latent resin with further improved transparency.

機械的強度が優れ、高圧法ポリエチレンと同程度の密度
を有する樹脂として、チーグラー型触媒全用いて製造し
たエチレンと炭素数3以上のα−オレフィンとの共重合
体が知られている。一般にチーグラー型触媒としてバナ
ジウム系触媒を用いて製造したものは、融点が低いため
耐熱性に問題かある。−万、チタン糸触ts″ft:用
いて得られる共重合体は一般に透明性が悪いのが欠点で
ある。この場合、1合条件や触媒全適当に選択すること
により、透明性を改良することは可能であったが、(例
えは特公昭49−55545号公報)従来提案の方法で
はせいぜい高圧法ポリエチレンと同程度の透明性を有す
る共重合体しか得られなかった。
A copolymer of ethylene produced using a Ziegler type catalyst and an α-olefin having 3 or more carbon atoms is known as a resin having excellent mechanical strength and a density comparable to that of high-pressure polyethylene. Generally, Ziegler type catalysts manufactured using vanadium catalysts have a low melting point and therefore have problems in heat resistance. -10,000, titanium thread contact ts''ft: The drawback is that the copolymer obtained using this method generally has poor transparency. In this case, the transparency can be improved by appropriately selecting the conditions and catalyst. Although this was possible, the methods proposed so far (for example, in Japanese Patent Publication No. 49-55545) could only yield a copolymer with transparency comparable to that of high-pressure polyethylene.

不発明者らはこれら塊状に鑑み、高圧法ポリエチレンよ
りもフィルムの引裂強度−′P衝撃強度は勿論のこと、
透明性においても優れたエチレン重合体の開発に注力し
た結果、樟々の要件を組合せることによりそのような共
重合体の生成が可能であり、またそのような共重合不は
、従来提案されている共重合体と構造等も異なっている
ことを見出すに至った。これらの共重合体は、例えば特
公昭50−32270号や特開昭50−95382号記
載の技術において、非常に限定された要件を組合せるこ
とにより製造しうろことが判った。従って、本発明は、
上記2公報記載の発明の選択発明に関するものである。
In view of these lumps, the inventors have determined that the tear strength of the film is better than that of high-pressure polyethylene, as well as the impact strength.
As a result of our efforts to develop ethylene polymers with excellent transparency, we have discovered that it is possible to produce such copolymers by combining the requirements of camphor, and that such copolymers have been previously proposed. It was discovered that the structure, etc., is also different from that of the copolymer. It has been found that these copolymers can be produced by combining very limited requirements using the techniques described in, for example, Japanese Patent Publication No. 50-32270 and Japanese Patent Application Laid-open No. 50-95382. Therefore, the present invention
This invention relates to a selection invention of the inventions described in the above two publications.

本発明の共重合体は、通″帛の共重合体に比較し、同一
憾限粘度のものでも者しく大きい重量平均分子量<M>
w(光散乱法による)を示す。これを別の表現方法で示
すと、本発明の共重合体の極限粘度を〔η)(135”
C,デカリン中で測定)、そのときの重量平均分子量を
<M>□とするとき、(M>、の分子量ヲ有する直鎖ポ
リエチレンの極限粘度を〔η〕eとし、 一層   0.715 (〔η)、=5.29X10 <M>W   により計
算)〔η〕/〔η)  =g  と定義するとき、g7
は、0.051   η ないし0.78、好ましくは005ないし0.50の範
囲にある。
The copolymer of the present invention has a significantly larger weight average molecular weight <M> than a conventional copolymer even if it has the same limiting viscosity.
w (by light scattering method) is shown. To express this in another way, the intrinsic viscosity of the copolymer of the present invention is [η)(135”
C, measured in decalin), and the weight average molecular weight at that time is <M>□, and the intrinsic viscosity of linear polyethylene having a molecular weight of (M> is [η]e, η), = 5.29X10 <M>W Calculated by
is in the range 0.051 η to 0.78, preferably 005 to 0.50.

前記のようにg″、が1より相当率さい値を示すことは
、エチレンとの共重合成分であるa−オレフィンに起因
する短鎖分岐(例えば、4−メチル−1−ペンテンの場
合はイソブチル分岐)の他に、多くの長鎖分岐の存在全
示唆しており、単なる短鎖分岐のみを有する従来法によ
るエチレン共重合体との相違を示している。透明性が、
高圧法ポリエチレンと同等か、あるいはそれより劣るエ
チレン共重合体では、glの値は、通常0.80と1.
0の間の値を示す。
As mentioned above, the fact that g'' is considerably smaller than 1 is due to short chain branching caused by a-olefin, which is a copolymerization component with ethylene (for example, in the case of 4-methyl-1-pentene, isobutyl In addition to (branching), the presence of many long chain branches is also indicated, indicating the difference from conventional ethylene copolymers which have only short chain branches.
For ethylene copolymers that are equivalent to or inferior to high-pressure polyethylene, the gl value is usually between 0.80 and 1.
Indicates a value between 0.

本発明の共重合体は、一般に同一共重合組成の通常の共
重合体に比較し、平均球晶半径Rが著しく小さい。ここ
に平均球晶半径Rは、共重合体を220°Cに加熱後、
100 k(1/ω2−Gの加圧下で水冷プレスした7
0μのプレスシートを用いてレーザー光小角散乱法によ
り求める。即ちレーザー光小角散乱装置を用いて、入射
光全垂直光、散乱光は水平偏光の検光子を通してえられ
るいわゆるHv散乱像の散乱強度分布の極大値を与える
散乱角θmから、下式により球晶半径Rを求める。
The copolymer of the present invention generally has a significantly smaller average spherulite radius R than a normal copolymer having the same copolymer composition. Here, the average spherulite radius R is after heating the copolymer to 220°C,
7, water-cooled and pressed under a pressure of 100 k (1/ω2-G)
It is determined by the small angle laser light scattering method using a 0μ press sheet. That is, using a laser beam small-angle scattering device, the incident light is all vertical light, and the scattered light is determined by the following formula from the scattering angle θm that gives the maximum value of the scattering intensity distribution of the so-called Hv scattering image obtained through a horizontally polarized analyzer. Find the radius R.

この式により求めたRを平均球晶半径Rと定義するとき
、Rは通常6,0μ以下、好ましくは40μ以下にある
When R determined by this formula is defined as the average spherulite radius R, R is usually 6.0μ or less, preferably 40μ or less.

本発明の共重合体は、通常、示差熱分析(n S c)
の吸熱曲線から求めた融点(鋭いピークを示す点)が複
数個、多くの場合2個ないし6個、好ましくは3個存在
する。そしてその最高融点は、通常115ないし130
’C%多くの場合115ないし125°Cの範囲にある
The copolymer of the present invention is usually analyzed by differential thermal analysis (nSc).
There are multiple melting points (points showing a sharp peak), often 2 to 6, preferably 3, determined from the endothermic curve. And its highest melting point is usually 115 to 130
'C% is often in the range 115 to 125°C.

例えば第1図にg、=0.13、〔η) = 1.42
、密度0.926のエチレン・4−メチル−1−ペンテ
ン共重合体のDSOの吸熱曲線を示す。108″C,1
19°Cおよび122 ’Cに融点が住仕する。これは
懐数個の結晶形態が存在していること全示す。比較のた
めに第2図にg、、=0.83 、(η)=1.53、
密度α927のエチレン嗜4−メチルー1−ペンテン共
重合体のDSO吸熱曲線を示す。123 ’Cに唯一の
融点を示す。
For example, in Figure 1, g = 0.13, [η) = 1.42
, shows the DSO endothermic curve of an ethylene/4-methyl-1-pentene copolymer with a density of 0.926. 108″C, 1
Melting points are at 19°C and 122'C. This clearly indicates that several crystal forms exist. For comparison, Fig. 2 shows g, , = 0.83, (η) = 1.53,
1 shows a DSO endothermic curve of an ethylene-based 4-methyl-1-pentene copolymer having a density α927. It exhibits a unique melting point at 123'C.

本発明の共重合体は、また、通常、非常に狭い組成分布
全示す。組成分布の拡がりを示す尺度として、次式で示
される標準偏差σを用いると、本発明の共重合体σは、
通常3.0%以下、多くの場合、1.0ないし2.5%
の範囲にある。
The copolymers of the present invention also typically exhibit very narrow overall compositional distributions. Using the standard deviation σ expressed by the following formula as a measure of the spread of the composition distribution, the copolymer σ of the present invention is:
Usually less than 3.0%, often 1.0 to 2.5%
within the range of

xlは各区分のエチレン組成、rはxlの平均値であり
、x=ΣX ω で、ω1は重量分率である。
xl is the ethylene composition of each section, r is the average value of xl, x=ΣX ω, and ω1 is the weight fraction.

因みに第1図の共重合体のσは1.35モル%、第2図
のそれは3.72モル%である。
Incidentally, σ of the copolymer shown in FIG. 1 is 1.35 mol%, and that of FIG. 2 is 3.72 mol%.

なお組成分別は、ソックスレー抽出法に従い5区分に分
け、a−オレフィンに基づく短鎖分岐の数を赤外m秋収
スペクトルにより求めた。また分別区分は次の5種であ
る。
The composition was divided into five sections according to the Soxhlet extraction method, and the number of short chain branches based on a-olefin was determined by infrared m-yield spectroscopy. There are five classification categories as follows.

(1)p−キシレン常温可溶部 (2)沸騰n−ヘキサン抽出部 (3)沸騰ベンゼン抽出部 (4)沸騰n−へブタン抽呂部 (5)沸騰p−キシレン抽出部 本発明の共重合体の密度は、透明性が良好であるために
は、密度が3.940g/白3以下、好ましくは0.9
35g/cIN 以下でなければならない。一方、機械
的特性が優れており、しかもべたつきなどがないために
は、密度が0.900 g/3 以上、好ましくは0.
910g/cm  以上でなければならない。
(1) p-xylene soluble part at room temperature (2) boiling n-hexane extraction part (3) boiling benzene extraction part (4) boiling n-hebutane extraction part (5) boiling p-xylene extraction part In order to have good transparency, the density of the polymer is 3.940 g/white 3 or less, preferably 0.9
Must be less than 35g/cIN. On the other hand, in order to have excellent mechanical properties and no stickiness, the density should be 0.900 g/3 or more, preferably 0.900 g/3 or more.
Must be at least 910g/cm.

一方、共重合体の極限粘度〔η〕は、0.8ないし4.
0、好ましくけ1.0ないし3.0であり、とくにフィ
ルム用途には1.0ないし3.0のものか適している。
On the other hand, the intrinsic viscosity [η] of the copolymer is 0.8 to 4.
0, preferably 1.0 to 3.0, and 1.0 to 3.0 is particularly suitable for film applications.

共重合成分のa−オレフィンは、炭素数5ないし18の
a−オレフィンで、具体的には、1−ペンテン、1−ヘ
キセン、4−メチル−1−ペンテン、1−オクテン、1
−デセン、1−ドデセン、1−テトラデセン、1−オク
タデセンあるいはこれらの混合物であり、とくに炭素数
6ないし12のα−オレフィン、とりわけ4−メチルー
ペンテンが好適である。上記成分の共重合−1合は、共
重合成分によっても若干異なるが、上記密度の共重合体
となるために、通常1.0ないし30真量%、好ましく
は6.0ないし20重量%である。なお共重合成分とし
て炭素数4以下の/J−オレフィンを選択した場合には
機械的強度及び又は透明性の優れた共重合体とはならな
い。
The copolymerization component a-olefin is an a-olefin having 5 to 18 carbon atoms, and specifically includes 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-octene, 1
-decene, 1-dodecene, 1-tetradecene, 1-octadecene, or a mixture thereof, and α-olefins having 6 to 12 carbon atoms, especially 4-methylpentene, are preferred. Copolymerization-1 of the above components differs slightly depending on the copolymerization components, but in order to obtain a copolymer with the above density, it is usually 1.0 to 30% by weight, preferably 6.0 to 20% by weight. be. Note that when a /J-olefin having 4 or less carbon atoms is selected as a copolymerization component, a copolymer with excellent mechanical strength and/or transparency cannot be obtained.

本発明の共重合体を製造するには、融媒および重合条件
の選択が重要である。触媒としては、少なくともチタン
系固体触媒と有機アルミニウム化合物からなる触媒音用
いるのであるが、チタン系固体触媒としては、ハロゲン
化マグネシウム、とくに塩化マグネシウムを含有する化
合物に担持されたチタン触媒であって、C4/T1(重
量比)が好ましくは5ないし1501間昏/T:(モル
比)か好ましくけろないし90の範囲にあり、表面積が
70m2/g以上、好適には153m2/gtt越え、
とくにその中では特公昭50−52270号および特開
昭50−95382号に記載された触媒を用いるのが好
ましい。特公昭50−32270号の方法において、前
記範囲の表面積を有する触媒を合成するには、塩化マグ
ネシウム1モルに対し、低級アルコール、例えばエタノ
ール全豹4ないし約7モル程度付加させ、これにアルコ
ールと反応させるに充分な有機アルミニウムを作用させ
、次いで四塩化チタン又は四塩化チタンの不活性炭化水
素溶液と作用させることによって得られる。
In producing the copolymer of the present invention, selection of the melting medium and polymerization conditions is important. As a catalyst, a catalyst consisting of at least a titanium-based solid catalyst and an organoaluminum compound is used.As the titanium-based solid catalyst, a titanium catalyst supported on a compound containing magnesium halide, particularly magnesium chloride, is used. C4/T1 (weight ratio) is preferably in the range of 5 to 1501, and T: (molar ratio) is preferably in the range of about 90 to 90, and the surface area is 70 m2/g or more, preferably more than 153 m2/gtt,
Among these, it is particularly preferable to use the catalysts described in Japanese Patent Publication No. 50-52270 and Japanese Patent Application Laid-open No. 50-95382. In the method of Japanese Patent Publication No. 50-32270, in order to synthesize a catalyst having a surface area within the above range, 4 to about 7 moles of a lower alcohol, such as ethanol, are added to 1 mole of magnesium chloride, and this is reacted with the alcohol. by reacting with sufficient organoaluminum to give a oxidation effect, and then with titanium tetrachloride or an inert hydrocarbon solution of titanium tetrachloride.

特開昭50−95582号の方法においては、前記特公
昭50−32270号の方法で得た触媒に、さらに少量
の四塩化チタンと有機了ルミニウム化合物を反応させろ
ことによって、本発明に好適な触媒が得られる。
In the method of JP-A-50-95582, the catalyst obtained by the method of JP-A-50-32270 is further reacted with a small amount of titanium tetrachloride and an organic phosphorium compound, thereby producing a catalyst suitable for the present invention. is obtained.

これら2法によって得られる触媒は、チタン、マグネシ
ウム、塩素、アルミニウムを合力し、表面積は70m2
/g以上、好適には150m2/gを越え500 m2
/g以下である。
The catalyst obtained by these two methods is a combination of titanium, magnesium, chlorine, and aluminum, and has a surface area of 70 m2.
/g or more, preferably more than 150 m2/g and 500 m2
/g or less.

本発明の共重合体を得るには\前記チタン触媒と共用す
ゐ有機アルミニウム化合物の選択が重要である。有機ア
ルミニウム化合物としてへ実験式RnAl0#3−n(
但し、Bはアルキル基のような炭化水素基、I S n
 S2.5好ましくは1.5<n<2.0 、特に好ま
しくンよ1.5≦n≦1.8)の実験式で示される有機
アルミニウムクロリドが共触媒として用いられる。平均
組成がこれらの実験式になる限り、2以上の混合物であ
ってもよい。好ましいのはアルキルアルミニウムセスキ
クロリドおよび又はジアルキルアルミニウムハライドで
あり、とくに好ましいのは、アルキルアルミニウムセス
キハライドおよびこれとジアルキルアルミニウムハライ
ドの混合物である。
In order to obtain the copolymer of the present invention, it is important to select the organoaluminum compound that can be used together with the titanium catalyst. As an organoaluminum compound, the empirical formula RnAl0#3-n (
However, B is a hydrocarbon group such as an alkyl group, I S n
S2.5 An organoaluminum chloride having the empirical formula preferably 1.5<n<2.0, particularly preferably 1.5≦n≦1.8) is used as a cocatalyst. A mixture of two or more may be used as long as the average composition satisfies these empirical formulas. Preferred are alkyl aluminum sesquichlorides and/or dialkyl aluminum halides, particularly preferred are alkyl aluminum sesquihalides and mixtures thereof with dialkyl aluminum halides.

1[フルミニラム化合物としてエチレン重合ニしはしは
用いられているトリアルキルアルミニウムヤシアルキル
アルミニウムハイドライドあるいはジアルキルアルミニ
ウムアルコキシドやアルキルアルミニウムアルコキシハ
イドライドなどを共触媒に用いると、通常g)が0.8
0以上、σが3.(1以上、平均球晶半径Bが7μより
大きくなり一融点は1点又は2点存在する共重合体しか
得られないO 本発明の共重合体を得るためには、触媒の選択と共に共
重合条件の選択も重要である。重合は、好ましくは炭化
水素溶媒の共存下あるいはモノマー自身r溶嫉とする条
件下、共重合体の融点以上で行い、かつ溶媒と共重合体
が均一相になる条件で行う必要がある。そして単全体濃
度全一定にしつつ連続重合を行うのが好ましい。溶媒と
共重合体が均一相全形成する範囲は、溶媒の種類、溶液
中の単量体や水素などの濃度(圧力)、重合温度、共重
合体の分子量(極限粘度)などによって変動するので予
め、予備実験によってその範囲を定めておかねばならな
す。
1 [If a trialkylaluminum coconut hydride, dialkylaluminum alkoxide, or alkylaluminum alkoxy hydride, which is used for ethylene polymerization as a fluminiram compound, is used as a cocatalyst, g) is usually 0.8
0 or more, σ is 3. (1 or more, the average spherulite radius B is larger than 7μ, and only a copolymer with one or two melting points can be obtained). Selection of conditions is also important. Polymerization is preferably carried out in the coexistence of a hydrocarbon solvent or under conditions where the monomer itself is dissolved at a temperature above the melting point of the copolymer, and the solvent and copolymer form a homogeneous phase. It is necessary to carry out the polymerization under the following conditions.It is preferable to carry out continuous polymerization while keeping the total monomer concentration constant.The range in which the solvent and copolymer form a uniform phase depends on the type of solvent, the monomers and hydrogen in the solution, etc. Since it varies depending on the concentration (pressure), polymerization temperature, molecular weight (intrinsic viscosity) of the copolymer, etc., the range must be determined in advance through preliminary experiments.

例えば(y7) =1.42 、密度0.926 g/
 an3.4−メチル−1−ペンテン含fit2.9モ
ル多、m点(io8”c、119°C,122”C)の
エチレン・4−メチル−1−ペンテン共重合体のヘキサ
ン溶媒中におケ6沈殿点Tt第5図に示す。第3図の横
軸は全圧(ガス相は、ヘキサン、エチレンおよび場合に
よっては4−メチル−1−ペンテンの全圧)ヲ示し、縦
軸は不均一相になる温度(北殿温度)を示す。線(1)
はヘキサン/4−メチル−1−ペンテン(85/15)
混合系における共重合体濃度150g/lの沈殿点全示
し、li!(2)は同じ系で共重合体濃度1oog7’
gの沈殿点を、また線(3)は共重合体濃度50g/e
の沈殿点をそれぞれ示す。また線(4)はヘキサン中の
共重合体濃度50g/gの沈殿点を示す。沈殿点より高
い温度においては不均一相となる。
For example, (y7) = 1.42, density 0.926 g/
an3.4-Methyl-1-pentene containing 2.9 moles of ethylene/4-methyl-1-pentene copolymer with m point (IO8"C, 119°C, 122"C) in hexane solvent. (6) The precipitation point Tt is shown in Figure 5. The horizontal axis in Figure 3 shows the total pressure (the gas phase is the total pressure of hexane, ethylene, and in some cases 4-methyl-1-pentene), and the vertical axis shows the temperature at which the heterogeneous phase becomes (Hokudon temperature). show. line (1)
is hexane/4-methyl-1-pentene (85/15)
All precipitation points at a copolymer concentration of 150 g/l in a mixed system are shown, li! (2) is the same system with a copolymer concentration of 10og7'
Line (3) is the precipitation point of copolymer concentration 50 g/e.
The precipitation point of each is shown. Line (4) indicates the precipitation point at a copolymer concentration of 50 g/g in hexane. At temperatures higher than the precipitation point, it becomes a heterogeneous phase.

図から明らかなように、共重合体濃度が50ないし15
0g//!の範囲においては、共重合体濃度が高く、圧
力が高い程、均一相で重合しうる温度領域が広いことが
判る。また単量体の溶有量によって操作可能な温度領域
が異なることも明らかである。
As is clear from the figure, the copolymer concentration is between 50 and 15
0g//! In the range of , it can be seen that the higher the copolymer concentration and the higher the pressure, the wider the temperature range in which polymerization can occur in a homogeneous phase. It is also clear that the operable temperature range differs depending on the amount of monomer dissolved.

第3図は一つのモデルであり、実際の重合系については
、それぞれ予伽的に均一相領域を求める必要がある。
FIG. 3 is a model, and for actual polymerization systems, it is necessary to determine the homogeneous phase region in advance.

共重合体濃度が低すぎるのは経済的でなくまた操作可能
な温度域も狭い。また、共重合体濃度を高くしすぎると
溶液粘度が上昇しすぎて円?Vな重合反応を阻止する。
If the copolymer concentration is too low, it is not economical and the operable temperature range is also narrow. Also, if the copolymer concentration is too high, the viscosity of the solution will increase too much. V polymerization reaction is inhibited.

従って、通常は共重合体濃度金、溶媒14当v50ない
し200gとするのが好ましい。
Therefore, it is usually preferable to adjust the copolymer concentration to 50 to 200 g per 14 parts of gold and solvent.

炭化水素溶媒としては、n−ヘキサン、n−へブタン、
イソヘキサン、n−ペンタン、オクタン、デカン、灯油
のような脂肪族炭化水素、シクロヘキサン、メチルシク
ロヘキサンのような脂FiA 1M 炭化水素、ベンゼ
ン、トルエン、キシレンのような芳香族炭化水素を用い
ることができる。
Hydrocarbon solvents include n-hexane, n-hebutane,
Aliphatic hydrocarbons such as isohexane, n-pentane, octane, decane, kerosene, fatty hydrocarbons such as cyclohexane, methylcyclohexane, aromatic hydrocarbons such as benzene, toluene, xylene can be used.

触媒の使用量は、溶媒11当り、前記固体触媒成分をチ
タン原子換算で(1,0005ないし1.0mmol、
好ましくは0.001ないし34m!rial、また前
記有機7/L/ミニウム化合物をアルミニウム換Wで0
01すいし10mm01、好ましくは0.05ないし1
.0mmolの割合で用い、Al/Ti (モル比)を
1以上とがるように調節するのがよい。
The amount of the catalyst used is 1,0005 to 1.0 mmol of the solid catalyst component in terms of titanium atoms per 11 of the solvent.
Preferably 0.001 to 34m! rial, and also the organic 7/L/minium compound with aluminum-exchanged W.
01 to 10mm01, preferably 0.05 to 1
.. It is preferable to use it at a ratio of 0 mmol and adjust the Al/Ti (molar ratio) so that it is sharper than 1.

共重合成分である炭素数5ないし18のα−オレフィン
の供給割合は、α−オレフィンの種類、重合温度、重合
器中のエチレン分圧などによっても異なるが、エチレン
1モルに対し、0.05ないし20モル、好適には0.
10ないし5モル程度である。
The feed ratio of the α-olefin having 5 to 18 carbon atoms, which is a copolymerization component, varies depending on the type of α-olefin, polymerization temperature, ethylene partial pressure in the polymerization vessel, etc., but is 0.05 to 1 mole of ethylene. from 20 mol, preferably 0.
It is about 10 to 5 moles.

重合は、加圧下で行うのが9fましく、例えば2ないし
100kqZ画2、好ましくは15ないし70 kq/
口2とするのがよい。分子量の調節には水素を共存させ
るのが好ましい。
The polymerization is preferably carried out under pressure, for example 2 to 100 kq/Z, preferably 15 to 70 kq/
It is better to use mouth 2. In order to adjust the molecular weight, it is preferable to coexist hydrogen.

本発明の共重合体は、高圧法ポリエチレンよりも透明性
、耐引裂性、耐衝撃性に優れており、フィルムとして好
適である。とくに、ヒートシール性が非常に優れている
ことと前記特性を備えていることは包装用フィルムとし
て好適であることを示している。フィルムにおいては、
T−ダイ法で得たものは勿論のことインフレーション法
によって得たものも高度に透明である。本発明の共重合
体はまた中空成形、射出成形、押出成形などによって各
種成形品を製造することができ心。また他のフィルムに
押出被覆を行い、後層のフィルムとすることもできる。
The copolymer of the present invention has better transparency, tear resistance, and impact resistance than high-pressure polyethylene, and is suitable for use as a film. In particular, the fact that the film has excellent heat sealability and the above-mentioned properties indicates that it is suitable as a packaging film. In film,
Not only those obtained by the T-die method but also those obtained by the inflation method are highly transparent. The copolymer of the present invention can also be used to produce various molded products by blow molding, injection molding, extrusion molding, etc. Alternatively, another film may be extrusion coated to form a subsequent layer film.

あるいは、他の熱可塑性樹脂、例えばポリエチレン、ポ
リプロピレン、ポリ−1−ブテン、ポリ−4−メチル−
1−ペンテン、エチレン・プロピレン共重合体、エチレ
ン・1−ブテン共重合体、プロピレン・1−ブテン共重
合体などのポリオレフィンとブレンドして使用すること
もできる。あるいは、石油樹脂、ワックス、安定剤、帯
電防止剤、紫外線吸収剤、合成ゴム又は天然ゴム、滑剤
、無機充填剤などを配合して用いることもできる。
Alternatively, other thermoplastic resins such as polyethylene, polypropylene, poly-1-butene, poly-4-methyl-
It can also be used in a blend with polyolefins such as 1-pentene, ethylene/propylene copolymer, ethylene/1-butene copolymer, propylene/1-butene copolymer, and the like. Alternatively, petroleum resins, waxes, stabilizers, antistatic agents, ultraviolet absorbers, synthetic or natural rubbers, lubricants, inorganic fillers, and the like may be blended and used.

実施例1 く触媒調製〉 窒素気流中で市販の無水塩化マグネシウム10モルを脱
水精製したヘキサン50/!に懸濁させ、攪拌しながら
エタノール60モルを1時間かけて滴下後、室温にて1
時間反応した。これに27モルのジエチルアルミニウム
クロリドを室温で、滴下し、1時間攪1拌した。続いて
四塩化チタン100モルを加えた後、系を70°Cに昇
温して3時間攪拌しながら反応を行った。生成した固体
部は傾瀉によって分離し、精製ヘキサンによりくり返し
洗浄後、ヘキサンの懸濁液とする。チタンの濃度は滴定
によって定量した。
Example 1 Catalyst Preparation> 10 mol of commercially available anhydrous magnesium chloride was dehydrated and purified in a nitrogen stream to produce 50% hexane! 60 mol of ethanol was added dropwise over 1 hour while stirring, and then 1 hour was added at room temperature.
Time reacted. To this was added dropwise 27 mol of diethylaluminium chloride at room temperature, and the mixture was stirred for 1 hour. Subsequently, 100 mol of titanium tetrachloride was added, and the temperature of the system was raised to 70°C, and the reaction was carried out with stirring for 3 hours. The generated solid portion is separated by decantation, washed repeatedly with purified hexane, and then made into a hexane suspension. The concentration of titanium was determined by titration.

く重 合〉 200Eの連続重合反応器を用いて、脱水精製した溶媒
ヘキサンを80//hr、エチルアルミニウムセスキク
ロリド32 mmo:L /hr 、前記担体付触媒を
チタンに換算して1.2mwol/hrを連続的に供給
し、重合器内において同時にエチレン151q/hr−
14−メチル−1−ペンテン15.Qkq/hr、水!
+004?/hrの割合で連続供給し、重合温度145
”O−、全圧50にσ7atr’ a 、滞留時間1時
間、溶媒ヘキサンに対する共重合体の濃度112g/A
? となる条件下で共重合体の製造を行った。得られた
共重合体の密度は0.922 g/備3、M工= 2.
24、分子量MW=256万、炭素原子1000個当り
のイソブチル基は132個検出された。またり=009
.70μの急冷プレスシートの球晶半径R= 1.5μ
であった。この共重合体を市販の高圧法ポリエチレン用
チューブラ−フィルム成形IIA(モダンマシナリー製
)で幅350mm、厚み3 Q /lのフィルムを得た
。成形条件は耐脂温180”C1スクリュー回転数10
0回転、グイ径100mmφ、ダイスリット帽0.7m
mである。
Polymerization> Using a 200E continuous polymerization reactor, the dehydrated and purified solvent hexane was used at 80//hr, ethylaluminum sesquichloride was used at 32 mmo:L/hr, and the supported catalyst was converted into titanium at 1.2 mwol/hr. hr is continuously supplied, and ethylene 151q/hr- is simultaneously supplied in the polymerization vessel.
14-methyl-1-pentene15. Qkq/hr, water!
+004? /hr, and the polymerization temperature was 145
``O-, σ7 atr' a at total pressure 50, residence time 1 hour, concentration of copolymer in solvent hexane 112 g/A
? The copolymer was produced under the following conditions. The density of the obtained copolymer was 0.922 g/3, M = 2.
24, molecular weight MW=2.56 million, and 132 isobutyl groups per 1000 carbon atoms were detected. Matari=009
.. Spherulite radius R of 70μ quenched press sheet = 1.5μ
Met. A film having a width of 350 mm and a thickness of 3 Q/l was obtained from this copolymer using a commercially available high-pressure polyethylene tubular film forming IIA (manufactured by Modern Machinery). Molding conditions: Greasy temperature 180” C1 screw rotation speed 10
0 rotation, diameter 100mmφ, die slit cap 0.7m
It is m.

成形した結果を表1に記した。また同様にして市販の低
密度ポリエチレンを成形した結果を表2に示した。
The molding results are shown in Table 1. Table 2 shows the results of molding commercially available low density polyethylene in the same manner.

実施例2 200での連続重合反応器を用いて、脱水精製シタヘキ
サンヲ80d/hr−、エチルアルミニウムセスキクロ
リド16 mmol/:hr 、ジエチルアルミニウム
クロリド8 mmol、/hr 、実施例1に記載した
触媒をチタンに換算して0.70mm○l / h r
をWaに供給し、重合器内において同時にエチレン13
.5 kQ/h r %4−メチルー1−ペンテン14
.4kq/hr 、水素7゜1/brの割合で連続供給
し、重合温度145“c1全圧30kg/crtt’G
 、滞留時間1時間、溶媒ヘキサンに対する共重合体の
婬度119g、’gとなる条件下で共重合体の製造を行
った。得られた共重合体の密度は0.923 g /C
m3、M工=4.05、分子量M w= 36.5万、
炭素原子1000個当りのイソブチル基は17.0個検
出された。またg7? =0.35.70μの急冷プレ
スシーFの球晶半径R=1.7μであった。この共重合
体のフィルム成形結果を表1に示す。
Example 2 Using a continuous polymerization reactor of 200 mm, dehydrated and purified sitahexane was added at 80 d/hr, ethylaluminum sesquichloride 16 mmol/hr, diethylaluminum chloride 8 mmol/hr, and the catalyst described in Example 1 was added to titanium. Convert to 0.70mm○l/hr
is supplied to Wa, and at the same time in the polymerization vessel ethylene 13
.. 5 kQ/hr %4-methyl-1-pentene 14
.. 4kq/hr, hydrogen was continuously supplied at a rate of 7°1/br, polymerization temperature 145"c1 total pressure 30kg/crtt'G
The copolymer was produced under conditions such that the copolymer had a residence time of 1 hour and a compatibility of the copolymer with respect to hexane as a solvent of 119 g, 'g. The density of the obtained copolymer is 0.923 g/C
m3, M engineering = 4.05, molecular weight M w = 365,000,
17.0 isobutyl groups were detected per 1000 carbon atoms. g7 again? =0.35.70μ, and the spherulite radius R of the quenched press sea F was 1.7μ. Table 1 shows the results of film forming of this copolymer.

実施例3 〈触媒調製〉 窒素り液中で市販の無水塩化マグネシウム10モルを脱
水精製したヘキサン501に懸濁させ、攪拌しながらエ
タノール60モルを1時間かけて滴下後、室温にて1時
間反応した。これに28モルのジエチルアルミニウムク
ロリドを室温で滴下し、1時間撹拌した。続いて7モル
の四塩化チタンと7モルのトリエチルアルミニウムとを
加え、室温で4時間かきまぜながら還元反応を行ったと
ころ固体部は3価のチタンに特有の茶褐色に変色した。
Example 3 <Catalyst Preparation> 10 mol of commercially available anhydrous magnesium chloride was suspended in dehydrated and purified hexane 501 in a nitrogen solution, 60 mol of ethanol was added dropwise over 1 hour with stirring, and the mixture was reacted for 1 hour at room temperature. did. To this was added dropwise 28 mol of diethylaluminium chloride at room temperature, and the mixture was stirred for 1 hour. Subsequently, 7 moles of titanium tetrachloride and 7 moles of triethylaluminum were added and a reduction reaction was carried out while stirring at room temperature for 4 hours, resulting in the solid portion changing color to brownish brown characteristic of trivalent titanium.

得られたヘキサンの苛濁液のチタン濃度を滴定により定
量した。
The titanium concentration of the obtained hexane suspension was determined by titration.

〈重 合〉 実施例1と同じ連続重合反応装置を用いて、脱水精製し
た溶媒ヘキサンを801/hr、エチルアルミニウムセ
スキクロリド32mmol/hr、前記担体付触媒をチ
タンに換算して1.2 mmol / hr  を連続
的に供給し、重合器内において同時にエチレン12.5
kQ/hr 、 4−メチル−1−ペンテン1 tct
g/hr、水素110g/hrの割合で連続供給し、重
合温度145”C1全圧30にり7at? a 、滞留
時間1時間、溶媒ヘキサンに対する共重合体の濃度11
0g/βとなる条件下で共重合体の製造を行った。得ら
れた共重合体の密度は0.926g1α3、M工=45
8、分子量137万、炭素原子1000(flit当り
のイソブチル基は13.9個検出された。まなg”=0
.13、η 70μ倉冷プレスシートの球晶半径R=1.2μであっ
た。この共重合体を実施例1と同じ成形法を用いて成形
した結果を表1に示す。
<Polymerization> Using the same continuous polymerization reactor as in Example 1, the dehydrated purified solvent hexane was 801/hr, ethylaluminum sesquichloride was 32 mmol/hr, and the supported catalyst was 1.2 mmol/hr in terms of titanium. hr is continuously supplied, and 12.5 hr of ethylene is simultaneously supplied in the polymerization vessel.
kQ/hr, 4-methyl-1-pentene 1 tct
g/hr, hydrogen was continuously supplied at a rate of 110 g/hr, polymerization temperature was 145" C1, total pressure was 7 at? a, residence time was 1 hour, and the concentration of copolymer with respect to solvent hexane was 11
The copolymer was produced under conditions of 0 g/β. The density of the obtained copolymer was 0.926g1α3, M engineering = 45
8. Molecular weight 1,370,000, carbon atoms 1000 (13.9 isobutyl groups were detected per flit. Mana g" = 0
.. 13, η 70 μ The spherulite radius R of the warehouse-cooled press sheet was 1.2 μ. Table 1 shows the results of molding this copolymer using the same molding method as in Example 1.

実施例4 200eの連続重合反応器を用いて脱水精製したヘキサ
ンを80g/hr、ジエチルアルミニウムクロリド20
 mmol/hr、実施例3に記載した触媒をチタンに
換算して0.4 mmol /hrを連続的に供給し、
重合器内において同時にエチレン15.5kQ/br、
 4−メチル−1−ペンテン16.0&9/hr、水素
50j/hrの割合で連続供給し、重合温度145℃、
全圧501g/att2G 、滞留時間1時間、溶媒ヘ
キサンに対する共重合体の濃度118g/lとなる条件
下で共重合体の製造を行った。得られた共重合体の密度
け0.924 g/Cm3、M工=4.68、分子量y
t、 = 41.5万、炭素原子1000個当りのイソ
ブチル基15.2個検出された。またg”=0.30.
70μの急冷プレスジη −トの球晶半径R=1.8μであった。この共重合体を
実施例1と同様の条件でフィルム成形した結果を表1に
示す。
Example 4 80g/hr of hexane dehydrated and purified using a 200e continuous polymerization reactor, 20g/hr of diethylaluminum chloride
mmol/hr, the catalyst described in Example 3 was continuously supplied at 0.4 mmol/hr in terms of titanium,
Ethylene 15.5kQ/br simultaneously in the polymerization vessel,
Continuously supplied 4-methyl-1-pentene at a rate of 16.0 & 9/hr and hydrogen at a rate of 50 j/hr, polymerization temperature 145°C,
The copolymer was produced under conditions such that the total pressure was 501 g/att2G, the residence time was 1 hour, and the concentration of the copolymer with respect to the solvent hexane was 118 g/l. The density of the obtained copolymer was 0.924 g/Cm3, M = 4.68, and molecular weight y.
t, = 415,000, 15.2 isobutyl groups were detected per 1000 carbon atoms. Also, g”=0.30.
The spherulite radius R of the 70μ quench press plate η-t was 1.8μ. This copolymer was formed into a film under the same conditions as in Example 1, and the results are shown in Table 1.

比較例1 実施例1において用いた同じ装置を用いて脱水精製した
溶媒ヘキサン80 l/h r % )リエチルアルミ
ニウム20mmol/hr、実施例1に記載した触媒を
チタンに換算して0.28mmol/hrを連続的に供
給し、重合器内において同時にエチレン14.O,kq
/hr、 4−メチル−1−ペンテン18−0kQ/b
r−、水素、40J?/hrの91合で連続供給し重合
温度145℃、全圧30 k(t/cm2G、滞留時間
1hr、溶媒ヘキサンに対する共重合体濃度128 g
/(lとなる条件下で共重合体の製造を行った。得られ
た成型合体の密度0.920e声、M工=4.65、分
子量M、=9.8万、炭素原子1000個当りのイソブ
チル基は20.1個検出された。g”=0.85.70
μ急冷プレスシーη トの球晶半径R=6.1μであった。この共重合体を実
施例1と同様の条件でフィルム成形した結果を表1に示
す。
Comparative Example 1 Solvent hexane dehydrated and purified using the same equipment used in Example 1 (80 l/hr r%) ethylaluminum 20 mmol/hr, catalyst described in Example 1 converted to titanium 0.28 mmol/hr hr is continuously supplied, and ethylene 14.hr is simultaneously supplied in the polymerization vessel. O, kq
/hr, 4-methyl-1-pentene 18-0kQ/b
r-, hydrogen, 40J? Polymerization temperature was 145°C, total pressure was 30k (t/cm2G, residence time was 1hr, copolymer concentration was 128g with respect to solvent hexane).
The copolymer was produced under conditions such that /(l).The density of the resulting molded composite was 0.920e, M = 4.65, molecular weight M = 98,000, per 1000 carbon atoms. 20.1 isobutyl groups were detected.g''=0.85.70
The spherulite radius R of the μ quenched press sheet η was 6.1 μ. This copolymer was formed into a film under the same conditions as in Example 1, and the results are shown in Table 1.

比較例2 実施例1において用いた同じ装置を用いて脱水精製した
溶媒ヘキサン801/hr、)リエチルアルミニウム1
m01に対して0,5モルのエチルアルコールを反応さ
せて得たAgEt3−n(OEt)nを20mmol/
hr、実施例1に2蒋した触媒をチタンに換算して0.
32 mmc+1 /h rを連続的に供給し、重合器
内において同時にエチレン13.5&97h r、 4
−メチル−1−ペンテン16.0&9/h r 、水素
50//hrの割合で連続供給し、重合温度145℃、
全圧30kq/α2o1滞留時間1 hr、溶媒ヘキサ
ンに対する共重合体濃度*15g/(lとなろ条件下で
共重合体の製造を行つ之。得られた共重合体の密度0.
926g/α3、MI=5.22、分子fiMw=7.
7万、炭素原子1000個当りのイソブチル基は13.
8個検出された。またgη =0.95.70μの急冷
プレスシートの球晶半径R=6.6μであった。この共
重合体を実施例1と同様の条件でフィルム成形した結果
を表1に示す。
Comparative Example 2 Solvent hexane 801/hr,) ethylaluminum 1 dehydrated and purified using the same equipment used in Example 1
AgEt3-n(OEt)n obtained by reacting 0.5 mol of ethyl alcohol with m01 was 20 mmol/
hr, the catalyst used in Example 1 was converted into titanium and was 0.
Continuously supply 32 mmc+1/hr, and simultaneously feed ethylene 13.5 & 97 hr, 4 in the polymerization vessel.
- Methyl-1-pentene was continuously supplied at a rate of 16.0 & 9/hr and hydrogen at a rate of 50/hr, polymerization temperature was 145°C,
The copolymer was produced under the following conditions: total pressure 30 kq/α2o1 residence time 1 hr, copolymer concentration with respect to solvent hexane*15 g/(l).The density of the obtained copolymer was 0.
926g/α3, MI=5.22, molecule fiMw=7.
70,000, and the isobutyl group per 1000 carbon atoms is 13.
Eight were detected. Further, the spherulite radius R of the rapidly cooled pressed sheet with gη =0.95.70μ was 6.6μ. This copolymer was formed into a film under the same conditions as in Example 1, and the results are shown in Table 1.

比較例3 実施例1において用いた同じ装置を用いて、脱水精製し
た溶媒ヘキサン801/hr、ジエチルアルミニウムハ
イドライド24 mraol/hr、実施例1に記載し
た触媒をチタンに換算して0.4mmol/hrを連続
的に供給し、重合器内において同時にエチレン13.5
Aq、 4−メチル−1−ペンテン16.5に9、水素
5071?/hrの割合で連続供給し、重合温度145
℃、全圧30 ka/at’ G 、滞留時開1hr、
溶媒ヘキサンに対する共重合体濃度115 g7gとな
る条件下で共重合体の製造を行った。得られた共重合体
の密度0.925 g/Q13、M工=4.30、分子
11Mw=8.4万、炭素原子1000個当りのイソブ
チル基F!14.5個検出された。またgy7”=0.
92.701の急冷プレスシートの球晶半径R=6.2
μであった。この共重合体を実施例1と同様の条件でフ
ィルム成形した結果を表1に示す。
Comparative Example 3 Using the same equipment used in Example 1, the dehydrated and purified solvent hexane 801/hr, diethylaluminum hydride 24 mraol/hr, and the catalyst described in Example 1 was converted into titanium to yield 0.4 mmol/hr. Continuously supplying ethylene 13.5
Aq, 4-methyl-1-pentene 16.5 to 9, hydrogen 5071? /hr, and the polymerization temperature was 145
°C, total pressure 30 ka/at' G, open for 1 hr during residence,
The copolymer was produced under conditions such that the copolymer concentration was 115 g to 7 g with respect to the solvent hexane. The resulting copolymer had a density of 0.925 g/Q13, M engineering = 4.30, molecule 11 Mw = 84,000, and isobutyl groups F per 1000 carbon atoms! 14.5 were detected. Also, gy7”=0.
Spherulite radius R of quenched press sheet of 92.701 = 6.2
It was μ. This copolymer was formed into a film under the same conditions as in Example 1, and the results are shown in Table 1.

比較例]4 実施例1において用いた同じ装置を用いて脱水精製した
溶媒ヘキサン80C/hr、)ジイソブチルアルミニウ
ム24mmol/hr−、実施例3に記載した触媒をチ
タンに換算して0.32 mmol /hrを連続的に
供給し、重合器内において同時にエチレン15.5ko
、4−メチル−1−ペンテン15.0A(h水素5Ql
/hrの割合で連続供給し、重合温度145℃、全圧3
0 ka/1v2G 、滞留時間1hr、  溶媒ヘキ
サンに対する共重合体濃度105 g/lとなる条件下
で共重合体の製造を行った。得られた共重合体の密度0
.924 g /Cryt’、M工=443、分子量M
w=9.2万、炭素原子1000個当りのイソブチル基
は16.1個検出された。またgη’=0.85.70
μの急冷プレスシートの球晶半径R=7.3μであった
。この共重合体を実施例1と同様の条件でフィルム成形
した結果を表1に示す。
Comparative Example] 4 Solvent hexane dehydrated and purified using the same equipment used in Example 1: 80 C/hr diisobutylaluminum: 24 mmol/hr; Catalyst described in Example 3: 0.32 mmol/hr in terms of titanium hr is continuously supplied, and 15.5 ko of ethylene is simultaneously supplied in the polymerization vessel.
, 4-methyl-1-pentene 15.0A (h hydrogen 5Ql
/hr, polymerization temperature 145℃, total pressure 3
The copolymer was produced under the following conditions: 0 ka/1v2G, residence time 1 hr, and copolymer concentration 105 g/l with respect to hexane solvent. The density of the obtained copolymer is 0
.. 924 g/Cryt', M engineering=443, molecular weight M
w=92,000, and 16.1 isobutyl groups were detected per 1000 carbon atoms. Also, gη'=0.85.70
The spherulite radius R of the quenched press sheet with μ was 7.3 μ. This copolymer was formed into a film under the same conditions as in Example 1, and the results are shown in Table 1.

比較例5 実施例1において用いた同じ装置を用いて脱水精製しな
溶媒ヘキサン801/h r−、ジイソブチルアルミニ
ウムハイドライド24 mmol/hr、実施例3に記
載した触媒をチタンに換算して0.4 mmol /h
rを連続的に供給し、重合器内において同時にエチレン
13.0&q% ’−メチルー1−ペンテン16.0k
Q。
Comparative Example 5 The same equipment used in Example 1 was used to dehydrate and purify the solvent, hexane 801/hr, diisobutylaluminum hydride 24 mmol/hr, and the catalyst described in Example 3, converted to titanium: 0.4 mmol/h
Continuously supplying r, ethylene 13.0&q%'-methyl-1-pentene 16.0k simultaneously in the polymerization vessel
Q.

水601!/hrの割合で連続供給し、重合温度145
℃、全圧3 chq/cM2a 、滞留時間1hr、 
 溶媒ヘキサンに対する共重合体濃度108 g/l 
となる条件下で共重合体の製造を行った。得られた共重
合体の密度0.924g/α3、M工= 4.32 、
分子量Mw=8,5万、炭素原子1000個当りのイソ
ブチル基は15.8個検出された。またg”=0.89
.70μの急冷プレη スシートの球晶半径R=6.3μであった。この共重合
体を実施例1と同様の条件下でフィルム成形した結果を
表1に示す。
Water 601! /hr, and the polymerization temperature was 145
°C, total pressure 3 chq/cM2a, residence time 1 hr,
Copolymer concentration 108 g/l relative to solvent hexane
The copolymer was produced under the following conditions. The density of the obtained copolymer was 0.924 g/α3, M engineering = 4.32,
Molecular weight Mw=85,000, and 15.8 isobutyl groups per 1000 carbon atoms were detected. Also g”=0.89
.. The spherulite radius R of the 70μ quenched press sheet was 6.3μ. This copolymer was formed into a film under the same conditions as in Example 1, and the results are shown in Table 1.

【図面の簡単な説明】[Brief explanation of the drawing]

添付第1図は本発明共重合体の一例についてのDSC吸
熱曲線である。又、第3図は本発明共重合体の数例につ
いての数種の溶媒中における全圧−沈殿点(°C)の関
係を示すグラフである。 特許出願人 三井石油化学工業株式会社第1図 第2図 手続補正書(自発) 昭和63年8月8日 昭和63年特許願第170015号 2、発明の名称 エチレン共重合体フィルムおよび成型体3、補正をする
者 事件との関係    特許出願人 名称 (588)三井石油化学工業株式会社電話 58
5−2256 5、補正命令の日付   な し 6、補正の対象 明細書の「特許請求の範囲」の欄および「発明の詳細な
説明」の欄 (1)本願明細書の「特許請求の範囲」の欄の記載を別
紙のとおり訂正する。 (2)本願明細書第4頁下から第3行〜末行の「直鎖ポ
リー−−−一一一一一−−計算)」を次のとおり訂正す
る。 「直鎖ポリエチレン[標準直鎖ポリエチレン(ジアゾメ
タンの重合により得られる直鎖ポリメチレン)1を用い
て、その極限粘度(135℃、デカリン中で測定)と(
M ) wの関係について測定決定された下記式 %式% により計算できる該直鎖ポリエチレンの極限粘度を[v
 ](+として、」 (3)同第5頁第8行の「示唆しており」を「示唆する
ものと推測されておりjに訂正する。 (4)同第7頁第6行の「示す。組成」を次のとおり訂
正する。 「示す。このことは、本発明エチレン共重合体がランダ
ム共重合体であって、そのランダム性も良好であるこ七
を意味し、その組成」 (5)同第8頁第11〜末行の「l−ペンテン、−−一
−−−−−−α−オレフィン」を次のとおり訂正する。 「l−ペンテン、l−ヘキセン、■−オクテン、■−デ
セン、l−ドデセン、l−テトラデセン、l−オクタデ
セン、3−メチル−1−ブテン、3−メチル−1−ペン
テン、4−メチル−1−ペンテン、3−メチル−1−ヘ
キセン、4−メチル−1−ヘキセン、5−メチル−1−
ヘキセン、3−メチル−1−ヘプテン、5−メチル−1
−ヘプテンあるいはこれらの混合物であり、特に炭素数
6ないし12のα−オレフィンであるl−ヘキセン、l
−オクテン、l−デセン、3−メチル−1−ペンテン、
4−メチル−1−ペンテン、5−メチル−1−ヘキセン
、5−メチル−1−ヘプテンで」(6)同第26頁第6
行の「水60a」を、「水素60a」に訂正する。 (7)同第28頁の表2の後に下記を加入する。 「実施例5 200Qの連続重合反応器を用いて脱水精製しI;ヘキ
サン80ff/hr、ジエチルアルミニウムクロリド2
5 mmol/ hrx実施例3に記載した触媒をチタ
ンに換算して0 、5 mmol/ hrを連続的に供
給し、重合器内において同時にエチレン14.0kg/
hr、l−ヘキセン、l−オクテン及びl −7”セン
の混合α−オレフィン(三菱化成社製、グイアレン61
0,1−ヘキセン35.9%、l−オクテン33.3%
、l−デセン30.8%の混合a−才しフィン)を15
 、Okg/hr、水素6012/hrの割合で連続供
給し、重合温度145℃、全圧30 kg / cm”
 G 、滞留時間1 hr、溶媒ヘキサンに体する共重
合体の濃度1259 /12となる条件下で共重合体の
製造を行った。得られた共重合体の密度は0.9229
7cm”、Ml−3,15、分子量MW−13.6万、
共重合体中のエチレン割合は本 97.8mo1%であった。またgv−0,70,70
μの急冷プレスシートの球晶半径R−1,6μであっI
;。この共重合体を実施例1と同様の条件でフィルム形
成した結果を表3に示す。 実施例6 200Qの連続重合反応器を用いて脱水精製したヘキサ
ン8012/hr、ジエチルアルミニウムクロリド40
 mmol/ hr、実施例3に記載した触媒をチタン
に換算して0 、8 mmol/ hrを連続的に供給
し、重合器内において同時にエチレン13.5kg/h
r、l−ドデセン及びl−テトラデセンの混合α−オレ
フィン(三菱化成社製、ダイヤレン124、l−ドデセ
ン56.6%、l−テトラデセン43.4%の混合a−
オレフィン)を15.0kg/hr、水素60(2/h
rの割合で連続供給し、重合温度145℃、全圧30k
g/c+++”G、滞留時間1 hr。 溶媒ヘキサンに対する共重合体の濃度117I/Qとな
る条件下で共重合体の製造を行った。得られた共重合体
の密度は0.92527cm”、 M I −3,91
、分子量Mv−14.7刀、共重合体中のエチレン割合
は98.6mo1%であった。また* gv=0.63.70μの急冷プレスシートの球晶半径
R−1,7μであった。この共重合体を実施例1と同様
の条件でフィルム形成した結果を表3に示す。 表  3 実施例7 200Qの連続重合反応器を用いて脱水精製したヘキサ
ン80ff/hr、ジエチルアルミニウムクロリド20
 mmol/ hr1実施例3に記載した触媒をチタン
に換算して0 、4 mmol/ hrを連続的に供給
し、重合器内において同時にエチレン13.0kg/h
r、4−メチル−1−ペンテン12.0kg/hr、l
−ヘキセン1.okFi/hr、水素5112/hrの
割合で連続供給し、重合温度145℃、全圧30kg/
cm”G、滞留時間1hr、溶媒ヘキサンに対する共重
合体の濃度12227Qとなる条件下で共重合体の製造
を行った。得られた共重合体の密度は0゜924jJ 
7cm3、Ml−’4.10、分子量My−26,3万
共重合体中のエチレン割合は96.7mo1本 %であった。また、gv−0,40,70μの急冷プレ
スシートの球晶半径R=1.6であった。 この共重合体を実施例1と同様の条件でフィルム形成し
た結果を表4に示す。 実施例8 200111の連続重合反応器を用いて脱水精製したヘ
キサン80α/h「、ジエチルアルミニウムクロリド2
0 mmol/ hr、実施例3に記載した触媒をチタ
ンに換算して0 、35 mmol/ hrを連続的に
供給し、重合器内において同時にエチレン13.Okg
/hr、4−メチル−1−ペンテン9.0kg/hr。 l−ヘキセン4.Okg/hr、水素60Q/hrの割
合で連続供給し、重合温度145℃、全圧30kg/ 
cm’ G %滞留時間1 hr、溶媒ヘキサンに対す
る共重合体の濃度116:j/12となる条件下で共重
合体の製造を行った。得られた共重合体の密度は0.9
202 /am”、Ml−3,6L分子量M vi −
22,9万、共重合体中のエチレン割合は96.2本 mo1%であった。また、gη−0,45,70μの急
冷プレスシートの球晶半径R=1.7であった。 この共重合体を実施例1と同様の条件でフィルム形成し
た結果を表4に示す。 表  4 「特許請求の範囲 (1)  密度0.900ないし0.940g/cm’
、極限粘度[vl  (135℃、デカリン中で測定)
0.8ないし4.0、示差熱分析による最高融点が11
5ないし130’O,同一重量平均分子量(光散乱法に
よる)を示す直鎖ポリエチレンの極限粘度[vl Qに
対する[vlの割合[vl / [vl a”g本が0
.05ないし0.78の範囲にあるエチワ レンと1〜30重量%の炭素数5ないし18のα−オレ
フィンとのランダム共重合体フィルム。 (2)レーザー光小角散乱法により得られる平均球晶半
径が6μ以下にある特許請求の範囲第(1)項記載の共
重合体フィルム。 (3)示差熱分析に基づく融点が、複数個存在する特許
請求の範囲第(1)項又は(2)項記載の共重合体フィ
ルム。 (4)組成分布の標準偏差が3.0モル%以下にある特
許請求の範囲第(1)ないしく3)項Δyzfれかに記
載の共重合体フィルム。 (5)8本が0.05ないし0.50である特許請求の
範囲第(1)ないしく4)項のいずれかに記載の共重合
体フィルム。 (6) α−オレフィンが炭素数6ないし12のもので
ある特許請求の範囲第(1)ないしく5)項9いずれか
に記載の共重合体フィルム。 (7) a−オレフィンが、4−メチル−1−ペンテン
である特許請求の範囲第(1)ないしく6)項のいずれ
かに記載の共重合体フィルム。 (8)密度が0.91ないし0.935g/cm”であ
る特許請求の範囲第(1)ないしく7)項のいずれかに
記載の共重合体フィルム。 (9)極限粘度が、1.0ないし3.0である特許請求
の範囲第(1)ないしく8)項のいずれかに記載の共重
合体フィルム。 (10)  密度0.900ないし0.940g/cm
コ、極限粘度[vl  (135°C、デカリン中で測
定)0.8ないし4.0、示差熱分析による最高融点が
115ないし130℃、同一重量平均分子量(光散乱法
による)を示す直鎖ポリエチレンの極限粘度[vl12
に対する[11の割合[w] / [vl (1−8本
が0.05ないし0.78の範囲にあるエチル ンと1〜30重量%の炭素数5ないし18のa”−オレ
フィンとのランダム共重合体成型体。 (ll)  レーザー光小角散乱法により得られる平均
球晶半径が6μ以下にある特許請求の範囲第(10)項
記載の共重合体成型体。 (12)示差熱分析に基づく融点が、複数個存在する特
許請求の範囲第(lO)項又は(11)項記載の共重合
体成型体。 (13)組成分布の標準偏差が3.0モノC%以下にあ
る特許請求の範囲第(10)ないし(12)項ユと工れ
かに記載の共重合体皮を体。 (14)  8本が0.05ないし0.50である特許
請求の範囲第(10)ないしく13)項のいずれかに記
載の共重合体成型体。 (15)  ex−オレフィンが炭素数6ないし12の
ものである特許請求の範囲第(10)ないし(14)項
9いずれかに記載の共重合体成型体。 (16)  α−オレフィンが、4−メチル−1−ペン
テンである特許請求の範囲第(10)ないし(15)項
のいずれかに記載の共重合体成型体。 (17)密度が0.91ないし0.935茗/cm’で
ある特許請求の範囲第(10)ないし(16)項のいず
れかに記載の共重合体成型体。 (108)  極限粘度が、1.0ないし3.0である
特許請求の範囲第(10)ないし(17)項のいずれか
に記載の共重合体成型体。」
Attached FIG. 1 is a DSC endothermic curve for an example of the copolymer of the present invention. Further, FIG. 3 is a graph showing the relationship between total pressure and precipitation point (°C) in several types of solvents for several examples of the copolymers of the present invention. Patent applicant Mitsui Petrochemical Industries, Ltd. Figure 1 Figure 2 Procedural amendment (voluntary) August 8, 1988 Patent application No. 170015 of 1988 2 Title of invention Ethylene copolymer film and molded body 3 , Relationship with the case of the person making the amendment Patent applicant name (588) Mitsui Petrochemical Industries Co., Ltd. Telephone: 58
5-2256 5. Date of amendment order None 6. "Claims" column and "Detailed description of the invention" column of the specification to be amended (1) "Claims" of the specification of the present application The description in the column is corrected as shown in the attached sheet. (2) "Linear chain poly---11111---calculation)" from the third line to the last line from the bottom of page 4 of the present specification is corrected as follows. "Using linear polyethylene [standard linear polyethylene (linear polymethylene obtained by polymerization of diazomethane) 1], its intrinsic viscosity (measured at 135°C in decalin) and (
M) The intrinsic viscosity of the linear polyethylene that can be calculated using the following formula % formula % measured and determined regarding the relationship of w is [v
] (as a +) (3) "Suggested" in line 8 of page 5 is corrected to "it is presumed to imply." (4) "It is presumed to imply, j.""Composition" should be corrected as follows. "This means that the ethylene copolymer of the present invention is a random copolymer with good randomness, and its composition" (5 ) "l-Pentene, ---1-------α-olefin" in the 11th to last line of page 8 is corrected as follows: "l-pentene, l-hexene, ■-octene, ■ -decene, l-dodecene, l-tetradecene, l-octadecene, 3-methyl-1-butene, 3-methyl-1-pentene, 4-methyl-1-pentene, 3-methyl-1-hexene, 4-methyl -1-hexene, 5-methyl-1-
hexene, 3-methyl-1-heptene, 5-methyl-1
-heptene or a mixture thereof, in particular l-hexene, which is an α-olefin having 6 to 12 carbon atoms;
-octene, l-decene, 3-methyl-1-pentene,
4-Methyl-1-pentene, 5-methyl-1-hexene, 5-methyl-1-heptene" (6) Ibid., p. 26, No. 6
Correct "Water 60a" in the row to "Hydrogen 60a". (7) Add the following after Table 2 on page 28. "Example 5 Dehydration and purification using a 200Q continuous polymerization reactor I; Hexane 80ff/hr, diethyl aluminum chloride 2
5 mmol/hrx The catalyst described in Example 3 was continuously supplied at 0.5 mmol/hr in terms of titanium, and 14.0 kg/hr of ethylene was simultaneously supplied in the polymerization vessel.
Mixed α-olefin of hr, l-hexene, l-octene, and l-7” ene (manufactured by Mitsubishi Kasei Corporation, Guialene 61
0,1-hexene 35.9%, l-octene 33.3%
, a mixture of 30.8% l-decene
, Okg/hr, hydrogen was continuously supplied at a rate of 6012/hr, polymerization temperature was 145°C, and total pressure was 30 kg/cm.
The copolymer was produced under the following conditions: G, residence time: 1 hr, and the concentration of the copolymer in hexane as a solvent: 1259/12. The density of the obtained copolymer is 0.9229
7cm”, Ml-3,15, molecular weight MW-136,000,
The proportion of ethylene in the copolymer was 97.8 mo1%. Also gv-0, 70, 70
The spherulite radius of the quenched press sheet of μ is R-1,6 μ and I
;. Table 3 shows the results of forming a film using this copolymer under the same conditions as in Example 1. Example 6 Hexane 8012/hr, diethylaluminum chloride 40 dehydrated and purified using a 200Q continuous polymerization reactor
0.8 mmol/hr of the catalyst described in Example 3 in terms of titanium was continuously supplied, and 13.5 kg/hr of ethylene was simultaneously supplied in the polymerization vessel.
Mixed α-olefin of r, l-dodecene and l-tetradecene (manufactured by Mitsubishi Kasei Corporation, Dialene 124, a mixture of 56.6% l-dodecene and 43.4% l-tetradecene)
olefin) at 15.0 kg/hr, hydrogen at 60 kg/hr (2/hr
continuous supply at a rate of r, polymerization temperature 145°C, total pressure 30k
g/c+++"G, residence time 1 hr. The copolymer was produced under conditions such that the concentration of the copolymer with respect to the solvent hexane was 117 I/Q. The density of the obtained copolymer was 0.92527 cm", M I -3,91
The molecular weight was Mv-14.7, and the ethylene ratio in the copolymer was 98.6mol%. Also, the spherulite radius of the rapidly cooled press sheet with *gv=0.63.70μ was R-1.7μ. Table 3 shows the results of forming a film using this copolymer under the same conditions as in Example 1. Table 3 Example 7 80ff/hr of hexane dehydrated and purified using a 200Q continuous polymerization reactor, 20% of diethylaluminum chloride
mmol/hr1 The catalyst described in Example 3 was continuously supplied at 0.4 mmol/hr in terms of titanium, and at the same time 13.0 kg/hr of ethylene was supplied in the polymerization vessel.
r, 4-methyl-1-pentene 12.0 kg/hr, l
-hexene 1. okFi/hr, hydrogen was continuously supplied at a rate of 5112/hr, polymerization temperature 145°C, total pressure 30kg/hr.
The copolymer was produced under the following conditions: cm"G, residence time 1 hr, and the concentration of the copolymer relative to the solvent hexane was 12227Q.The density of the obtained copolymer was 0°924jJ.
7 cm3, Ml-'4.10, molecular weight My-26,30,000 The proportion of ethylene in the copolymer was 96.7 mo1%. Moreover, the spherulite radius R of the rapidly cooled press sheets of gv-0, 40, and 70μ was 1.6. Table 4 shows the results of forming a film using this copolymer under the same conditions as in Example 1. Example 8 Hexane 80α/h dehydrated and purified using a 200111 continuous polymerization reactor, diethyl aluminum chloride 2
0 mmol/hr, the catalyst described in Example 3 was continuously supplied at 0.35 mmol/hr in terms of titanium, and at the same time 13.0 mmol/hr of ethylene was added in the polymerization vessel. Okg
/hr, 4-methyl-1-pentene 9.0kg/hr. l-hexene4. 0 kg/hr, hydrogen was continuously supplied at a rate of 60 Q/hr, the polymerization temperature was 145°C, and the total pressure was 30 kg/hr.
The copolymer was produced under conditions such that the cm'G % residence time was 1 hr and the concentration of the copolymer to the solvent hexane was 116:j/12. The density of the obtained copolymer is 0.9
202/am”, Ml-3,6L molecular weight M vi −
22,90,000, and the ethylene ratio in the copolymer was 96.2 mo1%. Moreover, the spherulite radius R of the rapidly cooled press sheets of gη-0, 45, and 70μ was 1.7. Table 4 shows the results of forming a film using this copolymer under the same conditions as in Example 1. Table 4 "Claim (1) Density 0.900 to 0.940 g/cm'
, intrinsic viscosity [vl (measured at 135°C in decalin)
0.8 to 4.0, the highest melting point by differential thermal analysis is 11
Intrinsic viscosity of linear polyethylene showing the same weight average molecular weight (by light scattering method) from 5 to 130'O [vl Ratio of [vl to Q [vl / [vl a''g is 0
.. A random copolymer film of ethiwalene in the range of 0.05 to 0.78 and 1 to 30% by weight of an α-olefin having 5 to 18 carbon atoms. (2) The copolymer film according to claim (1), which has an average spherulite radius of 6 microns or less obtained by small-angle laser light scattering. (3) The copolymer film according to claim (1) or (2), which has a plurality of melting points based on differential thermal analysis. (4) The copolymer film according to any one of claims (1) to 3) Δyzf, wherein the standard deviation of the composition distribution is 3.0 mol% or less. (5) The copolymer film according to any one of claims (1) to 4), wherein the number of 8 fibers is 0.05 to 0.50. (6) The copolymer film according to any one of claims (1) to 5), wherein the α-olefin has 6 to 12 carbon atoms. (7) The copolymer film according to any one of claims (1) to 6), wherein the a-olefin is 4-methyl-1-pentene. (8) The copolymer film according to any one of claims (1) to 7), which has a density of 0.91 to 0.935 g/cm. (9) The copolymer film has a limiting viscosity of 1. The copolymer film according to any one of claims (1) to 8), which has a density of 0 to 3.0. (10) Density of 0.900 to 0.940 g/cm
linear chain exhibiting an intrinsic viscosity [vl (measured at 135°C, in decalin) of 0.8 to 4.0, a maximum melting point of 115 to 130°C by differential thermal analysis, and the same weight average molecular weight (by light scattering method). Intrinsic viscosity of polyethylene [vl12
Ratio of [11 [w] / [vl (random combination of ethylne with 1 to 8 atoms in the range of 0.05 to 0.78 and 1 to 30% by weight of a”-olefin having 5 to 18 carbon atoms) Molded polymer. (ll) Molded copolymer according to claim (10), which has an average spherulite radius of 6 μ or less obtained by small-angle laser light scattering. (12) Based on differential thermal analysis. A molded copolymer according to claim 10 or 11, which has a plurality of melting points. A copolymer skin according to any one of claims (10) to (12). 13) The copolymer molded article according to any one of claims 10 to 14, 9, wherein the ex-olefin has 6 to 12 carbon atoms. Copolymer molded product. (16) The copolymer molded product according to any one of claims (10) to (15), wherein the α-olefin is 4-methyl-1-pentene. (17) ) The molded copolymer according to any one of claims (10) to (16), which has a density of 0.91 to 0.935 kg/cm'. (108) The molded copolymer has a limiting viscosity of 1. 0 to 3.0, the copolymer molded product according to any one of claims (10) to (17).

Claims (18)

【特許請求の範囲】[Claims] (1)密度0.900ないし0.940g/cm^3、
極限粘度[η]0.8ないし4.0、示差熱分析による
最高融点が115ないし130℃、同一重量平均分子量
(光散乱法による)を示す直鎖ポリエチレンの極限粘度
[η]lに対する[η]の割合[η]/[η]l=^*
gηが0.05ないし0.78の範囲にあるエチレンと
少割合の炭素数5ないし18のα−オレフィンとの共重
合体フィルム。
(1) Density 0.900 to 0.940g/cm^3,
Intrinsic viscosity [η] of linear polyethylene having an intrinsic viscosity [η] of 0.8 to 4.0, a maximum melting point of 115 to 130°C as determined by differential thermal analysis, and the same weight average molecular weight (as determined by light scattering method) [η] ] ratio [η]/[η]l=^*
A copolymer film of ethylene having gη in the range of 0.05 to 0.78 and a small proportion of α-olefin having 5 to 18 carbon atoms.
(2)レーザー光小角散乱法により得られる平均球晶半
径が6μ以下にある特許請求の範囲第(1)項記載の共
重合体フィルム。
(2) The copolymer film according to claim (1), which has an average spherulite radius of 6 microns or less obtained by small-angle laser light scattering.
(3)示差熱分析に基づく融点が、複数個存在する特許
請求の範囲第(1)又は(2)記載の共重合体フィルム
(3) The copolymer film according to claim 1 or 2, which has a plurality of melting points based on differential thermal analysis.
(4)組成分布の標準偏差が3.0モル%以下にある特
許請求の範囲第(1)ないし(3)記載の共重合体フィ
ルム。
(4) The copolymer film according to claims (1) to (3), wherein the standard deviation of the composition distribution is 3.0 mol% or less.
(5)g^*ηが0.05ないし0.50である特許請
求の範囲第(1)ないし(4)記載の共重合体フィルム
(5) The copolymer film according to claims (1) to (4), wherein g^*η is 0.05 to 0.50.
(6)α−オレフインが炭素数6ないし12のものであ
る特許請求の範囲第(1)ないし(5)記載の共重合体
フィルム。
(6) The copolymer film according to claims (1) to (5), wherein the α-olefin has 6 to 12 carbon atoms.
(7)α−オレフインが、4−メチル−1−ペンテンで
ある特許請求の範囲第(1)ないし(6)記載の共重合
体フィルム。
(7) The copolymer film according to claims (1) to (6), wherein the α-olefin is 4-methyl-1-pentene.
(8)密度が0.91ないし0.935g/cm^3で
ある特許請求の範囲第(1)ないし(7)記載の共重合
体フィルム。
(8) The copolymer film according to claims (1) to (7), which has a density of 0.91 to 0.935 g/cm^3.
(9)極限粘度が、1.0ないし3.0である特許請求
の範囲第(1)ないし(8)記載の共重合体フィルム。
(9) The copolymer film according to claims (1) to (8), which has an intrinsic viscosity of 1.0 to 3.0.
(10)密度0.900ないし0.940g/cm^3
、極限粘度[η]0.8ないし4.0、示差熱分析によ
る最高融点が115ないし130℃、同一重量平均分子
量(光散乱法による)を示す直鎖ポリエチレンの極限粘
度[η]lに対する[η]の割合[η]/[η]l=g
^*ηが0.05ないし0.78の範囲にあるエチレン
と少割合の炭素数5ないし18のα−オレフィンとの共
重合体成型体。
(10) Density 0.900 to 0.940g/cm^3
, an intrinsic viscosity [η] of 0.8 to 4.0, a maximum melting point of 115 to 130°C by differential thermal analysis, and the same weight average molecular weight (by light scattering method) as compared to the intrinsic viscosity [η] of linear polyethylene [ η] ratio [η]/[η]l=g
A molded copolymer of ethylene and a small proportion of α-olefin having 5 to 18 carbon atoms, with η in the range of 0.05 to 0.78.
(11)レーザー光小角散乱法により得られる平均球晶
半径が6μ以下にある特許請求の範囲第(10)項記載
の共重合体成型体。
(11) The molded copolymer according to claim (10), which has an average spherulite radius of 6 μm or less obtained by small-angle laser light scattering.
(12)示差熱分析に基づく融点が、複数個存在する特
許請求の範囲第(10)又は(11)記載の共重合体成
型体。
(12) The copolymer molded article according to claim (10) or (11), which has a plurality of melting points based on differential thermal analysis.
(13)組成分布の標準偏差が3.0モル%以下にある
特許請求の範囲第(10)ないし(12)記載の共重合
体成型体。
(13) The copolymer molded article according to claims (10) to (12), wherein the standard deviation of the composition distribution is 3.0 mol% or less.
(14)g^*ηが0.05ないし0.50である特許
請求の範囲第(10)ないし(13)記載の共重合体成
型体。
(14) The copolymer molded article according to claims (10) to (13), wherein g^*η is 0.05 to 0.50.
(15)α−オレフインが炭素数6ないし12のもので
ある特許請求の範囲第(10)ないし(14)記載の共
重合体成型体。
(15) The copolymer molded product according to claims (10) to (14), wherein the α-olefin has 6 to 12 carbon atoms.
(16)α−オレフィンが、4−メチル−1−ペンテン
である特許請求の範囲第(10)ないし(15)記載の
共重合体成型体。
(16) The copolymer molded article according to claims (10) to (15), wherein the α-olefin is 4-methyl-1-pentene.
(17)密度が0.91ないし0.935g/cm^3
である特許請求の範囲第(10)ないし(16)記載の
共重合体成型体。
(17) Density is 0.91 to 0.935g/cm^3
A copolymer molded article according to claims (10) to (16).
(18)極限粘度が、1.0ないし3.0である特許請
求の範囲第(10)ないし(17)記載の共重合体成型
体。
(18) The molded copolymer according to claims (10) to (17), which has an intrinsic viscosity of 1.0 to 3.0.
JP63170015A 1988-07-09 1988-07-09 Ethylene copolymer film and molded article Granted JPH01131210A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63170015A JPH01131210A (en) 1988-07-09 1988-07-09 Ethylene copolymer film and molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63170015A JPH01131210A (en) 1988-07-09 1988-07-09 Ethylene copolymer film and molded article

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP52007315A Division JPS5952643B2 (en) 1977-01-27 1977-01-27 ethylene copolymer

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP19757388A Division JPH01230611A (en) 1988-08-08 1988-08-08 Hollow container made of ethylene copolymer

Publications (2)

Publication Number Publication Date
JPH01131210A true JPH01131210A (en) 1989-05-24
JPH0346483B2 JPH0346483B2 (en) 1991-07-16

Family

ID=15897016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63170015A Granted JPH01131210A (en) 1988-07-09 1988-07-09 Ethylene copolymer film and molded article

Country Status (1)

Country Link
JP (1) JPH01131210A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991005004A1 (en) * 1989-10-09 1991-04-18 Kohjin Co., Ltd. Biaxially oriented polyethylene film
JPH0346483B2 (en) * 1988-07-09 1991-07-16 Mitsui Petrochemical Ind
US5306549A (en) * 1989-04-10 1994-04-26 Kohjin Co., Ltd. Biaxially stretched polyethylene film
JP2000198533A (en) * 1998-12-24 2000-07-18 Spuhl Ag St Gallen Conveyor for coil spring
JP2010276128A (en) * 2009-05-29 2010-12-09 Sumitomo Chemical Co Ltd Tube
JP2011006675A (en) * 2009-05-29 2011-01-13 Sumitomo Chemical Co Ltd ETHYLENE-α-OLEFIN COPOLYMER AND MOLDED ARTICLE
WO2023191080A1 (en) * 2022-03-31 2023-10-05 旭化成株式会社 Polyethylene powder and method for producing same, and olefin polymerization catalyst and method for producing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA873828A (en) * 1971-06-22 W. Anderson Arthur Hydrocarbon interpolymer compositions
JPS4935345A (en) * 1972-07-31 1974-04-01
JPS49129781A (en) * 1973-03-29 1974-12-12
JPS5392887A (en) * 1977-01-27 1978-08-15 Mitsui Petrochem Ind Ltd Ethylene copolymer
JPS5952643A (en) * 1982-07-09 1984-03-27 株式会社東芝 Composite material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01131210A (en) * 1988-07-09 1989-05-24 Mitsui Petrochem Ind Ltd Ethylene copolymer film and molded article

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA873828A (en) * 1971-06-22 W. Anderson Arthur Hydrocarbon interpolymer compositions
JPS4935345A (en) * 1972-07-31 1974-04-01
JPS49129781A (en) * 1973-03-29 1974-12-12
JPS5392887A (en) * 1977-01-27 1978-08-15 Mitsui Petrochem Ind Ltd Ethylene copolymer
JPS5952643A (en) * 1982-07-09 1984-03-27 株式会社東芝 Composite material

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0346483B2 (en) * 1988-07-09 1991-07-16 Mitsui Petrochemical Ind
US5306549A (en) * 1989-04-10 1994-04-26 Kohjin Co., Ltd. Biaxially stretched polyethylene film
WO1991005004A1 (en) * 1989-10-09 1991-04-18 Kohjin Co., Ltd. Biaxially oriented polyethylene film
AU640419B2 (en) * 1989-10-09 1993-08-26 Kohjin Co. Ltd. Biaxially orientated polyethylene film
JP2000198533A (en) * 1998-12-24 2000-07-18 Spuhl Ag St Gallen Conveyor for coil spring
JP2010276128A (en) * 2009-05-29 2010-12-09 Sumitomo Chemical Co Ltd Tube
JP2011006675A (en) * 2009-05-29 2011-01-13 Sumitomo Chemical Co Ltd ETHYLENE-α-OLEFIN COPOLYMER AND MOLDED ARTICLE
WO2023191080A1 (en) * 2022-03-31 2023-10-05 旭化成株式会社 Polyethylene powder and method for producing same, and olefin polymerization catalyst and method for producing same

Also Published As

Publication number Publication date
JPH0346483B2 (en) 1991-07-16

Similar Documents

Publication Publication Date Title
US4205021A (en) Ethylene copolymers
AU667764B2 (en) Olefin polymer films
US6136924A (en) Process for the preparation of a composition containing ethylene polymers, and use thereof
EP0863183B1 (en) Propylene composition, process for preparing the same, polypropylene composition, and molded articles
US4438243A (en) Process for producing random ethylene terpolymer
JPS6357446B2 (en)
KR950010116B1 (en) Ethylene/pentene-1 copolymer compositions and their use
JPH0134250B2 (en)
FI75581C (en) Heterogeneous copolymers of ethylene, their preparation and use for making films
JP2546849B2 (en) Modifier for thermoplastic resin
JPH01131210A (en) Ethylene copolymer film and molded article
JP2000072824A (en) ETHYLENE.alpha-OLEFIN COPOLYMER, COMPOSITION OF THE SAME AND FILM USING THEM
KR20140030090A (en) Fractional melt index polyethylene composition and films made therefrom
JPS5951905A (en) New ethylene copolymer
JP3305486B2 (en) Method for producing ethylene copolymer
JP3518821B2 (en) Ethylene copolymer composition
JPS61243842A (en) Polypropylene composition
JPH01230611A (en) Hollow container made of ethylene copolymer
JP4828223B2 (en) Thermoplastic resin molding
JPH10212382A (en) Polypropylene resin composition
JP3683525B2 (en) Ethylene copolymer composition for film production and film obtained therefrom
JPS5922946A (en) Ethylene-alpha-olefin copolymer type resin composition of high quality for casting film and preparation thereof
CN118382660A (en) Biaxially oriented film
JPS62153307A (en) Ethlene copolymer
JPH0339089B2 (en)