JPH01130890A - Method for joining superconducting wave guides - Google Patents

Method for joining superconducting wave guides

Info

Publication number
JPH01130890A
JPH01130890A JP29007787A JP29007787A JPH01130890A JP H01130890 A JPH01130890 A JP H01130890A JP 29007787 A JP29007787 A JP 29007787A JP 29007787 A JP29007787 A JP 29007787A JP H01130890 A JPH01130890 A JP H01130890A
Authority
JP
Japan
Prior art keywords
joining
hollow
faces
vacuum
flanges
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29007787A
Other languages
Japanese (ja)
Inventor
Takashi Shimano
島野 隆
Takeru Ikeda
池田 ▲おさむ▼
Eiichi Shiba
栄一 芝
Shinichi Mukoyama
晋一 向山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP29007787A priority Critical patent/JPH01130890A/en
Publication of JPH01130890A publication Critical patent/JPH01130890A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To perform continuous diffusion joining with a smooth joining state without the change in quality of material on joining parts by pressing joining faces mutually and heating these at the temperature lower than the melting point of materials in a vacuum. CONSTITUTION:Two hollow single substances 2 and 2 of hollow resonators with both end faces opened having wall through holes 1 on the central part narrowed down toward the center of a circular cross section from the outside peripheral surface on the central part in the axial direction are manufactured from niobium rods. Annular flanges 3 and 3 are formed integrally on the outside peripheries on both ends of the hollow simple substances 2 and the squareness and flatness on the joining faces 4 of the flanges are finished with high accuracy and the surfaces are cleaned by fluorine and further, eight bolt holes 5 are provided at equal intervals on the flanges 3 and 3 and the joining faces 4 of one side of the two hollow substances 2 and 2 are pressed and fixed mutually by a bolt 6 and a nut 7. A connector 8 of these hollow resonators is at in a vacuum furnace and heated for one hour at 1500 deg.C with the degree of vacuum of 10<-5> Torr. The inside structures in the vicinities of the joining faces which are subjected to diffusion joining by this method are not changed and are homogeneous.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はマイクロ波伝送用の導波管、殊にディスクロー
ド型導波管やマイクロ波空胴共振器のように通常の導波
管に比較してその中に大きなマイクロ波エネルギーが貯
えられる超伝導導波管の接合方法に関し、特に管の内壁
面でのマイクロ波のパワーロスを低減させたものである
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is applicable to waveguides for microwave transmission, particularly to ordinary waveguides such as disk load type waveguides and microwave cavity resonators. The present invention relates to a method of joining superconducting waveguides that can store a relatively large amount of microwave energy therein, and particularly reduces microwave power loss on the inner wall surface of the tube.

〔従来の技術〕[Conventional technology]

上記導波管や空胴共振器はタライストロンのようなマイ
クロ波増巾器や電子、陽子等の粒子加速器として用いら
れているが、この荷電粒子加速器には高周波電力で荷電
粒子を加速する空胴共振器を複数個連結した加速管が用
いられている。
The above-mentioned waveguides and cavity resonators are used as microwave amplifiers such as talistrons and particle accelerators for electrons, protons, etc.; An accelerator tube with a plurality of connected body resonators is used.

しかしながら粒子加速器に用いられている空胴共振器の
ようにマイクロ波のエネルギーを蓄積するような場合は
管の壁面の電気抵抗によるエネルギーロスが大きいため
、マイクロ波への投入エネルギーをその分だけ大きくし
なければならず効率が低いという問題があった。
However, when storing microwave energy such as in a cavity resonator used in a particle accelerator, there is a large energy loss due to the electrical resistance of the tube wall, so the energy input to the microwave must be increased accordingly. There was a problem that efficiency was low.

これ(対処するべく最近極めて少ないマイク°口波電力
で大きい加速電界が得られる空胴共振器としての空胴を
超伝導材料で作製したり、銅やアルミニウム等の空胴基
材の内面に超伝導材料をメツキして作製した空胴共振器
が注目されている。
In order to deal with this (recently, we have created a cavity as a cavity resonator that can obtain a large accelerating electric field with an extremely small amount of microphone power and a superconducting material, or Cavity resonators made by plating conductive materials are attracting attention.

このような超伝導空胴共振器によればその空胴内壁面の
表面抵抗が非常に小さいため常伝導のものに比較して非
常に高いQ値及び高い電界が得られることが期待されて
いる。
With such a superconducting cavity resonator, the surface resistance of the inner wall surface of the cavity is very small, so it is expected that a very high Q value and a high electric field can be obtained compared to a normal conductive cavity resonator. .

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながらこのような超伝導空胴共振器は実際には期
待される程の高い電界は得られない。
However, such a superconducting cavity resonator cannot actually obtain an electric field as high as expected.

この原因は主として空胴内壁面の表面欠陥によるもので
ある。これは超電導体ではあってもマイクロ波に対して
はわずかながら電気抵抗が存在するため発熱があるが、
通常この熱は超伝導状態を維持している液体ヘリウムに
より奪っている。ところが上記表面欠陥があるとその部
分で表面抵抗が増加し、局部的に多量の発熱があるため
そこが起点゛となって超伝導状態が破壊されてしまうか
らである。ざらにこのような欠陥部は他の部分に比較し
て高電界下での電子の放゛出(フィールド・エミッショ
ン)が多くなりとれによる超伝導の破壊現象も起こる。
This is mainly due to surface defects on the inner wall surface of the cavity. Although this is a superconductor, there is a slight electrical resistance to microwaves, so it generates heat.
Normally, this heat is taken away by liquid helium, which maintains a superconducting state. However, if the above-mentioned surface defects exist, the surface resistance increases in those areas, and a large amount of heat is generated locally, which becomes a starting point and destroys the superconducting state. In general, such defective parts emit more electrons (field emission) under a high electric field than other parts, which can lead to destruction of superconductivity.

上記表面欠陥としては表面酸化物やピンホール等がある
が特に問題となるのは空胴共振器の接合部分である。即
ち一本の共振器としての空胴はその製作上の困難性から
、多数の部分に分割されたものを互いに電子ビーム溶接
ヤTIG溶接を施して接合しているがこれらの接合方法
では欠陥が導入され易くざらに接合部及びその熱影響部
では材質の変化が起き接合部で材質的に不均一となり、
超伝導特性が変化してしまうという問題も生ずる。
The above-mentioned surface defects include surface oxides, pinholes, etc., but the joint portion of the cavity resonator is particularly problematic. In other words, due to the difficulty in manufacturing the cavity as a single resonator, it is divided into many parts and joined together by electron beam welding or TIG welding, but these joining methods have many defects. Because it is easily introduced, the material changes in the joint and its heat-affected zone, resulting in non-uniformity in the material at the joint.
Another problem arises in that the superconducting properties change.

C問題点を解決するための手段〕 本発明はこれに鑑み種々検討し、物質を隙間なく圧接し
た状態で真空加熱して接合する技術、即ち拡散接合技術
が利用できることを知見し、さらに検討の結果、接合部
における材質の不均一性による表面欠陥をなくして高電
界に耐える超伝導導波管の接合方法を開発したもので、
超伝導材料からなる導波管を互いに接合する方法におい
て、互いに接合面を圧接して真空中にて材料の融点より
も低い温度で加熱することにより拡散接合することを特
徴とするものである。
Means for Solving Problem C] In view of this, the present invention has conducted various studies, and has discovered that it is possible to use a technique for bonding materials by vacuum heating in a state where they are pressed together without any gaps, that is, a diffusion bonding technique. As a result, we developed a method for joining superconducting waveguides that can withstand high electric fields by eliminating surface defects caused by non-uniformity of the material at the joint.
A method for joining waveguides made of superconducting materials to each other, which is characterized by diffusion joining by pressing their joining surfaces together and heating them in a vacuum at a temperature lower than the melting point of the materials.

〔作 用〕[For production]

導波管の接合面同志を互いに圧接して該接合面での双方
の原子をその材料の融点以下の温度で相、互に拡散させ
る拡散接合によれば接合部での材料の変質はなく、ざら
に接合状態も滑らかに連続したものとなり表面欠陥もな
く良好な超伝導特性が保たれるからである。
According to diffusion bonding, in which the joining surfaces of waveguides are pressed against each other and the atoms on both sides of the joining surfaces are diffused into each other at a temperature below the melting point of the materials, there is no deterioration of the material at the joining part. This is because the bonded state becomes smooth and continuous, and good superconducting properties are maintained without surface defects.

ざら、に真空中で処理するのは接合面に酸化物等の生成
や異物の吸@等があった場合は接合面での拡散の妨げに
なってしまうからである。。
The reason why the process is carried out in a vacuum is because if oxides or the like are generated or foreign substances are absorbed on the bonding surface, diffusion at the bonding surface will be hindered. .

また断面円形の導波管の内部長手方向に中央部に貫通孔
を形成した円板を周期的に設けた構造の導波管の一種で
ある空胴共振器及びディスクロード−型進行波型加速管
の接合の場合は接合部分眸最も電界の小ざい部分、即ち
上記甲板と円板の中間が最も有効である。これは円板と
1円板で形成された空胴にはエネルギーが多く蓄積され
るにつれて電界が上昇し、空胴の断面中央部で最も大き
くなり断面の最も外側で最も小さくなる。そして、こ9
電界が大きければ大きい程、空調表面からのフィールド
・、エミッションが大きく多くの電子が飛び出し、エネ
ルギーの一部を奪ってしまい空胴の至達電界を下げる原
因の一つとなっている。またこのように飛び出す電子の
mは空胴表面が粗い程多くなるため電界の強い場所に接
合部等の表面均一性を阻害するおそれのめる部位を形成
するのは好ましくないからである。
Also, a cavity resonator, which is a type of waveguide with a structure in which disks with a through hole formed in the center are periodically provided in the longitudinal direction of a waveguide with a circular cross section, and a disk load-type traveling wave type. In the case of joining accelerator tubes, it is most effective to join the joint where the electric field is the smallest, that is, between the deck and the disc. This is because the electric field rises as more energy is stored in the cavity formed by the disks and the single disk, and is greatest at the center of the cross-section of the cavity and smallest at the outermost side of the cross-section. And this 9
The larger the electric field, the greater the field and emission from the air conditioning surface, and the more electrons fly out, taking away some of the energy and becoming one of the causes of lowering the electric field reaching the cavity. Furthermore, since the number of ejected electrons m increases as the cavity surface becomes rougher, it is undesirable to form a portion such as a bonding portion where the surface uniformity may be inhibited in a location where the electric field is strong.

〔実施例〕〔Example〕

本発明を一実施例を用いて説明する。 The present invention will be explained using an example.

ニオブのロッドから第1図に示すような円筒形で両端面
が開口し、軸方向の中央部が外周面から円形断面の中心
に向って絞られ該中心部に貫通した小穴(1)を有する
空胴共振器の空胴単体(2)(2)を2個作製した。該
空胴重体の両端部には外周にリング状フランジ(3)C
3)を一体に形成し、該フランジの接合面(4)は直角
度及び平坦度を精度よく仕上げ、表面をフッ酸で洗浄し
、さらに7ランジ(3) (3)には等間隔で9個のボ
ルト穴(5)を穿設して2個の空胴担体(2)(2)を
互いに一方の接合面(4)同志をボルト(6)及びすッ
ト(1)で圧接して固定した。このような空胴共振器の
連結体(8)を真空炉中に入れ10−5 torrの真
空度にて1500℃で1時間加熱−た。
A niobium rod has a cylindrical shape as shown in Figure 1, with both end faces open, and the central part in the axial direction narrows from the outer peripheral surface toward the center of the circular cross section, and has a small hole (1) passing through the central part. Two single cavities (2) and (2) of the cavity resonator were manufactured. A ring-shaped flange (3) C is provided on the outer periphery of both ends of the hollow heavy body.
3) are integrally formed, and the joint surface (4) of the flange is finished with high precision for squareness and flatness, and the surface is cleaned with hydrofluoric acid. By drilling several bolt holes (5), the two cavity carriers (2) (2) are pressed against each other by pressing one joint surface (4) of the two together with the bolt (6) and the seat (1). Fixed. The connected body (8) of the cavity resonators was placed in a vacuum furnace and heated at 1500° C. for 1 hour under a vacuum of 10 −5 torr.

このように拡散接合させた接合面近傍では溶接のような
内部組織の変化がなく極めて均質であり、超伝導特性は
接合のない部分と変ることがなかった。
In the vicinity of the joint surface where diffusion bonding was performed in this way, there was no change in the internal structure as in welding, and the structure was extremely homogeneous, and the superconducting properties were the same as those in the non-bonded area.

なお、このように空胴単体の接合は空胴内の表面電界が
最も小さい部位で行なうことが接合の影響を最小限に抑
えることができ最も有効である。
It is to be noted that it is most effective to perform the bonding of a single cavity at a portion of the cavity where the surface electric field is the smallest, since the influence of the bonding can be minimized.

〔発明の効果〕〔Effect of the invention〕

このように本発明によれば超伝導導波管や空胴共振器の
接合部の欠陥が非常に少なくなりエネルギーロスが極め
て小さく、従って高加速電界を得られる等工業上顕著な
効果を奏するものである。
As described above, according to the present invention, defects in the joints of superconducting waveguides and cavity resonators are extremely reduced, energy loss is extremely small, and therefore a high accelerating electric field can be obtained, which has remarkable industrial effects. It is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の一部側断面を示す側面図で
ある。 1・・・・・・・・小穴 2・・・・・・・・空胴単体 3・・・・・・・・リング状7ランジ 4・・・・・・・・接合面 5・・・・・・・・ボルト穴 6・・・・・・・・ボルト 7・・・・・・・・ナツト 8・・・・・・・・連結体
FIG. 1 is a side view showing a partial side cross section of an embodiment of the present invention. 1...Small hole 2...Single cavity 3...Ring-shaped 7 flange 4...Joint surface 5... ...Bolt hole 6 ...Bolt 7 ...Nut 8 ...Connection body

Claims (1)

【特許請求の範囲】[Claims] 超伝導材料からなる導波管を互いに接合する方法におい
て、互いに接合面を圧接して真空中にて材料の融点より
も低い温度で加熱することにより拡散接合することを特
徴とする超伝導導波管の接合方法。
A method of bonding waveguides made of superconducting materials to each other, characterized in that diffusion bonding is performed by pressing their bonded surfaces together and heating them in a vacuum at a temperature lower than the melting point of the materials. How to join pipes.
JP29007787A 1987-11-17 1987-11-17 Method for joining superconducting wave guides Pending JPH01130890A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29007787A JPH01130890A (en) 1987-11-17 1987-11-17 Method for joining superconducting wave guides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29007787A JPH01130890A (en) 1987-11-17 1987-11-17 Method for joining superconducting wave guides

Publications (1)

Publication Number Publication Date
JPH01130890A true JPH01130890A (en) 1989-05-23

Family

ID=17751495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29007787A Pending JPH01130890A (en) 1987-11-17 1987-11-17 Method for joining superconducting wave guides

Country Status (1)

Country Link
JP (1) JPH01130890A (en)

Similar Documents

Publication Publication Date Title
US2956200A (en) Periodically focused traveling wave tube with tapered phase velocity
US4155027A (en) S-Band standing wave accelerator structure with on-axis couplers
WO1992013434A1 (en) Superconductive acceleration pipe
JPH01130890A (en) Method for joining superconducting wave guides
US3205398A (en) Long-slot coupled wave propagating circuit
US3493809A (en) Ultra high q superconductive cavity resonator made of niobium having a limited number of crystal grains
US4951380A (en) Waveguide structures and methods of manufacture for traveling wave tubes
JPH01130889A (en) Method for joining superconducting thin film wave guides
JPH01191501A (en) Joint method for superconducting waveguide
EP0696048B1 (en) Electron beam tubes
JPH03135000A (en) Superconducting accelerating tube
US4855644A (en) Crossed double helix slow-wave circuit for use in linear-beam microwave tube
JPH02159101A (en) Joining method for superconducting thin film waveguide
JP3727787B2 (en) Superconducting accelerator
JPH0398243A (en) Traveling wave tube with heat conductive mechanical supporter
JPH0371535A (en) Helical slow-wave circuit body structure
JPH11120925A (en) Vacuum vessel part of electron tube
JPS59118280A (en) Production of long sized accelerating tube
JPH07320898A (en) Assembly method of accelerating tube
JPH0532960Y2 (en)
JPH01221900A (en) Superconductive acceleration hollow
JP2551351B2 (en) Klystron
JP2002289105A (en) Manufacturing method of klystron
JPS62131Y2 (en)
JP2989335B2 (en) Accelerator tube welding