JPH01130889A - Method for joining superconducting thin film wave guides - Google Patents

Method for joining superconducting thin film wave guides

Info

Publication number
JPH01130889A
JPH01130889A JP29007687A JP29007687A JPH01130889A JP H01130889 A JPH01130889 A JP H01130889A JP 29007687 A JP29007687 A JP 29007687A JP 29007687 A JP29007687 A JP 29007687A JP H01130889 A JPH01130889 A JP H01130889A
Authority
JP
Japan
Prior art keywords
joining
thin film
superconducting
faces
superconducting thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29007687A
Other languages
Japanese (ja)
Inventor
Takashi Shimano
島野 隆
Takeru Ikeda
池田 ▲おさむ▼
Eiichi Shiba
栄一 芝
Shinichi Mukoyama
晋一 向山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP29007687A priority Critical patent/JPH01130889A/en
Publication of JPH01130889A publication Critical patent/JPH01130889A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a wave guide and an accelerating tube with satisfactory energy efficiency by pressing the joining faces mutually in a vacuum and heating these at the temperature lower than melting points of both base materials and superconductive materials and enabling joining the superconducting wave guides. CONSTITUTION:Two superconducting thin film hollow simple substances 5 which are finished by gas-spattering niobium 4 on the insides and cylindrical flange part end faces 3 of the hollow simple substances of hollow resonators having small through holes 2 on the centers of cross sections of the centers of the axial directions of the pure copper cylindrical base materials 1, for instance, are manufactured. The flange part end faces 3 are made to diffusion joining faces and the joining faces are abutted on each other and fixed by a bolt and a nut 7. A connector 8 of the hollow simple substances 5 joined respectively is heated at the temperature lower than the melting points of both the base materials and the superconductive materials in a vacuum furnace and the niobium 4 on the joining faces is subjected to diffusion joining mutually. As a result, the joining faces are extremely smooth and uniform without the difference with other parts and maintained completely airtight.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はマイクロ波伝送用の導波管、格にディスクロー
ド型進行波型加速管やマイクロ波空洞共1辰器等の内面
に超伝導薄膜を形成してマイクロ波のパワーロスを低減
させた超伝導薄膜導波管の接合方法に関するものである
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides superconductivity on the inner surface of waveguides for microwave transmission, particularly disk-loaded traveling wave accelerator tubes, microwave cavities, etc. The present invention relates to a method for joining superconducting thin film waveguides in which a thin film is formed to reduce microwave power loss.

〔従来の技術〕[Conventional technology]

上記導波管ヤ空胴共振器はタライストロンのようなマイ
クロ波増巾器や電子、陽子等の粒子加速器として用いら
れているが、この荷電粒子加速器には高周波電力で荷電
粒子を加速する空胴共振器を複数個連結した加速管が用
いられている。
The above-mentioned waveguide cavity resonator is used as a microwave amplifier such as the Talistron, or as a particle accelerator for electrons, protons, etc.; An accelerator tube with a plurality of connected body resonators is used.

これらの用途のうち数百MH2から数十GHz程度のマ
イクロ波の伝送に用いられる導波管におけるマイクロ波
のエネルギーロスは導波管材料として銅等の電気伝導度
の大きい材料を用いることによって大幅に小さくするこ
とができる。しかしながら粒子加速器に用いられている
空胴共振器のようにマイクロ波のエネルギーを蓄積する
ような場合は加速管の壁面を貫通して外部へ放出される
エネルギーが大きいためマイクロ波への投入エネルギー
をその分だけ大きくしなければならず効率が低いという
問題があった。
Among these applications, microwave energy loss in waveguides used for transmitting microwaves from several hundred MHz to several tens of GHz can be significantly reduced by using materials with high electrical conductivity such as copper as the waveguide material. can be made smaller. However, when microwave energy is stored in a cavity resonator used in a particle accelerator, a large amount of energy is released to the outside through the wall of the acceleration tube, so the energy input to the microwave is There was a problem that the size had to be increased accordingly, resulting in low efficiency.

これに対処するべく最近極めて少ないマイクロ波電力で
大きい加速電場が得られる空胴共振器としての空胴を超
伝導材料で形成した空胴共振器が注目されている。しか
しながら超伝導状態であってもマイクロ波に対してはあ
る程度の抵抗が存在するため発熱があり、通常この熱は
空胴仝体を超伝導状態に維持するために浸漬している液
体ヘリウムによって除去している。ところが一般に超伝
導状態におる材料は熱伝導率が悪いため加速電場が上昇
して発熱が大きくなるに従って、特にその材料内壁面の
表面欠陥部分での発熱は大きくなり、熱を除去しきれな
くなると材料温度が超伝導の臨界温度以上に上昇して超
伝導状態が破壊されてしまう。
In order to cope with this problem, a cavity resonator in which a cavity is formed of a superconducting material, which can obtain a large accelerating electric field with extremely low microwave power, has recently been attracting attention. However, even in a superconducting state, there is some resistance to microwaves, which generates heat, and this heat is usually removed by liquid helium immersed in the cavity to maintain it in a superconducting state. are doing. However, since materials in a superconducting state generally have poor thermal conductivity, as the accelerating electric field increases and heat generation increases, the heat generation increases, especially at surface defects on the inner wall of the material, and the heat cannot be removed completely. The material temperature rises above the critical temperature for superconductivity and the superconducting state is destroyed.

このため超伝導空胴共振器は通常熱伝導率の良い基材で
形成した管の内側に超伝導薄膜をメツキした構造となっ
ている。このようにすることにより超伝導薄膜での発熱
は速やかに基材を通して外部へ伝導され、該薄膜は常に
超伝導状態が保たれるためより加速電場を大きくでき、
さらに超伝導を維持するため管全体を液体ヘリウム中に
浸漬しなくとも基材外部にパイプを設け、該パイプ内に
液体ヘリウムを通す間接冷却によっても超伝導が実現で
きるためタライオスタットを大巾に簡素化できる。
For this reason, superconducting cavity resonators usually have a structure in which a superconducting thin film is plated on the inside of a tube made of a base material with good thermal conductivity. By doing this, the heat generated in the superconducting thin film is quickly conducted to the outside through the base material, and the thin film is always maintained in a superconducting state, so the accelerating electric field can be increased.
Furthermore, in order to maintain superconductivity, superconductivity can be achieved by providing a pipe outside the base material without immersing the entire tube in liquid helium, and by passing liquid helium through the pipe for indirect cooling. It can be simplified to

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このような特徴をもった超伝導薄膜空胴共振器ではある
が、依然として実用化されていない。
Although superconducting thin film cavity resonators have these characteristics, they have not yet been put into practical use.

その原因の一つに接合の問題がある。これは−般に超伝
導材料を接合するには、例えばニオブ等の板に対しては
電子ビーム溶接が用いられるが厚さ数μmから数十μm
U′)薄膜を接合する場合電子ビーム溶接を使用すると
ニオブ等の超伝導材料ばかりでなく基材まで溶けてしま
い十分な超伝導特性が得られないため溶接にて接合後再
度接合部分に超伝導材料の薄膜を形成しなければならな
い。しかしこのような後処理は一般的に実施し難く、後
処理部の表面の仕上げや薄膜の密着性等の問題が生じて
くる。
One of the causes is a bonding problem. This is because - generally, electron beam welding is used to join superconducting materials, for example, for plates such as niobium, but the thickness is from several μm to several tens of μm.
U') When joining thin films, if electron beam welding is used, not only the superconducting material such as niobium but also the base material will melt, making it impossible to obtain sufficient superconducting properties. A thin film of material must be formed. However, such post-treatment is generally difficult to implement, and problems arise such as the surface finish of the post-treated portion and the adhesion of the thin film.

(問題点を解決するための手段) 本発明はこれに鑑み種々検討し、物質を隙間なく圧接し
た状態で真空加熱して接合する技術、即ち拡散接合技術
が応用できることを知見し、ざらに検討の結果後処理等
を施すことなく安定した接合が得られる超伝導薄膜導波
管の接合方法を開発したもので、熱伝導率の良好な基材
の内側に超伝導薄膜を形成した超伝導薄膜導波管をたが
いに接合する方法において、それぞれの接合面に基材内
側と同一の超伝導薄膜を形成した後、真空中で接合面同
志を圧接して基材及び超伝導材料の双方の融点よりも低
い温度で加熱することにより拡散接合するとを特徴とす
るものであり、ざらに銅を基材としニオブ薄膜を基材内
側に形成した超伝導薄膜導波管を用いたものが有効であ
る。
(Means for Solving the Problems) In view of this, the present invention has been made various studies, and it has been found that a technique for bonding materials by vacuum heating in a state in which they are pressed together without any gaps, that is, a diffusion bonding technique, can be applied, and a rough study has been carried out. As a result, we have developed a method for bonding superconducting thin film waveguides that allows stable bonding without any post-processing. In the method of bonding waveguides to each other, a superconducting thin film identical to that inside the base material is formed on each bonding surface, and then the bonding surfaces are pressed together in a vacuum to increase the melting point of both the base material and the superconducting material. It is characterized by diffusion bonding by heating at a temperature lower than .

(作 用) 導波管の接合面同志を圧接して該接合面での両方の超伝
導材料の原子を融点以下の温度で相互拡散させるのは、
この拡散接合によれば接合部で超伝導材料は滑らかに連
続するため該材料の材質的変化や基材への悪影響がなく
良好な超伝導特性が保たれるからである。
(Function) The bonding surfaces of the waveguides are brought into pressure contact and the atoms of both superconducting materials at the bonding surfaces are interdiffused at a temperature below the melting point.
This is because, according to this diffusion bonding, the superconducting material is smoothly continuous at the bonded portion, so that there is no material change in the material or any adverse effect on the base material, and good superconducting properties are maintained.

また導波管の1種である断面円形の導波管の内部の長手
方向に、中央部に穴を形成した円板を周期的に設けた構
造の空胴共振器及びディスクロード型進行波型加速管の
接合の場合は接合部分は最も電界の小さい部分、即ち上
記円板と円板の中間が最も有効である。これは円板と円
板で形成された空胴にはエネルギーが多く蓄積されるに
つれて電界が上昇し、空胴の断面中央部で最も大きくな
り、断面の最も外側で最も小さくなる。そしてこの電界
が大きければ大ぎい程、空胴表面から多くの電子が飛び
出し、エネルギーの一部を奪ってしまい空胴の至達電界
を下げる原因の一つとなっている。またこのように飛び
出す電子の量は空胴表面が粗い程多くなるため電界の強
い場所に接合部等の表面均一性を阻害するおそれのある
部位を形成するのは好ましくないからである。
In addition, there are cavity resonators and disk-loaded traveling wave types that have a structure in which disks with a hole in the center are periodically provided in the longitudinal direction of a waveguide with a circular cross section, which is a type of waveguide. In the case of joining accelerator tubes, the joining part is most effective at the part where the electric field is the smallest, that is, between the two discs. This is because as more energy is stored in the cavity formed by the disks, the electric field increases, becoming largest at the center of the cross-section of the cavity and smallest at the outermost part of the cross-section. The larger this electric field is, the more electrons jump out from the surface of the cavity, taking away some of the energy, which is one of the causes of lowering the electric field reached by the cavity. Furthermore, the rougher the surface of the cavity, the greater the amount of electrons that fly out in this way, so it is undesirable to form a portion, such as a bonding portion, that may impede surface uniformity in a location where the electric field is strong.

〔実施例〕〔Example〕

本発明を一実施例を用いて説明する。 The present invention will be explained using an example.

第1図に示すように純銅製円筒状基材(1)の軸方向中
央の断面中央に貫通した小穴(2)を有する空胴共振器
の空胴単体の内側面及び該円筒のフランジ部端面(3)
にニオブ(4)をガススパッタして仕上げた超伝導薄膜
空胴単体(5)を2個作製し、上記フランジ部端面(3
)を拡散接合面とし、該接合面同志を突き合わせてボル
ト(6)及びナツト(7)で固定した。このような空胴
単体を多数・連結したものはπモード定在波型の多連結
空胴でTM010モードの電磁界が励起されるタイプで
あり、接合面同志の突き合わせ部は最も電界の低い部位
である。
As shown in Fig. 1, the inner surface of the single cavity of the cavity resonator and the end surface of the flange portion of the cylinder have a small hole (2) penetrating through the cross-section center of the pure copper cylindrical base material (1) in the axial direction. (3)
Two superconducting thin film cavities (5) finished by gas sputtering niobium (4) were prepared, and the flange end face (3)
) were used as diffusion bonding surfaces, and the bonding surfaces were butted against each other and fixed with bolts (6) and nuts (7). A structure in which a large number of single cavities are connected together is a multi-connected cavity with a π mode standing wave type, in which the TM010 mode electromagnetic field is excited, and the abutting portion between the bonding surfaces is the area with the lowest electric field. It is.

上記の空胴単体(5H5)の連結体(8)を真空炉中で
1o−s torrの真空度にて900 ’Cで1時間
加熱して接合面のニオブを相互に拡散させ空胴単体を互
いに拡散接合させた。この結果接合面は極めて滑らかで
他の部分と差がなく均一であり完全に気密が保たれてい
た。
The above-mentioned connected body (8) of single cavities (5H5) was heated in a vacuum furnace at 900'C in a vacuum of 10-s torr for 1 hour to mutually diffuse the niobium on the joint surfaces and separate the single cavities. They were diffusion bonded to each other. As a result, the joint surface was extremely smooth and uniform with no difference from other parts, and was completely airtight.

[発明の効果] このように本発明によれば超伝導波管の接合が可能とな
り、エネルギー効率の良好な導波管や加速管が得られ、
また材料の寸法変化かがほとんどないため、待に空胴共
振器やディスクロード型進行波型加速管の接合において
は接合前後での共振周波数の変化が非常に小さく、ざら
に材質の変化がない等工業上顕著な効果を奏するもので
ある。
[Effects of the Invention] As described above, according to the present invention, it is possible to join superconducting wave tubes, and a wave guide and an accelerating tube with good energy efficiency can be obtained.
In addition, since there is almost no change in the dimensions of the material, when joining cavity resonators or disk-loaded traveling wave accelerator tubes, the change in resonance frequency before and after joining is very small, and there is no rough change in material quality. It has remarkable industrial effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の=部側断面を示す側面図で
ある。 1・・・・・・・・純銅製円筒基材 2・・・・・・・・小穴 3・・・・・・・・フランジ部端面 4・・・・・・・・ニオブ 5・・・・・・・・超伝導薄膜空胴単体6・・・・・・
・・ボルト 7・・・・・・・・ナツト 8・・・・・・・・連結体 第1図−
FIG. 1 is a side view showing a side cross section of an embodiment of the present invention. 1...Pure copper cylindrical base material 2...Small hole 3...Flange end face 4...Niobium 5... ...Single superconducting thin film cavity 6...
...Bolt 7...Nut 8...Connection body Fig. 1-

Claims (2)

【特許請求の範囲】[Claims] (1)熱伝導率の良好な基材の内側に超伝導薄膜を形成
した超伝導薄膜導波管をたがいに接合する方法において
、それぞれの接合面に基材内側と同一の超伝導薄膜を形
成した後、真空中で接合面同志を圧接して基材及び超伝
導材料の双方の融点よりも低い温度で加熱することによ
り拡散接合することを特徴とする超伝導薄膜導波管の接
合方法。
(1) In a method of bonding superconducting thin film waveguides in which a superconducting thin film is formed on the inside of a base material with good thermal conductivity, the same superconducting thin film as on the inside of the base material is formed on each bonding surface. A method for bonding superconducting thin film waveguides, which is characterized in that the bonding surfaces are then pressed together in a vacuum and diffusion bonding is performed by heating at a temperature lower than the melting points of both the base material and the superconducting material.
(2)銅を基材とし内側にニオブの薄膜を形成した超伝
導薄膜導波管を用いる特許請求の範囲第(1)項記載の
超伝導薄膜導波管の接合方法。
(2) A method for joining a superconducting thin film waveguide according to claim (1), using a superconducting thin film waveguide having a copper base material and a niobium thin film formed inside.
JP29007687A 1987-11-17 1987-11-17 Method for joining superconducting thin film wave guides Pending JPH01130889A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29007687A JPH01130889A (en) 1987-11-17 1987-11-17 Method for joining superconducting thin film wave guides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29007687A JPH01130889A (en) 1987-11-17 1987-11-17 Method for joining superconducting thin film wave guides

Publications (1)

Publication Number Publication Date
JPH01130889A true JPH01130889A (en) 1989-05-23

Family

ID=17751483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29007687A Pending JPH01130889A (en) 1987-11-17 1987-11-17 Method for joining superconducting thin film wave guides

Country Status (1)

Country Link
JP (1) JPH01130889A (en)

Similar Documents

Publication Publication Date Title
US7411361B2 (en) Method and apparatus for radio frequency cavity
US11961692B2 (en) Bi-metallic anode for amplitude modulated magnetron
US4155027A (en) S-Band standing wave accelerator structure with on-axis couplers
US5347242A (en) Superconducting accelerating tube comprised of half-cells connected by ring shaped elements
EP1020101B1 (en) Particle accelerator cavity with reinforced supraconductive material, and method for making same
JPH01130889A (en) Method for joining superconducting thin film wave guides
US3441880A (en) High q radio frequency circuit employing a superconductive layer on a porous thermally matched substrate
US4103207A (en) Coupled cavity type traveling wave tube having improved pole piece structure
US3493809A (en) Ultra high q superconductive cavity resonator made of niobium having a limited number of crystal grains
JPH01191501A (en) Joint method for superconducting waveguide
JPH02159101A (en) Joining method for superconducting thin film waveguide
US4578658A (en) Process for the production of an ultra-high frequency cavity resonator and cavity resonator obtained by this process
US3441881A (en) High q radio frequency circuits employing a superconductive layer on a thermally matched aggregate metallic substrate
WO1998033228A2 (en) High-gradient insulator cavity mode filter
JPH01130890A (en) Method for joining superconducting wave guides
Grimm et al. New directions in superconducting radio frequency cavities for accelerators
JPH03135000A (en) Superconducting accelerating tube
JP3727787B2 (en) Superconducting accelerator
JP2000306697A (en) Manufacture of superconducting high-frequency cavity and superconducting high-frequency cavity manufactured thereby
JPH03233899A (en) Manufacture of high frequency acceleration cavity
Li et al. 201 MHz cavity R&D for MuCool and MICE
JPH09199297A (en) Superconducting high frequency acceleration cavity device
JPH0615462A (en) Joining method for member made of copper
JP2989335B2 (en) Accelerator tube welding
JP2551351B2 (en) Klystron