JPH01129938A - Composite material and its manufacture - Google Patents

Composite material and its manufacture

Info

Publication number
JPH01129938A
JPH01129938A JP28725387A JP28725387A JPH01129938A JP H01129938 A JPH01129938 A JP H01129938A JP 28725387 A JP28725387 A JP 28725387A JP 28725387 A JP28725387 A JP 28725387A JP H01129938 A JPH01129938 A JP H01129938A
Authority
JP
Japan
Prior art keywords
intermetallic compound
heat
fiber
resistant
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28725387A
Other languages
Japanese (ja)
Inventor
Shuji Ono
修二 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP28725387A priority Critical patent/JPH01129938A/en
Publication of JPH01129938A publication Critical patent/JPH01129938A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a lightweight and heat-resistant composite material by molding the kneaded products Ti-Al intermetallic compound fine powder having prescribed grain size, heat-resistant fiber, etc., under specific conditions, and thereafter calcining the same, thereby dispersing the fiber into the matrix phase of above-mentioned intermetallic compound. CONSTITUTION:The Ti-Al intermetallic compound fine powder having <=10mum average grain size, heat-resistant fiber and molding assistant are kneaded. The kneaded products are then heated to the temp. of the melting point or above of the molding assistant, are charged to a mold and are molded. The molded products are heated to remove the above-mentioned molding assistant. The molded body is then calcined. In this way, the composite material of the sintered fiber reinforced intermetallic compound having lightness and heat resistance in which the heat-resistant fiber is dispersed to the matrix phase of the intermetallic compound can be obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は@量かつ耐熱性に優れ之焼結した繊維強化金属
間化合物よシなる複合材料及びその製造方法に関し、特
にエンジンバルブ、過給機ローメ、コンプレッサ羽根車
など400〜1000℃の温度範囲で使用しつる同複合
材料及びその製造方法に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a composite material made of a sintered fiber-reinforced intermetallic compound having excellent quantity and heat resistance, and a method for producing the same, particularly for use in engine valves, supercharging, etc. The present invention relates to a composite material for use in the temperature range of 400 to 1000°C, such as machine loams and compressor impellers, and a method for producing the same.

〔従来の技術〕[Conventional technology]

400℃以上で使用される部品は耐熱性、耐食注文は耐
改化注の点から、比重が7以上の鉄基合金、ニッケル基
合金又はコバルト基合金が主に使用されている。
Parts used at temperatures above 400°C are heat resistant, and corrosion-resistant parts are made of iron-based alloys, nickel-based alloys, or cobalt-based alloys with a specific gravity of 7 or more, from the viewpoint of resistance to modification.

ところが近年、省エネルギの観点から機械部品の軽址化
が要請されているが、400℃以上の高温では比重の小
さいチタン合金(比M:約4.5)及びアルミニウム合
金(比重:約五2)は強度、耐酸化性などが不十分であ
り便用できない。一方、比重の小さいAl、O,、Si
3N4 、  SiCなどのセラミックスは、耐熱性の
点では金属系に比較して格段と優れているが、靭性が低
く、かつ硬くて機械7+11工注が劣るなどの欠点かめ
るため実用性に問題かめる。
However, in recent years, there has been a demand for lighter mechanical parts from the perspective of energy conservation, but at high temperatures of 400°C or higher, titanium alloys (ratio M: approximately 4.5) and aluminum alloys (specific gravity: approximately 52) have low specific gravity. ) cannot be used conveniently due to insufficient strength and oxidation resistance. On the other hand, Al, O, Si, which has a small specific gravity
Ceramics such as 3N4 and SiC are significantly superior to metals in terms of heat resistance, but they have drawbacks such as low toughness and hardness, making them inferior to mechanical 7+11 injections, which poses problems for practical use.

また、上記チタン合金やアルミニウム合金と同等の小さ
い比重を示し、それらの合金が使用で@ない高温でも優
れた耐酸化性、高@’!!f性金示す合金としてチタン
−アルミニウム系金属間化合物(TiAt、 Ti、A
t)が刈られているが、このものは非常に脆いため実用
化の例は未だない。
In addition, it exhibits a low specific gravity equivalent to the titanium alloys and aluminum alloys mentioned above, and has excellent oxidation resistance even at high temperatures where those alloys cannot be used. ! Titanium-aluminum intermetallic compounds (TiAt, Ti, A
t), but it is extremely fragile and there are no examples of its practical use yet.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は上記技術水準に鑑み、軽量かつ耐熱性に優れた
複合材料及びその製造方法全提供しようとするものであ
る。
In view of the above-mentioned state of the art, the present invention aims to provide a composite material that is lightweight and has excellent heat resistance, and a method for manufacturing the same.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、 (11チタン−アルミニウム系金属間化合物の母相中に
、耐熱繊維が分散されていることを特徴とする軽量、耐
熱性の焼結繊維強化金属間化合物複合材料及び (2)平均粒径10μm以下のチタン−アルミニウム系
金属間化合物微粉末、耐熱繊維及び成形助剤を混練して
得られた成形用混合物を1該混合物中の成形助剤の融点
以上の@度に加熱して所望の形状の金型に充填して所望
の形状の成形体を得、該成形体より成形助剤を除である
The present invention provides (11) a lightweight, heat-resistant sintered fiber-reinforced intermetallic compound composite material characterized in that heat-resistant fibers are dispersed in the matrix of a titanium-aluminum-based intermetallic compound, and (2) an average A molding mixture obtained by kneading a titanium-aluminum intermetallic compound fine powder with a particle size of 10 μm or less, a heat-resistant fiber, and a molding aid is heated to a temperature higher than the melting point of the molding aid in the mixture. The mixture is filled into a mold having a desired shape to obtain a molded product having a desired shape, and the molding aid is removed from the molded product.

−アルミニウム系金属間化合物としては、比重が4以下
と小嘔<、シかも400〜1,000℃TiAt又は’
I’13kt系金属間化合物は純粋なものに限定される
ものではなく、これらの組成全基本成分とし、例えば化
性などを改善するために他の元素、例えばMn、 V、
 Mo、 Nb  などを合計10wt%以下、添加し
たチタン−アルミニウム系金属間化合物も使用すること
ができる。
- As an aluminum-based intermetallic compound, TiAt or '
I'13kt-based intermetallic compounds are not limited to pure ones, but include all of these basic components, and may also contain other elements, such as Mn, V, etc., to improve chemical properties.
A titanium-aluminum intermetallic compound to which Mo, Nb, etc. are added in a total amount of 10 wt% or less can also be used.

このチタン−アルミニウム系金属間化合物そのものは、
複雑形状の部品製造するには通さない娠注の小さなもの
でめるので、これ全母相とする複合材料を製造するに際
しては、流動性をよくするため平均粒径10μ以下の微
粒子としてチタン−アルミニウム系金属間化合物を使用
すべきである。
This titanium-aluminum intermetallic compound itself is
To manufacture parts with complex shapes, it is necessary to use small particles with impermeable particles, so when manufacturing a composite material that uses this as the entire matrix, titanium is used as fine particles with an average particle size of 10μ or less to improve fluidity. Aluminum-based intermetallic compounds should be used.

チタン−アルミニウム系金属間化合物に分散させる強化
材となる耐熱繊維としては、耐熱性の優れたセラミック
ス繊維、合端繊維などであり、例えば81Cウイスカ、
 Zr01短繊維、 Aj103短繊維、  kl鵞0
3・810鵞短穢維、S10鵞短繊維、C短繊維、 8
13N、ウィスカ、 Wl#1. B繊維などがめげら
れる。
Heat-resistant fibers that serve as reinforcing materials to be dispersed in the titanium-aluminum intermetallic compound include ceramic fibers with excellent heat resistance, jointed fibers, etc., such as 81C whiskers,
Zr01 short fiber, Aj103 short fiber, kl 0
3.810 goose short fiber, S10 goose short fiber, C short fiber, 8
13N, Whisker, Wl#1. B fibers etc. are damaged.

一般的に強化材となる耐熱繊維としては、直径2〜30
0μ町長さ1oP%へ79鴎のものが適する。
Heat-resistant fibers that serve as reinforcing materials generally have a diameter of 2 to 30 mm.
79 seaweed is suitable for 0μ town length 1oP%.

チタン−アルミニウム系金属間化合物と耐熱繊維の配合
割合#′i\チタンーアルミニウム系金属間化合物微粉
末と耐熱繊維の混合が容易で、かつ靭性向上効果の点か
ら、前者に対して後者全5〜60 vow tlbの範
囲にするのが適している0本発明において使用される成
形助剤は特に限定ちれるものではないが、加熱により流
動性を呈するワックスや有機系樹脂類を使用するのが好
ましい。この使用敏は使用する成形助剤によって異なシ
ー義的に定められないが、例えば成形助剤としてワック
スを用いた場合について述べると、チタン−アルミニウ
ム系金属間化合物微粉末と耐熱繊維の混合物60 vo
w%に対しワックス40 vowチ程度である。
Blending ratio of titanium-aluminum intermetallic compound and heat-resistant fiber #'i \ From the viewpoint of easy mixing of titanium-aluminum intermetallic compound fine powder and heat-resistant fiber and the effect of improving toughness, the latter is 5% compared to the former. The molding aid used in the present invention is not particularly limited, but it is preferable to use a wax or organic resin that becomes fluid when heated. preferable. This usability differs depending on the molding aid used and is not determined in terms of terms, but for example, in the case where wax is used as the molding aid, a mixture of titanium-aluminum intermetallic compound fine powder and heat-resistant fiber 60 vo
The wax content is about 40 vw per w%.

〔実施例〕〔Example〕

以下、本発明の一実施例を図面を参照して詳述する。第
1図は本発明の焼結繊維強化金属間化合物裂のパルプの
側面図、第2図は第1図のA−A矢視図で69、第3図
は第1図、第2図で示された焼結繊維強化金属間化合物
製パルプの射出成形機の概略図である。
Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings. Fig. 1 is a side view of the sintered fiber-reinforced intermetallic compound fiber pulp of the present invention, Fig. 2 is a view taken along the line A-A in Fig. 1, and Fig. 3 is a side view of the pulp of the present invention. 1 is a schematic diagram of the illustrated sintered fiber-reinforced intermetallic pulp injection molding machine; FIG.

第1図、第2図において、1は本発明−実施態様の焼結
繊維強化金属間化合物製パルプを示す。第3図において
、2は前記パルプ1と同じ形状の空洞l1153を有す
る金型(通常、炭素鋼製)、4は通路5t−有する金型
(これも通常、炭素鋼illり%6は射出成形機でろり
、7は射出成形機6のシリンダライナー8の中心軸に設
置されているスクリュー、9はシリンダライナー8の周
囲に設けられた加熱コイル% 10はノズル、11はチ
タン−アルミニウム系金属間化合物微粉末、耐熱繊維及
び成形助剤よりなる底形用混合物である。
In FIGS. 1 and 2, 1 indicates a sintered fiber-reinforced intermetallic compound pulp according to an embodiment of the present invention. In Fig. 3, 2 is a mold (usually made of carbon steel) having a cavity 1153 having the same shape as the pulp 1, 4 is a mold having a passage of 5t (also usually made of carbon steel), and 6 is injection molding. 7 is a screw installed on the central axis of the cylinder liner 8 of the injection molding machine 6, 9 is a heating coil installed around the cylinder liner 8, 10 is a nozzle, and 11 is a titanium-aluminum metal interface. This is a mixture for bottom shapes consisting of fine compound powder, heat-resistant fibers, and molding aids.

上記第3図の射出成形機を使用し、チタン−アルミニウ
ム系金属間化合物としてTi−Atを、耐熱繊維として
SiCウィスカを、成形助剤としてワックスを用いた場
合について説明する。
A case will be described in which the injection molding machine shown in FIG. 3 is used, Ti-At is used as the titanium-aluminum intermetallic compound, SiC whisker is used as the heat-resistant fiber, and wax is used as the molding aid.

Ti−At粉末(平均粒径10μm以下) : 81C
ウイスカを体積チで70 : 50の混合物を作り、該
混合物とワックスとを体積チで60 : 40の割合で
別途混線機で110℃に加熱しながら攪拌して成形用混
合物11を作る。該成形用混合物11全直径2〜31m
、長ち5〜4mのベレット状にして第3図の射出成形機
6へ図示していない装入口から装填する。
Ti-At powder (average particle size 10 μm or less): 81C
A mixture of whiskers is prepared in a ratio of 70:50 by volume, and the mixture and wax are stirred in a ratio of 60:40 in a mixer while being heated to 110° C. to prepare a molding mixture 11. The molding mixture 11 has a total diameter of 2 to 31 m.
The pellet is shaped into a pellet having a length of 5 to 4 m and is loaded into the injection molding machine 6 in FIG. 3 from a charging port (not shown).

射出成形機6へ装填された成形用混合物11は、加熱コ
イル9でワックスの融点以上の約120℃に加熱嘔れな
がら、シリンダライナー8の上部のノズル10方向に押
し出される。
The molding mixture 11 loaded into the injection molding machine 6 is extruded toward the nozzle 10 at the upper part of the cylinder liner 8 while being heated by the heating coil 9 to about 120° C., which is higher than the melting point of the wax.

(第5図はこの状態を示している。) スクリュー7を一旦、ノズル10より後退させた後、高
い圧力で前進させると、流動状態になった成形用混合物
11はノズル10から金型4の通路5を通シ、金型2の
空洞部3に充填される。
(FIG. 5 shows this state.) When the screw 7 is once retracted from the nozzle 10 and then advanced at high pressure, the molding mixture 11 in a fluid state flows from the nozzle 10 to the mold 4. It passes through the passage 5 and fills the cavity 3 of the mold 2.

空洞部3に充填された成形用混合物11の温度がワック
スの融点以下に下がった時点で%成形用混合物11、す
なわち射出状態の未焼結パルプ状混合物、を金型2から
暇り出し、該バルブ状混合’$t−400℃程度に加熱
してワックスを流し出して脱脂する。
When the temperature of the molding mixture 11 filled in the cavity 3 falls below the melting point of the wax, the molding mixture 11, that is, the unsintered pulp-like mixture in the injection state, is ejected from the mold 2 and Bulb-shaped mixture '$t-Heat to about 400°C to pour out wax and degrease.

脱脂したバルブ状混合物をアルゴン雰囲気中で1250
℃で焼結すると、第1図、第2図に示した形状の焼MS
iC強化’riAt 製パルプが得られる。
The degreased bulb mixture was heated to 1250 °C in an argon atmosphere.
When sintered at ℃, a sintered MS with the shape shown in Figures 1 and 2
An iC-reinforced 'riAt pulp is obtained.

〔発明の効果〕〔Effect of the invention〕

+1+  本発明の焼結繊維強化金属間化合物複合材料
は、母相がチタン−アルミニウム系金属間化合物である
ので比重が軽く、耐酸化性でかつ高温強度に優れ、かつ
耐熱繊維が母相中に分散しているので靭性も優れており
、従来不可能でるつ之高温部品の裏作に有利に使用でき
る。
+1+ The sintered fiber-reinforced intermetallic compound composite material of the present invention has a titanium-aluminum intermetallic compound in the matrix, so it has a light specific gravity, is oxidation resistant, has excellent high-temperature strength, and has heat-resistant fibers in the matrix. Since it is dispersed, it has excellent toughness and can be used advantageously for the production of melting high-temperature parts, which was previously impossible.

(2)平均粒径10μm以下のチタン−アルミニウム系
金属間化合物を使用するので耐熱繊維との混合が容易で
め9、かつ成形助剤を使用しているので成形が容易でめ
ジ、複雑形状の焼結繊維強化金属間化合物裏部品の製造
が可能となる。
(2) Since it uses a titanium-aluminum intermetallic compound with an average particle size of 10 μm or less, it is easy to mix with heat-resistant fibers9, and because it uses a forming aid, it is easy to mold, making it easy to form shapes and complex shapes. This makes it possible to manufacture sintered fiber-reinforced intermetallic compound back parts.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明の焼結繊維強化金属間化合物部
品の一例を示すもので、第1図はその側面図、第2図は
第1図のA−A矢視図である。itg3図は本発明の焼
結繊維強化金属間化合物製部品の裏遣方法の一工程であ
る射出成形機の概略図でるる。 ハ 第3図
1 and 2 show an example of the sintered fiber-reinforced intermetallic compound component of the present invention, FIG. 1 is a side view thereof, and FIG. 2 is a view taken along the line A-A in FIG. 1. . Figure 3 is a schematic diagram of an injection molding machine which is a step in the lining method for parts made of sintered fiber-reinforced intermetallic compounds of the present invention. Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)チタン−アルミニウム系金属間化合物の母相中に
、耐熱繊維が分散されていることを特徴とする軽量、耐
熱性の焼結繊維強化金属間化合物複合材料。
(1) A lightweight, heat-resistant sintered fiber-reinforced intermetallic compound composite material characterized in that heat-resistant fibers are dispersed in a matrix of a titanium-aluminum-based intermetallic compound.
(2)平均粒径10μm以下のチタン−アルミニウム系
金属間化合物微粉末、耐熱繊維及び成形助剤を混練して
得られた成形用混合物を、該混合物中の成形助剤の融点
以上の温度に加熱して所望の形状の金型に充填して所望
の形状の成形体を得、該成形体より成形助剤を除去した
後焼成することを特徴とする焼結繊維強化金属間化合物
複合材料の製造方法。
(2) A molding mixture obtained by kneading a titanium-aluminum intermetallic compound fine powder with an average particle size of 10 μm or less, a heat-resistant fiber, and a molding aid is heated to a temperature higher than the melting point of the molding aid in the mixture. A sintered fiber-reinforced intermetallic compound composite material, which is heated and filled into a mold of a desired shape to obtain a molded body of a desired shape, and is fired after removing a molding aid from the molded body. Production method.
JP28725387A 1987-11-16 1987-11-16 Composite material and its manufacture Pending JPH01129938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28725387A JPH01129938A (en) 1987-11-16 1987-11-16 Composite material and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28725387A JPH01129938A (en) 1987-11-16 1987-11-16 Composite material and its manufacture

Publications (1)

Publication Number Publication Date
JPH01129938A true JPH01129938A (en) 1989-05-23

Family

ID=17715006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28725387A Pending JPH01129938A (en) 1987-11-16 1987-11-16 Composite material and its manufacture

Country Status (1)

Country Link
JP (1) JPH01129938A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994023077A1 (en) * 1993-04-01 1994-10-13 United Technologies Corporation Ductile titanium alloy matrix fiber reinforced composites
JPH08104933A (en) * 1994-10-03 1996-04-23 Mitsubishi Heavy Ind Ltd Titanium aluminide base composite material
JPH09268336A (en) * 1996-03-29 1997-10-14 Agency Of Ind Science & Technol Heat resistant material and its production
TWI747346B (en) * 2019-07-04 2021-11-21 日商Smc股份有限公司 Sensor mounting tool and fluid pressure cylinder

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994023077A1 (en) * 1993-04-01 1994-10-13 United Technologies Corporation Ductile titanium alloy matrix fiber reinforced composites
JPH08104933A (en) * 1994-10-03 1996-04-23 Mitsubishi Heavy Ind Ltd Titanium aluminide base composite material
JPH09268336A (en) * 1996-03-29 1997-10-14 Agency Of Ind Science & Technol Heat resistant material and its production
TWI747346B (en) * 2019-07-04 2021-11-21 日商Smc股份有限公司 Sensor mounting tool and fluid pressure cylinder

Similar Documents

Publication Publication Date Title
JP6788669B2 (en) Aluminum and aluminum alloy powder molding method
TW461838B (en) Net shape hastelloy X made by metal injection molding using an aqueous binder
CN1318167C (en) Near clean shaping preparation method of granular reinforced metal base composite material based on region selection laser sintering
CA2803807C (en) Molybdenum/molybdenum disulfide metal articles and methods for producing same
JP2007051375A (en) Preparation of sheet by injection molding of powder, consolidation, and heat treating
CN105803255B (en) High-niobium titanium aluminum-base supercharger turbine and manufacturing method thereof
JP4429505B2 (en) Method for producing low volume fraction metal-based preform
EP1715070B1 (en) Method of producing titanium composite parts by means of casting
CN110205536A (en) A kind of titanium/titanium carbide core-shell structure reinforced aluminum matrix composites and preparation method thereof
JPH01129938A (en) Composite material and its manufacture
RU2644834C1 (en) Method for producing metal-ceramic powder composition
CN106676433B (en) The low pressure pressurization preparation method of ceramic alumina fiber/particle reinforced metal-base composites
JPH06330105A (en) Production of ti or ti alloy sintered compact
CN108034866A (en) A kind of high-performance aluminium silicon nitride based composites and preparation method thereof
Hmelov Development of Dense Materials by Plasma-Spark Sintering of Oxide–Oxide-Free Components with Different Mixtures of Metal Powders
JPH05222468A (en) Production of composite material consisting of titanium carbide and titanium boride whisker reinforced titanium by reaction synthesis method
JP3265463B2 (en) Method for producing Ti sintered body
JP2005350710A (en) Heat-resistant alloy for metallic powder to be injection-molded
JP3728507B2 (en) Sintered titanium alloy and manufacturing method thereof
JPH09287038A (en) Production of composite product of titanium-aluminum alloy and metal fiber
JPH04224601A (en) Manufacture of titanium-based composite material
RU2563084C1 (en) Production of high-temperature nickel-based composite
CN106676338A (en) Al3Ti and Al2O3 particle co-enhanced Al matrix composite and preparation method thereof
JPH0436428A (en) Manufacture of high toughness tungsten sintered alloy
JPS6274035A (en) Production of ceramic whisker preform for frm