JPH0112964B2 - - Google Patents

Info

Publication number
JPH0112964B2
JPH0112964B2 JP57083208A JP8320882A JPH0112964B2 JP H0112964 B2 JPH0112964 B2 JP H0112964B2 JP 57083208 A JP57083208 A JP 57083208A JP 8320882 A JP8320882 A JP 8320882A JP H0112964 B2 JPH0112964 B2 JP H0112964B2
Authority
JP
Japan
Prior art keywords
oil
chamber
spool
supply
hydraulic piston
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57083208A
Other languages
Japanese (ja)
Other versions
JPS58200802A (en
Inventor
Toshimi Nagano
Kinai Takagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP8320882A priority Critical patent/JPS58200802A/en
Publication of JPS58200802A publication Critical patent/JPS58200802A/en
Publication of JPH0112964B2 publication Critical patent/JPH0112964B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/18Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency wherein the vibrator is actuated by pressure fluid
    • B06B1/183Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency wherein the vibrator is actuated by pressure fluid operating with reciprocating masses

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Fluid-Pressure Circuits (AREA)

Description

【発明の詳細な説明】 本発明は振動可変油圧発振機における油圧ピス
トンの振幅制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an amplitude control device for a hydraulic piston in a variable vibration hydraulic oscillator.

本出願人は、かねてからパイロツト弁内におい
て両側から定圧力と交番圧力とを受けるようにし
たスプールと、シリンダ内において両側から定圧
力と交番圧力を受けるようにした油圧ピストンと
の相互作用によつて該油圧ピストンを振動するよ
うにすると共に、前記シリンダと油圧ピストンと
の間に該油圧ピストンの振動に適応するようにな
した摺動ライナを摺動調整することにより油圧ピ
ストンの振幅を可変ならしめた振幅可変油圧発振
機についての研究を重ねてきており、その成果の
一部について既に特許出願をしている(特願昭55
−142498号)。
The present applicant has long discovered that by the interaction between a spool in a pilot valve that receives constant pressure and alternating pressure from both sides, and a hydraulic piston that receives constant pressure and alternating pressure from both sides in a cylinder, The hydraulic piston is caused to vibrate, and the amplitude of the hydraulic piston is made variable by slidingly adjusting a sliding liner between the cylinder and the hydraulic piston to accommodate the vibration of the hydraulic piston. We have been conducting research on variable amplitude hydraulic oscillators, and have already filed a patent application for some of our results (patent application filed in 1983).
−142498).

本発明はかかる振幅可変油圧発振機において、
取扱い容易で、遠隔操作可能な振幅制御装置を提
供せんとするものである。
The present invention provides such a variable amplitude hydraulic oscillator,
It is an object of the present invention to provide an amplitude control device that is easy to handle and can be operated remotely.

以下本発明の実施例を図面に従つて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

図面は本発明の振幅制御装置を備えた振幅可変
油圧発振機の縦断面図であつて、第1図は振幅を
最小に調整し、第2図は振幅を最大に調整する状
態を示している。
The drawings are longitudinal sectional views of a variable amplitude hydraulic oscillator equipped with the amplitude control device of the present invention, in which FIG. 1 shows the amplitude adjusted to the minimum, and FIG. 2 shows the amplitude adjusted to the maximum. .

図において、1は振幅可変油圧発振機であつ
て、パイロツト弁2とシリンダ3と油圧ピストン
4と可変弁5と遠隔操作弁6とを備えている。7
はパイロツト弁2内に摺動可能に内蔵したスプー
ルであり、8はスプール7の中間に形成した環状
溝からなる給排室である。9と10はそれぞれス
プール7の両端部を押圧する小径作動杆と大径作
動杆である。11と12はそれぞれ小径作動杆9
と大径作動杆10との端面に圧力油を導入する定
圧力室と交番圧力室である。パイロツト弁2をシ
リンダ3に取付ける側壁には給油孔13と連通孔
14と排油孔15とを設けてあつて、スプール7
が第2図に示すように下方に移動すると給排室8
を介して連通孔14と排油孔15が連通し、スプ
ール7が第1図に示すように上方に移動すると給
排室8を介して給油孔13と連通孔14が連通す
るように設計されている。シリンダ3の下部定圧
力側と上部交番圧力側とにおいて、シリンダ3と
油圧ピストン4との間にそれぞれ大径部と小径部
とよりなる固定ライナ16と摺動ライナ17とを
設けてある。すなわち油圧ピストン4の下方は固
定ライナ16の小径部18に、油圧ピストン4の
中央のスプール部19は固定ライナ16の大径部
と摺動ライナ17の大径部に、油圧ピストン4の
上方は摺動ライナ17の小径部20に、それぞれ
摺動可能に嵌合している。油圧ピストン4のスプ
ール部19と固定ライナ16および摺動ライナ1
7との間にはそれぞれ受圧面積の小さい定圧力室
21と受圧面積の大きい交番圧力室22とが形成
されている。
In the figure, reference numeral 1 denotes a variable amplitude hydraulic oscillator, which includes a pilot valve 2, a cylinder 3, a hydraulic piston 4, a variable valve 5, and a remote control valve 6. 7
A spool is slidably built into the pilot valve 2, and a supply/discharge chamber 8 is an annular groove formed in the middle of the spool 7. Reference numerals 9 and 10 are a small diameter operating rod and a large diameter operating rod that press both ends of the spool 7, respectively. 11 and 12 are small diameter operating rods 9, respectively.
and a constant pressure chamber and an alternating pressure chamber into which pressure oil is introduced into the end faces of the large-diameter operating rod 10. The side wall where the pilot valve 2 is attached to the cylinder 3 is provided with an oil supply hole 13, a communication hole 14, and an oil drain hole 15.
moves downward as shown in Figure 2, the supply/discharge chamber 8
The communication hole 14 and the oil drain hole 15 communicate with each other through the oil supply and discharge chamber 8, and when the spool 7 moves upward as shown in FIG. ing. A fixed liner 16 and a sliding liner 17 each having a large diameter part and a small diameter part are provided between the cylinder 3 and the hydraulic piston 4 on the lower constant pressure side and the upper alternating pressure side of the cylinder 3, respectively. That is, the lower part of the hydraulic piston 4 is connected to the small diameter part 18 of the fixed liner 16, the central spool part 19 of the hydraulic piston 4 is connected to the large diameter part of the fixed liner 16 and the large diameter part of the sliding liner 17, and the upper part of the hydraulic piston 4 is connected to the small diameter part 18 of the fixed liner 16. They are each slidably fitted into the small diameter portion 20 of the sliding liner 17. Spool portion 19 of hydraulic piston 4, fixed liner 16, and sliding liner 1
7, a constant pressure chamber 21 with a small pressure receiving area and an alternating pressure chamber 22 with a large pressure receiving area are formed, respectively.

23は油圧ピストン4のスプール部19に形成
された環状溝からなる連通室である。各ライナ1
6,17の大径部と小径部との段部、すなわち定
圧力室21の下端部と交番圧力室22の上端部と
にそれぞれブレーキ室24,25が形成されてい
る。26,27は油圧ピストン4のスプール部1
9の両端に設けられたブレーキ用段部で、ブレー
キ室24,25にそれぞれ突入した際に油を閉じ
こめるべく設計されている。摺動ライナ17の上
方開口端部寄りにおいて、該摺動ライナ17とシ
リンダ3とで油室28が形成されている。固定ラ
イナ16の大径部には定圧力室21の下部に開口
する給油口29と中程に開口する排油口30と上
端部に開口する連通口31とを設けてあり、摺動
ライナ17の大径部には交番圧力室22の上部に
開口する連通口32と該大径部の下方開口端部寄
りに開口する給油口33とを設けてあつて、油圧
ピストン4が上方に移動すると連通室23を介し
て給油口33と連通口31とが連通し(第1図参
照)、油圧ピストン4が下方に移動すると連通室
23を介して連通口31と排油口30が連通する
ように設計されている。34は可変弁5内に摺動
可能に内蔵したスプールであり、35はスプール
34の中間に形成した環状溝からなる給排室であ
る。36と37はそれぞれスプール34の両端部
を押圧する小径作動杆と大径作動杆である。38
と39はそれぞれ小径作動杆36と大径作動杆3
7との端面に圧力油を導入する定圧力室と調整圧
力室である。可変弁5をシリンダ3に取付ける側
壁には逆止弁40を内蔵した給油孔41と連通孔
42と排油孔43とを設けてあつて、スプール3
4が上方に移動すると給排室35を介して連通孔
42と排油孔43が連通し、スプール34が下方
に移動すると給排室35を介して連通孔42と給
油孔41が連通し、中立位置で連通孔42は給油
孔41および排油孔43とのいずれとも遮断され
るように設計されている。遠隔操作弁6はシリン
ダ44とピストン45およびハンドル46を有す
る。47は前記シリンダ44とピストン45で形
成された油室である。シリンダ3の上端面には給
油管接続口48と排油管接続口49と前記遠隔操
作弁6の油室47に連通する可変弁作動管接続口
50とを設けてある。51は供給油路であつて、
給油管接続口48をパイロツト弁2の定圧力室1
1に通じる孔11′および給油孔13と固定ライ
ナ16の給油口29と摺動ライナ17の給油口3
3と可変弁5の定圧力室38に通じる孔38′お
よび給油孔41とに連通している。52は排出油
路であつて、排油管接続口49をパイロツト弁2
の排油孔15と固定ライナ16の排油孔30と可
変弁5の排油孔43とに連通している。53はピ
ストン作動用油路であつて、パイロツト弁2の連
通孔14を摺動ライナ17の連通口32に連通し
ている。54はスプール作動用油路であつて、パ
イロツト弁2の交番圧力室12に通じる孔12′
を固定ライナ16の連通口31に連通している。
55は摺動ライナ作動用油路であつて、可変弁5
の連通孔42とシリンダ3の油室28に通じる孔
28′に連通している。56は可変弁作動用油路
であつて、可変弁作動管接続口50と可変弁5の
調整圧力室39に通じる孔39′を連通している。
なお57は摺動ライナ17のストツパ用止めナツ
トで、58は逆止弁59はタンクである。
Reference numeral 23 denotes a communication chamber consisting of an annular groove formed in the spool portion 19 of the hydraulic piston 4. Each liner 1
Brake chambers 24 and 25 are formed at the stepped portions of the large and small diameter portions 6 and 17, that is, at the lower end of the constant pressure chamber 21 and at the upper end of the alternating pressure chamber 22, respectively. 26 and 27 are the spool portion 1 of the hydraulic piston 4
Brake step portions provided at both ends of the brake pad 9 are designed to trap oil when entering the brake chambers 24 and 25, respectively. An oil chamber 28 is formed between the sliding liner 17 and the cylinder 3 near the upper opening end of the sliding liner 17 . The large diameter portion of the fixed liner 16 is provided with an oil supply port 29 that opens at the lower part of the constant pressure chamber 21, an oil drain port 30 that opens in the middle, and a communication port 31 that opens at the upper end. A communication port 32 that opens at the top of the alternating pressure chamber 22 and an oil supply port 33 that opens toward the lower opening end of the large diameter portion are provided in the large diameter portion of the hydraulic piston 4. The oil supply port 33 and the communication port 31 communicate with each other via the communication chamber 23 (see FIG. 1), and when the hydraulic piston 4 moves downward, the communication port 31 and the oil drain port 30 communicate with each other via the communication chamber 23. It is designed to. 34 is a spool slidably built into the variable valve 5, and 35 is a supply/discharge chamber consisting of an annular groove formed in the middle of the spool 34. Reference numerals 36 and 37 are a small-diameter operating rod and a large-diameter operating rod that press both ends of the spool 34, respectively. 38
and 39 are the small diameter operating rod 36 and the large diameter operating rod 3, respectively.
They are a constant pressure chamber and an adjusting pressure chamber into which pressure oil is introduced into the end face with 7. The side wall where the variable valve 5 is attached to the cylinder 3 is provided with an oil supply hole 41 with a built-in check valve 40, a communication hole 42, and an oil drain hole 43.
When the spool 4 moves upward, the communication hole 42 and the oil drain hole 43 communicate with each other through the supply and discharge chamber 35, and when the spool 34 moves downward, the communication hole 42 and the oil supply hole 41 communicate with each other through the supply and discharge chamber 35, The communication hole 42 is designed to be blocked from both the oil supply hole 41 and the oil drain hole 43 at the neutral position. The remote control valve 6 has a cylinder 44, a piston 45, and a handle 46. 47 is an oil chamber formed by the cylinder 44 and piston 45. An oil supply pipe connection port 48, an oil drain pipe connection port 49, and a variable valve operation pipe connection port 50 communicating with the oil chamber 47 of the remote control valve 6 are provided on the upper end surface of the cylinder 3. 51 is a supply oil path,
Connect the oil supply pipe connection port 48 to the constant pressure chamber 1 of the pilot valve 2.
1, the oil supply hole 13, the oil supply port 29 of the fixed liner 16, and the oil supply port 3 of the sliding liner 17.
3 and a hole 38' communicating with the constant pressure chamber 38 of the variable valve 5 and an oil supply hole 41. Reference numeral 52 is a drain oil passage, and the drain oil pipe connection port 49 is connected to the pilot valve 2.
The oil drain hole 15 of the fixed liner 16 communicates with the oil drain hole 30 of the fixed liner 16 and the oil drain hole 43 of the variable valve 5. Reference numeral 53 denotes a piston operating oil passage, which communicates the communication hole 14 of the pilot valve 2 with the communication port 32 of the sliding liner 17. Reference numeral 54 denotes a spool operating oil passage, which has a hole 12' communicating with the alternating pressure chamber 12 of the pilot valve 2.
is communicated with the communication port 31 of the fixed liner 16.
55 is an oil passage for operating the sliding liner, and the variable valve 5
The communication hole 42 of the cylinder 3 communicates with the hole 28' which communicates with the oil chamber 28 of the cylinder 3. Numeral 56 is a variable valve operating oil passage, which communicates the variable valve operating pipe connection port 50 with the hole 39' communicating with the regulating pressure chamber 39 of the variable valve 5.
Note that 57 is a locking nut for a stopper of the sliding liner 17, and 58 is a check valve 59 that is a tank.

以上のように構成された本発明の振幅可変油圧
発振機1は可変振幅が要求される土木作業機等に
組込み、シリンダ3の給油管接続口48と排油管
接続口44とをそれぞれ図示されていない油圧源
とタンク等に接続すると共に、遠隔操作弁6を手
元近くに配置して使用するものである。
The variable amplitude hydraulic oscillator 1 of the present invention configured as described above is installed in a civil engineering work machine etc. that requires variable amplitude, and the oil supply pipe connection port 48 and the oil drain pipe connection port 44 of the cylinder 3 are connected as shown in the figure. It is connected to a hydraulic power source, tank, etc., and the remote control valve 6 is placed close to hand.

そこで、油圧源から給油管接続口48を経て供
給油路51に圧力油を供給すると、圧力油は孔1
1′および給油口29を経てそれぞれパイロツト
弁2の定圧力室11とシリンダ3の定圧力室21
とに導入され、第2図に示すようにパイロツト弁
2においては小径作動杆9を介してスプール7が
下方向に移動すると共に、シリンダ3においては
油圧ピストン4が上方向への移動を開始する。こ
のときシリンダ3における交番圧力室22は連通
口32、ピストン作動用油路53、連通孔14、
給排室8、排油孔15、排出油路52および排油
管接続口49を経て図外のタンクに連通してい
る。次いで、油圧ピストン4の上方向への移動の
過程において、第1図に示すように、油圧ピスト
ン4のスプール部19に形成した連通室23を介
して連通口31が給油口33に連通すると、給油
口33に供給されている圧力油は連通室23、連
通口31、スプール作動用油路54および孔1
2′を経てパイロツト弁2の交番圧力室12に導
入される。大径作動杆10の受圧面積が小径作動
杆9の受圧面積よりも大きいことによつて、大径
作動杆10が小径作動杆9の押圧力に打勝つてス
プール7を上方向に移動させる。スプール7が上
方向に移動すると給排室8を介して給油孔13と
連通孔14が連通し、給油孔13に供給されてい
る圧力油は給排室8、連通孔14、ピストン作動
用油路53および連通口32を経てシリンダ3の
交番圧力室22に導入される。交番圧力室22内
における油圧ピストン4の受圧面積が定圧力室2
1内における油圧ピストン4の受圧面積より大き
いことによつて、油圧ピストン4は下方向への移
動を開始する。次いで、油圧ピストン4の下方向
への移動の過程において、連通口31と排油口3
0が連通室23を介して連通すると、パイロツト
弁2の交番圧力室12内の圧力油は孔12′、ス
プール作動油路54、連通口31、連通室23、
排出口30、排出油路52および排油管接続口4
9を経て図外のタンクに導出され、交番圧力室1
2内の圧力が低下するので、スプール7は小径作
動杆9に押圧されて下方向に移動する。このこと
によつて、シリンダ3の交番圧力室22は前記し
たように図外のタンクに連通し、交番圧力室22
内の圧力が低下するので、油圧ピストン4は定圧
力室21内の圧力油に押圧されて上方向に移動す
る。油圧ピストン4が上方向に移動してブレーキ
用段部27がブレーキ室25に突入すると油がブ
レーキ室25内に封入されてブレーキ作用を生じ
る。同様に油圧ピストン4が下方向に移動してブ
レーキ用段部26がブレーキ室24に突入すると
油がブレーキ室24内に封入されてブレーキ作用
を生じる。以後、前記の作動が繰返され、パイロ
ツト弁2内のスプール7とシリンダ3内の油圧ピ
ストン4との相互作用によつて油圧ピストン4を
振動させることができるのである。
Therefore, when pressure oil is supplied from the hydraulic source to the supply oil passage 51 through the oil supply pipe connection port 48, the pressure oil is supplied to the hole 1.
1' and the oil supply port 29 to the constant pressure chamber 11 of the pilot valve 2 and the constant pressure chamber 21 of the cylinder 3, respectively.
As shown in FIG. 2, in the pilot valve 2, the spool 7 moves downward via the small diameter operating rod 9, and in the cylinder 3, the hydraulic piston 4 starts moving upward. . At this time, the alternating pressure chamber 22 in the cylinder 3 includes the communication port 32, the piston operating oil passage 53, the communication hole 14,
It communicates with a tank (not shown) through the supply/discharge chamber 8, the oil drain hole 15, the oil drain path 52, and the oil drain pipe connection port 49. Next, in the process of upward movement of the hydraulic piston 4, as shown in FIG. The pressure oil supplied to the oil supply port 33 is supplied to the communication chamber 23, the communication port 31, the spool operating oil path 54, and the hole 1.
2' into the alternating pressure chamber 12 of the pilot valve 2. Since the pressure receiving area of the large diameter working rod 10 is larger than the pressure receiving area of the small diameter working rod 9, the large diameter working rod 10 overcomes the pressing force of the small diameter working rod 9 and moves the spool 7 upward. When the spool 7 moves upward, the oil supply hole 13 and the communication hole 14 communicate with each other via the supply and discharge chamber 8, and the pressure oil supplied to the oil supply hole 13 is transferred to the supply and discharge chamber 8, the communication hole 14, and the piston operating oil. It is introduced into the alternating pressure chamber 22 of the cylinder 3 via the passage 53 and the communication port 32. The pressure receiving area of the hydraulic piston 4 in the alternating pressure chamber 22 is constant pressure chamber 2.
1, the hydraulic piston 4 starts to move downward. Next, in the process of downward movement of the hydraulic piston 4, the communication port 31 and the oil drain port 3
0 communicates through the communication chamber 23, the pressure oil in the alternating pressure chamber 12 of the pilot valve 2 flows through the hole 12', the spool hydraulic oil passage 54, the communication port 31, the communication chamber 23,
Discharge port 30, discharge oil path 52, and drain oil pipe connection port 4
9 to a tank (not shown), and is led to an alternating pressure chamber 1.
As the pressure inside 2 decreases, the spool 7 is pressed by the small diameter operating rod 9 and moves downward. As a result, the alternating pressure chamber 22 of the cylinder 3 communicates with the tank (not shown) as described above, and the alternating pressure chamber 22
As the internal pressure decreases, the hydraulic piston 4 is pressed by the pressure oil in the constant pressure chamber 21 and moves upward. When the hydraulic piston 4 moves upward and the brake stepped portion 27 enters the brake chamber 25, oil is sealed in the brake chamber 25 to produce a braking action. Similarly, when the hydraulic piston 4 moves downward and the brake stepped portion 26 enters the brake chamber 24, oil is sealed in the brake chamber 24 to produce a braking action. Thereafter, the above operation is repeated, and the interaction between the spool 7 in the pilot valve 2 and the hydraulic piston 4 in the cylinder 3 makes it possible to vibrate the hydraulic piston 4.

次いで、振幅を調整するには、可変弁5を作動
させて油室28の圧油を給排することにより摺動
ライナ17を位置調整する必要がある。可変弁5
のスプール34は定圧力室38の圧油が負荷され
小径作動杆36と調整圧力室39の圧油が負荷さ
れた大径作動杆37によつて常時押圧されている
ので、スプール34を押し下げるには小径作動杆
36の押圧力に抗する油圧力を調整圧力室39に
負荷する必要があり、スプール34を押し上げる
には調整圧力室39を減圧する必要がある。スプ
ール34が中立位置か、さらに下方位置状態にあ
る時、ハンドル46を引き上げるとシリンダ44
の油室47は減圧し、スプール34は上方に移動
する。ハンドル46をさらに引き上げるとスプー
ル34はストロークエンドで止まり、油室47は
負圧になるので油タンク59から作動油を吸引す
る。スプール34が上方に移動すると排油孔43
は開口され、連通孔42と排油孔43が給排室3
5を介して連通し、シリンダ3の油室28の圧力
油は孔28′、摺動ライナ作動用油路55、連通
孔42、給排室35、排油孔43、排出油路5
2、排油管接続口49を経て図外のタンクに導出
され、シリンダ3の交番圧力室22内にパイロツ
ト弁2を介して導入される圧力油により摺動ライ
ナ17は上方向に摺動する。所要距離摺動ライナ
17が上方向に移動した時、遠隔操作弁6のハン
ドル46を中立位置まで押し込むことにより遠隔
操作弁6の油室47内の加圧された油は可変弁作
動管接続口50、可変弁作動用油路56、孔3
9′を経て調整圧力室39に導入され、小径作動
杆36の押圧力に打勝つて大径作動杆37はスプ
ール34を下方に押し下げ可変弁5の排油孔43
が閉塞され、油室28内の油は閉じ込められて摺
動ライナ17は一定位置に保持される。また遠隔
操作弁6のハンドル46を中立位置から下方に押
し下げることにより前記したように可変弁5のス
プール34は大径作動杆37に押圧されて中立位
置から下方に移動して給油孔41は開口され、連
通孔42と給油孔41が給排室35を介して連通
し、給油孔41に供給されている圧力油は給油孔
41に内蔵された逆止弁40、給排室35、連通
孔42、摺動ライナ作動用油路55、孔28′を
経て油室28に流入し、交番圧力室22が低圧の
交番圧の際に摺動ライナ17は油室28の圧油に
押圧されて下方に摺動する。油圧ピストン4が上
死点においてブレーキ室25に突入し、該ブレー
キ室25に高圧が発生すると摺動ライナ17を上
方に押すように作用する。油室はスプール34の
給排室35を介して供給油路51と連通している
ので、油圧ピストン4がブレーキ室25に突入し
た際摺動ライナ17が上方に移動しないためには
油室28の油をロツクする必要があり、逆止弁4
0はそのロツクの役割を有する。所要距離摺動ラ
イナ17が下方向に移動した時、遠隔操作弁6の
ハンドル46を中立位置まで引上げることにより
前記したように小径作動杆36に押圧されてスプ
ール34は中立位置まで上方向に摺動して給油孔
41は閉塞され、油室28内の油は閉じ込められ
て摺動ライナ17は一定位置に保持される。以上
のようにして摺動ライナ17を摺動調整すると、
シリンダ3に対して給油口33とブレーキ室25
との位置が調整され、このことによつて固定ライ
ナ16の連通口31と摺動ライナ17の給油口3
3との距離が調整され、給油口33に供給されて
いる圧力油を油圧ピストン4の連通室23、連通
口31、スプール作動用油路54および孔12′
を経てパイロツト弁2の交番圧力室12に導入す
るタイミングが調整されるのである。ブレーキ室
25と給油口33との相対位置は不変であるの
で、摺動ライナ17を固定ライナ16に接近する
方向に摺動調整すると、前記のタイミングが早め
られ、これによつてスプール7が上方向へ移動し
始めるタイミングが早められるとともに、振幅に
関係しない一定の位相差で油圧ピストン4が下方
向へ移動し始めるタイミングも早められる結果、
油圧ピストン4の摺動距離が小さくなり、振幅が
小さくなる。摺動ライナ17が固定ライナ16に
当接すると振幅が最小になり、摺動ライナ17が
ストツパ用止めナツト57に当接すると振幅が最
大になる。よつて遠隔操作弁6のハンドル46を
中立位置より引上げて、図外の油圧源と油室28
を遮断すると共に油室28と図外のタンクを連通
することにより可変弁5を介してシリンダ3の油
室28内の圧力油が図外のタンクに導出されて摺
動ライナ17が上方向に摺動し、油圧ピストン4
の振幅が増大する。ハンドル46を中立位置に戻
し、油室28が図外の油圧源とタンクのいずれと
も遮断すると油室28内に油が閉じこめられて摺
動ライナ17の位置が保持されることにより振幅
は一定に保持される。またハンドル46を押し下
げ、油圧源と油室28とを連通させることにより
可変弁6を介して油室28内に圧力油が導入され
て摺動ライナ17が下方向に摺動し、油圧ピスト
ン4の振幅が減少する。
Next, in order to adjust the amplitude, it is necessary to operate the variable valve 5 to supply and discharge pressure oil from the oil chamber 28, thereby adjusting the position of the sliding liner 17. Variable valve 5
The spool 34 is constantly pressed by the small-diameter operating rod 36 loaded with pressure oil from the constant pressure chamber 38 and the large-diameter operating rod 37 loaded with the pressure oil from the adjustment pressure chamber 39. It is necessary to load the regulating pressure chamber 39 with hydraulic pressure that resists the pressing force of the small diameter operating rod 36, and in order to push up the spool 34, it is necessary to reduce the pressure in the regulating pressure chamber 39. When the spool 34 is in the neutral position or in the lower position, when the handle 46 is pulled up, the cylinder 44
The pressure in the oil chamber 47 is reduced, and the spool 34 moves upward. When the handle 46 is pulled up further, the spool 34 stops at the end of its stroke and the oil chamber 47 becomes negative pressure, so hydraulic oil is sucked from the oil tank 59. When the spool 34 moves upward, the oil drain hole 43
is opened, and the communication hole 42 and the oil drain hole 43 are connected to the supply and discharge chamber 3.
The pressure oil in the oil chamber 28 of the cylinder 3 is communicated through the hole 28', the sliding liner operating oil passage 55, the communication hole 42, the supply/discharge chamber 35, the oil drain hole 43, and the discharge oil passage 5.
2. Pressure oil is led out to a tank (not shown) through the oil drain pipe connection port 49 and introduced into the alternating pressure chamber 22 of the cylinder 3 via the pilot valve 2, which causes the sliding liner 17 to slide upward. When the sliding liner 17 moves upward by the required distance, the pressurized oil in the oil chamber 47 of the remote control valve 6 is transferred to the variable valve operating pipe connection port by pushing the handle 46 of the remote control valve 6 to the neutral position. 50, variable valve operating oil passage 56, hole 3
9' into the adjustment pressure chamber 39, and overcoming the pressing force of the small diameter operating rod 36, the large diameter operating rod 37 pushes down the spool 34 and drains the oil from the drain hole 43 of the variable valve 5.
is closed, the oil in the oil chamber 28 is trapped, and the sliding liner 17 is held in a fixed position. Further, by pushing the handle 46 of the remote control valve 6 downward from the neutral position, the spool 34 of the variable valve 5 is pressed by the large diameter operating rod 37 and moves downward from the neutral position, and the oil supply hole 41 is opened. The communication hole 42 and the oil supply hole 41 communicate with each other via the supply and discharge chamber 35, and the pressure oil supplied to the oil supply hole 41 is connected to the check valve 40 built in the oil supply hole 41, the supply and discharge chamber 35, and the communication hole. 42, it flows into the oil chamber 28 through the sliding liner operating oil passage 55 and the hole 28', and when the alternating pressure chamber 22 is at low alternating pressure, the sliding liner 17 is pressed by the pressure oil in the oil chamber 28. Slide downward. The hydraulic piston 4 enters the brake chamber 25 at the top dead center, and when high pressure is generated in the brake chamber 25, it acts to push the sliding liner 17 upward. Since the oil chamber communicates with the supply oil passage 51 via the supply/discharge chamber 35 of the spool 34, the oil chamber 28 must be connected to prevent the sliding liner 17 from moving upward when the hydraulic piston 4 enters the brake chamber 25. It is necessary to lock the oil in the check valve 4.
0 has the role of the lock. When the sliding liner 17 moves downward the required distance, by pulling up the handle 46 of the remote control valve 6 to the neutral position, the spool 34 is pushed upward to the neutral position by being pressed by the small diameter operating rod 36 as described above. The oil supply hole 41 is closed by sliding, the oil in the oil chamber 28 is trapped, and the sliding liner 17 is held at a fixed position. When the sliding liner 17 is slidably adjusted as described above,
Oil filler port 33 and brake chamber 25 for cylinder 3
As a result, the communication port 31 of the fixed liner 16 and the oil supply port 3 of the sliding liner 17 are adjusted.
3, the pressure oil supplied to the oil supply port 33 is transferred to the communication chamber 23 of the hydraulic piston 4, the communication port 31, the spool operating oil passage 54, and the hole 12'.
Through this, the timing of introducing the pilot valve 2 into the alternating pressure chamber 12 is adjusted. Since the relative position between the brake chamber 25 and the fuel filler port 33 remains unchanged, sliding adjustment of the sliding liner 17 in the direction approaching the fixed liner 16 advances the timing, thereby causing the spool 7 to move upward. As a result, the timing at which the hydraulic piston 4 starts moving in the downward direction is brought forward, and the timing at which the hydraulic piston 4 starts moving downward is also brought forward with a constant phase difference that is not related to the amplitude.
The sliding distance of the hydraulic piston 4 becomes smaller, and the amplitude becomes smaller. When the sliding liner 17 abuts the fixed liner 16, the amplitude is at a minimum, and when the sliding liner 17 abuts against the stopper locking nut 57, the amplitude is at a maximum. Therefore, pull up the handle 46 of the remote control valve 6 from the neutral position to connect the hydraulic power source (not shown) and the oil chamber 28.
By blocking the oil chamber 28 and communicating with the tank (not shown), the pressure oil in the oil chamber 28 of the cylinder 3 is led out to the tank (not shown) via the variable valve 5, and the sliding liner 17 is moved upward. sliding hydraulic piston 4
The amplitude of increases. When the handle 46 is returned to the neutral position and the oil chamber 28 is shut off from both the oil pressure source and the tank (not shown), the oil is trapped in the oil chamber 28 and the position of the sliding liner 17 is maintained, so that the amplitude remains constant. Retained. Further, by pushing down the handle 46 and communicating the hydraulic pressure source with the oil chamber 28, pressure oil is introduced into the oil chamber 28 via the variable valve 6, and the sliding liner 17 slides downward, causing the hydraulic piston 4 amplitude decreases.

逆止弁40は油室28内に圧力油を導入して摺
動ライナ17を下方向に摺動せしめている際に生
じる油圧ピストンのブレーキ室25への突入によ
る油の閉じこめ圧で摺動ライナ17が上方向へ逆
摺動するのを防止し、すみやかな油圧ピストン4
の反転を確保するものである。遠隔操作弁6のハ
ンドル46を中立位置から変位させた変位量はピ
ストン45の変位量に比例し、ピストン45の変
位量は油室47内の油量変化に比例し、油室47
内の油量変化は可変弁5の調整圧力室39内の油
量変化に1対1で対応し、スプール34が摺動す
る摺動距離に比例するため、スプール34による
給油孔41または排油孔43の開口巾に対応し、
給油孔41または排油孔43の開口巾の大小はシ
リンダ3の油室28に給排される圧力油の時間当
りの油量が変化し、摺動ライナ17の摺動速度が
変化する。よつて遠隔操作弁6のハンドル46の
変位量は油圧ピストン4の振幅変化速度に対応し
ている。なお遠隔操作弁6の油室47に逆止弁5
8を介してタンク59に連通せしめた油圧回路は
組立時および油の漏れ分を油室47に供給する補
給回路である。
The check valve 40 closes the sliding liner due to oil confinement pressure caused by the plunge of the hydraulic piston into the brake chamber 25 when pressure oil is introduced into the oil chamber 28 to cause the sliding liner 17 to slide downward. This prevents the hydraulic piston 4 from sliding upward.
This is to ensure the reversal of . The amount of displacement of the handle 46 of the remote control valve 6 from the neutral position is proportional to the amount of displacement of the piston 45, and the amount of displacement of the piston 45 is proportional to the change in the amount of oil in the oil chamber 47.
The change in the amount of oil in the adjustment pressure chamber 39 of the variable valve 5 corresponds one-to-one to the change in the amount of oil in the adjustment pressure chamber 39 of the variable valve 5, and is proportional to the sliding distance of the spool 34. Corresponding to the opening width of the hole 43,
Depending on the opening width of the oil supply hole 41 or the oil drain hole 43, the amount of pressure oil supplied to and discharged from the oil chamber 28 of the cylinder 3 per hour changes, and the sliding speed of the sliding liner 17 changes. Therefore, the amount of displacement of the handle 46 of the remote control valve 6 corresponds to the rate of change in the amplitude of the hydraulic piston 4. Note that the check valve 5 is installed in the oil chamber 47 of the remote control valve 6.
The hydraulic circuit communicated with the tank 59 via 8 is a replenishment circuit for supplying oil leakage to the oil chamber 47 during assembly and for supplying oil leakage.

以上述べたことから容易に理解できるように、
本発明の振幅可変油圧発振機における振幅制御装
置は遠隔操作で油圧ピストンの振幅が任意に調整
可能で、かつ遠隔操作弁のハンドル変位量は油圧
ピストンの振幅変化速度に対応できるものであ
り、油圧ブレーカ等の油圧打撃機に用いた場合、
油圧ピストンの振幅と打撃力は1対1の対応をし
ており、口付け作業等の際はハンドル操作のみで
容易に打撃力調整を行うことのできるものであ
る。
As can be easily understood from what has been said above,
The amplitude control device for the variable amplitude hydraulic oscillator of the present invention is such that the amplitude of the hydraulic piston can be arbitrarily adjusted by remote control, and the amount of displacement of the handle of the remote control valve can correspond to the rate of change in the amplitude of the hydraulic piston. When used in hydraulic impact machines such as breakers,
There is a one-to-one correspondence between the amplitude of the hydraulic piston and the striking force, and during kissing work, the striking force can be easily adjusted just by operating the handle.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の振幅制御装置を備えた振幅可変
油圧発振機の実施例を示すものであつて、第1図
は振幅を最小に調整し、かつパイロツト弁のスプ
ールと油圧ピストンとに交番圧力が作用している
状態を示す縦断面図、第2図は振幅を最大に調整
し、かつパイロツト弁のスプールと油圧ピストン
とに定圧力が作用している状態を示す縦断面図で
ある。 1……振幅可変油圧発振機、2……パイロツト
弁、3……シリンダ、4……油圧ピストン、5…
…可変弁、6……遠隔操作弁、7……スプール、
8……給排室、9……小径作動杆、10……大径
作動杆、11……定圧力室、12……交番圧力
室、13……給油孔、14……連通孔、15……
排油孔、16……固定ライナ、17……摺動ライ
ナ、18……小径部、19……スプール部、20
……小径部、21……定圧力室、22……交番圧
力室、23……連通室、24,25……ブレーキ
室、26,27……ブレーキ用段部、28……油
室、29……給油口、30……排油口、31……
連通口、32……連通口、33……給油口、34
……スプール、35……給排室、36……小径作
動杆、37……大径作動杆、38……定圧力室、
39……調整圧力室、40……逆止弁、41……
給油孔、42……連通孔、43……排油孔、44
……シリンダ、45……ピストン、46……ハン
ドル、47……油室、48……給油管接続口、4
9……排油管接続口、50……可変弁作動管接続
口、51……供給油路、52……排出油路、53
……ピストン作動用油路、54……スプール作動
用油路、55……摺動ライナ作動用油路、56…
…可変弁作動用油路。
The drawings show an embodiment of a variable amplitude hydraulic oscillator equipped with the amplitude control device of the present invention, and FIG. FIG. 2 is a vertical cross-sectional view showing a state in which the valve is in operation, and FIG. 2 is a vertical cross-sectional view showing a state in which the amplitude is adjusted to the maximum and a constant pressure is applied to the spool of the pilot valve and the hydraulic piston. 1... Variable amplitude hydraulic oscillator, 2... Pilot valve, 3... Cylinder, 4... Hydraulic piston, 5...
...Variable valve, 6...Remote control valve, 7...Spool,
8... Supply/discharge chamber, 9... Small diameter operating rod, 10... Large diameter operating rod, 11... Constant pressure chamber, 12... Alternating pressure chamber, 13... Oil supply hole, 14... Communication hole, 15... …
Oil drain hole, 16... Fixed liner, 17... Sliding liner, 18... Small diameter part, 19... Spool part, 20
... Small diameter part, 21 ... Constant pressure chamber, 22 ... Alternating pressure chamber, 23 ... Communication chamber, 24, 25 ... Brake chamber, 26, 27 ... Brake step section, 28 ... Oil chamber, 29 ...Fuel filler port, 30...Oil drain port, 31...
Communication port, 32...Communication port, 33...Refueling port, 34
... Spool, 35 ... Supply and discharge chamber, 36 ... Small diameter operating rod, 37 ... Large diameter operating rod, 38 ... Constant pressure chamber,
39...Adjustment pressure chamber, 40...Check valve, 41...
Oil supply hole, 42...Communication hole, 43...Oil drain hole, 44
... Cylinder, 45 ... Piston, 46 ... Handle, 47 ... Oil chamber, 48 ... Oil supply pipe connection port, 4
9...Drain oil pipe connection port, 50...Variable valve operation pipe connection port, 51...Supply oil path, 52...Drain oil path, 53
...Oil passage for piston operation, 54...Oil passage for spool operation, 55...Oil passage for sliding liner operation, 56...
...Oil passage for variable valve operation.

Claims (1)

【特許請求の範囲】[Claims] 1 パイロツト弁とシリンダと油圧ピストンと可
変弁および遠隔操作弁とからなり、パイロツト弁
はスプールと該スプールの両端を押圧する小径作
動杆と大径作動杆、および小径作動杆を作動する
定圧力室と大径作動杆を作動する交番圧力室を備
え、シリンダは固定ライナと摺動ライナと該摺動
ライナの摺動代を調整する止めナツトを内臓し、
該両ライナの内面に大径部と小径部の段差を設
け、かかる両ライナの共通の大径部を向き合わせ
て油圧ピストン中央部の大径部と摺動自在にかん
合せしめ、固定ライナと油圧ピストンの段差間で
受圧面積の小さい定圧力室を、摺動ライナと油圧
ピストンの段差間で受圧面積の大きい交番圧力室
を形成せしめ、固定ライナは供給油路と連通する
給油口、排出油路に連通する排油口、およびパイ
ロツト弁の交番圧力室と連通する連通口を備え、
摺動ライナは供給油路に連通する給油口およびパ
イロツト弁のスプールの環状溝からなる給排室と
常時連通する連通口を備え、可変弁は前記摺動ラ
イナと止めナツトの間で形成される油室に油を給
排するスプールを備え、さらに遠隔操作弁は可変
弁のスプールを作動せしめるシリンダ、ハンドル
などからなり、油圧源から供給油路に高圧油を供
給すると、固定ライナの給油口より定圧力室に圧
油が入り、油圧ピストンを移動せしめ、油圧ピス
トンが所定の距離を移動すると油圧ピストンの中
央部に設けた連通室が固定ライナの連通口と摺動
ライナの給油口を連通せしめるごとく回路を設
け、かかる連通によつてパイロツト弁の交番圧力
室に圧油が入るとスプールが移動して、該スプー
ルの給排室を供給油路と連通せしめ、かかる連通
によつて摺動ライナの交番圧力室に圧油が入る
と、油圧ピストンに加わる定圧力室と交番圧力室
の面積差によつて油圧ピストンの運動を反転せし
め、さらに該油圧ピストンが移動し所定の距離に
至ると油圧ピストンの連通室により固定ライナの
排油口と摺動ライナの連通口を連通せしめるごと
く回路を設け、かかる連通によつてパイロツト弁
のスプールの交番圧力室の圧油が排出すると、ス
プールは供給油路と常時連通する定圧力室の圧油
により小径作動杆を介して移動し、かかる移動に
より該スプールの給排室を油圧源のタンクに連通
する排出油路に連通せしめるごとく回路を設け、
かかる連通によつて摺動ライナの交番圧力室の圧
油を排出し、油圧ピストンを固定ライナの定圧力
室の圧油によつて再び反転せしめ、さらに遠隔操
作弁を操作して圧油を可変弁に供給すると可変弁
のスプールが移動し、供給油路の圧油が逆止弁と
該スプールの環状溝からなる給排室を通り摺動ラ
イナと止めナツトの間で形成される油室に供給さ
れ摺動ライナを移動せしめるごとく回路を設け、
また遠隔操作弁を操作して可変弁に対する圧油を
排油すると該スプールは反転移動し、前記油室の
油は該給排室から排出油路に排出するごとく回路
を設け、さらに該スプールの給排室が供給油路、
排出油路のいずれにも連通しない位置状態におい
て摺動ライナは現状の位置保持をせしめるごとく
設け、かかる摺動ライナの移動によつて油圧ピス
トンのストロークを調整せしめることを特徴とし
た振幅可変油圧発振機における振幅制御装置。
1. Consisting of a pilot valve, a cylinder, a hydraulic piston, a variable valve, and a remote control valve, the pilot valve includes a spool, a small diameter operating rod and a large diameter operating rod that press both ends of the spool, and a constant pressure chamber that operates the small diameter operating rod. The cylinder has a fixed liner, a sliding liner, and a locking nut for adjusting the sliding distance of the sliding liner,
A step between a large diameter part and a small diameter part is provided on the inner surface of both liners, and the common large diameter part of both liners is faced and slidably engaged with the large diameter part of the central part of the hydraulic piston. A constant pressure chamber with a small pressure receiving area is formed between the steps of the hydraulic piston, and an alternating pressure chamber with a large pressure receiving area is formed between the steps of the sliding liner and the hydraulic piston. Equipped with an oil drain port that communicates with the passage, and a communication port that communicates with the alternating pressure chamber of the pilot valve,
The sliding liner has an oil supply port that communicates with the oil supply path and a communication port that constantly communicates with the supply/discharge chamber formed by the annular groove of the spool of the pilot valve, and the variable valve is formed between the sliding liner and the locking nut. The oil chamber is equipped with a spool for supplying and discharging oil, and the remote control valve also consists of a cylinder, handle, etc. that operates the spool of the variable valve. When high-pressure oil is supplied from the hydraulic source to the supply oil path, it is released from the oil supply port of the fixed liner. Pressure oil enters the constant pressure chamber and moves the hydraulic piston. When the hydraulic piston moves a predetermined distance, the communication chamber provided in the center of the hydraulic piston communicates the communication port of the fixed liner with the oil supply port of the sliding liner. When pressure oil enters the alternating pressure chamber of the pilot valve through such communication, the spool moves and the supply/discharge chamber of the spool is communicated with the supply oil passage. When pressure oil enters the alternating pressure chamber, the movement of the hydraulic piston is reversed due to the difference in area between the constant pressure chamber and the alternating pressure chamber applied to the hydraulic piston, and when the hydraulic piston moves further and reaches a predetermined distance, the hydraulic pressure changes. A circuit is provided so that the communication chamber of the piston communicates the oil drain port of the fixed liner with the communication port of the sliding liner, and when the pressure oil in the alternating pressure chamber of the pilot valve spool is discharged by this communication, the spool is connected to the supply oil. A circuit is provided so that pressure oil in a constant pressure chamber that is constantly in communication with the passageway moves through a small diameter operating rod, and such movement connects the supply and discharge chamber of the spool to a discharge oil passage that communicates with a tank of a hydraulic power source;
Through this communication, the pressure oil in the alternating pressure chamber of the sliding liner is discharged, the hydraulic piston is reversed again by the pressure oil in the constant pressure chamber of the fixed liner, and the pressure oil is varied by operating the remote control valve. When supplied to the valve, the spool of the variable valve moves, and the pressure oil in the supply oil path passes through the supply/discharge chamber consisting of the check valve and the annular groove of the spool, and enters the oil chamber formed between the sliding liner and the locking nut. A circuit is provided to move the supplied sliding liner,
Furthermore, when the remote control valve is operated to drain the pressure oil from the variable valve, the spool moves in reverse, and a circuit is provided so that the oil in the oil chamber is discharged from the supply and discharge chamber to the discharge oil path. The supply and discharge chamber is the supply oil path,
A variable amplitude hydraulic oscillation characterized in that a sliding liner is provided to maintain the current position in a position where it does not communicate with any of the discharge oil passages, and the stroke of the hydraulic piston is adjusted by movement of the sliding liner. Amplitude control device for machines.
JP8320882A 1982-05-19 1982-05-19 Amplitude control device in amplitude variable oil pressure oscillator Granted JPS58200802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8320882A JPS58200802A (en) 1982-05-19 1982-05-19 Amplitude control device in amplitude variable oil pressure oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8320882A JPS58200802A (en) 1982-05-19 1982-05-19 Amplitude control device in amplitude variable oil pressure oscillator

Publications (2)

Publication Number Publication Date
JPS58200802A JPS58200802A (en) 1983-11-22
JPH0112964B2 true JPH0112964B2 (en) 1989-03-02

Family

ID=13795900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8320882A Granted JPS58200802A (en) 1982-05-19 1982-05-19 Amplitude control device in amplitude variable oil pressure oscillator

Country Status (1)

Country Link
JP (1) JPS58200802A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5769106A (en) * 1980-10-14 1982-04-27 Japanese National Railways<Jnr> Amplitude adjusting device oil hydraulic oscillator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5769106A (en) * 1980-10-14 1982-04-27 Japanese National Railways<Jnr> Amplitude adjusting device oil hydraulic oscillator

Also Published As

Publication number Publication date
JPS58200802A (en) 1983-11-22

Similar Documents

Publication Publication Date Title
US5279120A (en) Hydraulic striking device
JPH08281571A (en) Vibration generating device
US4281587A (en) Hydraulic apparatus for producing impacts
JPS6314913B2 (en)
WO2018020642A1 (en) Flow control valve
JP3549126B2 (en) Directional control valve
JP4164132B2 (en) Hydraulic stepping piston device and method of operating a driving device having the same device and having variable thrust force
JPH0112964B2 (en)
US4110983A (en) Air operated hydraulic pump apparatus
US3019816A (en) Control valve for dual independently operable braking systems
US20090084257A1 (en) Hydraulic cylinder having multi-stage snubbing valve
JPH05213212A (en) Brake valve used for load sensing hydraulic device
US3298447A (en) Control of variable-stroke power hammers
CZ20014630A3 (en) Oil-dynamic percussion device
US3408897A (en) Fluid power hammer having accumulator means to drive the hammer through its working stroke independent of the system pump
JPH09126209A (en) Reciprocating actuator
JP2008025159A (en) Boom cylinder control equipment
US4294160A (en) Oil pressure booster
JPH0251660A (en) Fluid pressure control device for speed change gear
JPH05201327A (en) Two step type brake valve
JPS5828016Y2 (en) hydraulic rammer
JP3016224B2 (en) Die cushion
JPS6118638B2 (en)
JPH0442607Y2 (en)
JP3544173B2 (en) Regeneration switching valve for hydraulic cylinder