JPS58200802A - Amplitude control device in amplitude variable oil pressure oscillator - Google Patents

Amplitude control device in amplitude variable oil pressure oscillator

Info

Publication number
JPS58200802A
JPS58200802A JP8320882A JP8320882A JPS58200802A JP S58200802 A JPS58200802 A JP S58200802A JP 8320882 A JP8320882 A JP 8320882A JP 8320882 A JP8320882 A JP 8320882A JP S58200802 A JPS58200802 A JP S58200802A
Authority
JP
Japan
Prior art keywords
oil
pressure
amplitude
chamber
piston
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8320882A
Other languages
Japanese (ja)
Other versions
JPH0112964B2 (en
Inventor
Toshimi Nagano
長野 敏己
Kinai Takagi
高木 喜内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JAPANESE NATIONAL RAILWAYS<JNR>
Japan National Railways
Nippon Kokuyu Tetsudo
Original Assignee
JAPANESE NATIONAL RAILWAYS<JNR>
Japan National Railways
Nippon Kokuyu Tetsudo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JAPANESE NATIONAL RAILWAYS<JNR>, Japan National Railways, Nippon Kokuyu Tetsudo filed Critical JAPANESE NATIONAL RAILWAYS<JNR>
Priority to JP8320882A priority Critical patent/JPS58200802A/en
Publication of JPS58200802A publication Critical patent/JPS58200802A/en
Publication of JPH0112964B2 publication Critical patent/JPH0112964B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/18Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency wherein the vibrator is actuated by pressure fluid
    • B06B1/183Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency wherein the vibrator is actuated by pressure fluid operating with reciprocating masses

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

PURPOSE:To facilitate the handling of an oil pressure piston which is oscillated by means of pressure oil transferred and controlled by a spool and has a varying amplitude by making said amplitude adjustable by a remote control with a variable valve. CONSTITUTION:When pressure oil is fed to a connection port 48 from an oil pressure source, the pressure oil enters fixed pressure chambers 11, 21 of a pilot valve 2 and a cylinder 3 through a hole 11' and a feed oil port 29 and moves a spool downward and also moves a piston 4 upward. When a communicating port 31 is communicated to a feed oil port 33 through a communicating chamber 23 during the upward movement of the piston 4, the spool 7 is moved upward by the pressure oil having entered the alternating pressure chamber 12 of the valve 2, then the pressure oil enters an alternating pressure chamber 22 through passages 13, 8, 14, 53, 32, and moves the piston 4 downward. At this time, if a remote controlled valve 6 is opened so that the pressure of the adjusting pressure chamber 39 of a variable valve 5 is reduced and the pressure oil of an oil chamber 28 is discharged through a spool 34, a slide liner 17 is moved upward and the amplitude of the piston 4 ca be varied.

Description

【発明の詳細な説明】 本発明は街−可変油圧発振機における油圧ピストンの振
幅制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for controlling the amplitude of a hydraulic piston in a variable hydraulic oscillator.

本出願人は、かねてからパイロット弁内において両側か
ら定圧力と交番圧力とを受けるようにしたスプールと、
シリンダ内において両側から定圧力と交番圧力を受ける
ようにした油圧ピストンとの相互作用によって該油圧ピ
ストンを振動するようにすると共に、前記シリングと油
圧ピストンとの間に該油圧ピストンの振動に適応するよ
うになした摺動ライナを摺動調整することによシ油圧ピ
ストンの振幅を可変ならしめた振幅可変油圧発振機につ
いての研究を重ねてきておシ、その成果の一部につめて
既に特許出願をしている(封緘昭55−142498号
)9 本発明はかかる振幅可変油圧発振機において、取扱い容
易で、遠隔操作可能な振幅制御装置を提供せんとするも
のである。
The present applicant has long developed a spool that receives constant pressure and alternating pressure from both sides within a pilot valve;
The hydraulic piston is caused to vibrate by interaction with a hydraulic piston which receives constant pressure and alternating pressure from both sides in the cylinder, and the vibration of the hydraulic piston is accommodated between the cylinder and the hydraulic piston. We have been conducting research on a variable amplitude hydraulic oscillator in which the amplitude of the hydraulic piston is made variable by adjusting the sliding of the sliding liner, and we have already obtained patents for some of our results. The present invention is to provide an amplitude control device for such a variable amplitude hydraulic oscillator that is easy to handle and can be operated remotely.

以下本発明の実施例を図面に従って説明するっ図面は本
発明の振幅制御装置を備えた振幅可変油圧発振機の縦断
面図であって、第1図は振幅を最小に調整し、第2図は
振幅を最大に調整する、状態を示している。
Embodiments of the present invention will be described below with reference to the drawings. The drawings are longitudinal sectional views of a variable amplitude hydraulic oscillator equipped with the amplitude control device of the present invention, in which FIG. 1 shows the amplitude adjusted to the minimum, and FIG. indicates the state where the amplitude is adjusted to the maximum.

図において、1は振幅可変油圧発振機であって、パイロ
、ット弁2とシリンダ3と油圧ピストン4と可変弁5と
遠隔操作弁6とを備えている。7′はパイロット弁2内
に摺動可能に内蔵したスプールであり、8はスプール7
の中間に形成した環状向からなる給排室である。9と1
0はそれぞれスプール7の両端部を押圧する小径作動杆
と大径作動杆である。11と12はそれぞれ小径作動杆
9と大径作動杆10との端面に圧力油を導入する定圧力
室と交番圧力室であ冷。パイロット弁2をタリノを置け
てあって、スプール7が第2図に示すm下方に移動する
と給排室8を介して連通孔14と排油孔15が連通し、
スプール7が第1図に示すように上方に移動すると給排
室8を介して給油孔13と連通孔14が連通するように
設計されている。シリンダ3の下部定圧力側と上部交番
圧力側とにおいて、シリンダ3と油圧ピストン4との間
にそれぞれ大径部と小径部とよりなる固定ライナ16と
摺動ライナ17とを設けである。すなわち油圧ピストン
4の下方は固定ライナ16の小径部18に、油圧ピスト
ン4の中央のスプール部19は固定ライナ16の大径部
と摺動ライナ17の大径部に、油圧ピストン4の上方は
摺動ライナ17の小径部20に、それぞれ摺動可能に嵌
合している。油圧ピストン4のスプール部19と固定ラ
イナ16および摺動ライナ17との間にはそれぞれ受圧
面積の小さい定圧力室21と受圧面積の大きい交番圧力
室22とが形成されている。
In the figure, reference numeral 1 denotes a variable amplitude hydraulic oscillator, which includes a pilot valve 2, a cylinder 3, a hydraulic piston 4, a variable valve 5, and a remote control valve 6. 7' is a spool slidably built into the pilot valve 2, and 8 is a spool 7.
This is an annular supply/discharge chamber formed in the middle of the 9 and 1
0 are a small-diameter operating rod and a large-diameter operating rod that press both ends of the spool 7, respectively. Reference numerals 11 and 12 are constant pressure chambers and alternating pressure chambers into which pressure oil is introduced into the end faces of the small diameter operating rod 9 and the large diameter operating rod 10, respectively, for cooling. When the pilot valve 2 is placed in a talino position and the spool 7 moves downward m shown in FIG.
The oil supply hole 13 and the communication hole 14 are designed to communicate with each other through the supply and discharge chamber 8 when the spool 7 moves upward as shown in FIG. A fixed liner 16 and a sliding liner 17 each having a large diameter part and a small diameter part are provided between the cylinder 3 and the hydraulic piston 4 on the lower constant pressure side and the upper alternating pressure side of the cylinder 3, respectively. That is, the lower part of the hydraulic piston 4 is connected to the small diameter part 18 of the fixed liner 16, the central spool part 19 of the hydraulic piston 4 is connected to the large diameter part of the fixed liner 16 and the large diameter part of the sliding liner 17, and the upper part of the hydraulic piston 4 is connected to the small diameter part 18 of the fixed liner 16. They are each slidably fitted into the small diameter portion 20 of the sliding liner 17. A constant pressure chamber 21 with a small pressure receiving area and an alternating pressure chamber 22 with a large pressure receiving area are formed between the spool portion 19 of the hydraulic piston 4 and the fixed liner 16 and sliding liner 17, respectively.

23は油圧ピストン4のスプール部19に形成された環
状向からなる連通室である。各ライナ16.17の大径
部と小径部との段部、すなわち定圧力室21の下端部と
交番圧力室22の上端部とにそれぞれブレーキ室24.
25が形成されている。26.27は油圧ピストン4の
スプール部19の両端に設けられたブレーキ用段部で、
ブレーキ室24.25にそれぞれ突入した際に油を閉じ
こめるべく汲出されている。摺動ライナ17の上方開口
端部寄りにおいて、該摺動ライナ17とシリンダ3とで
油室28が形成されている。固定ライナ16の大径部に
は定圧力室21の下部に開口する給油口29と中程に開
口する排油口30と上端部に開口する連通口31とを設
けてあり、摺動ライナ17の大径部には交番圧力室22
の上部に開口する連通口32と該大径部の下方開口端部
寄りに開口する給油口33とを設けてあって、油圧ピス
トン4が上方に移動すると連通室23を介して給油口3
3と連通口31とが連通しく第1図参照)、油圧ピスト
ン4が下方に移動すると連通室23を介して連通口31
と排油口3oが連通するように設計されている。34は
可変弁5内に摺動可能に内蔵したスプールであり、35
はスプール34の中間に形成した環状向からなる給排室
である。
23 is a communication chamber formed in the spool portion 19 of the hydraulic piston 4 and formed in an annular direction. A brake chamber 24.
25 is formed. 26 and 27 are brake stepped portions provided at both ends of the spool portion 19 of the hydraulic piston 4;
When entering the brake chambers 24 and 25 respectively, the oil is pumped out to trap it. An oil chamber 28 is formed between the sliding liner 17 and the cylinder 3 near the upper opening end of the sliding liner 17 . The large diameter portion of the fixed liner 16 is provided with an oil supply port 29 that opens at the lower part of the constant pressure chamber 21, an oil drain port 30 that opens in the middle, and a communication port 31 that opens at the upper end. There is an alternating pressure chamber 22 in the large diameter part of the
A communication port 32 that opens at the top of the large-diameter portion and an oil supply port 33 that opens near the lower opening end of the large diameter portion are provided. When the hydraulic piston 4 moves upward, the oil supply port 3
3 and the communication port 31 (see FIG. 1), when the hydraulic piston 4 moves downward, the communication port 31 communicates with the communication chamber 23.
The oil drain port 3o is designed to communicate with the oil drain port 3o. 34 is a spool slidably built into the variable valve 5;
is an annular supply/discharge chamber formed in the middle of the spool 34.

36と37はそれぞれスプール34の両端部を押圧する
小径作動杆と大径作動杆である。38と39はそれぞれ
小径作動杆36と大径作動杆37との端面に圧、力油を
導入する定圧力室と調整圧力室である。可変弁5をシリ
ンダ3に取付ける側壁には、tEIt[−弁40を内蔵
した給油孔41と連通孔42とυ14油孔43とを設け
てあって、スプール34が上刃に移動すると給排室35
11)、介して連通孔42と排油孔43が連通し、スプ
ール34が下方に移動すると給排室35を介して連通孔
42と給油孔41が連通し、中立位置で連通孔42は給
油孔4里および梼油孔43とのいずれとも遮断されるよ
うに設計されている。遠隔操作弁1はシリンダ44とピ
ストン45およびハンドル46ft有する。47はIU
紀シリンダ44と、ピストン45・で形成された油室で
ある。シリンダ3の上端面には給油管接続口48と排油
管接続口49と前記遠隔操作弁6の油室47に連通する
可変弁作動管接続OSOとを設けである。51は供給油
路であって、給油管接読口48をパイロット弁2の定圧
力室11に曲じる孔ll′および給油孔13と固定ライ
ナ16の給油口29と摺動ライナ17の給油口33と可
変弁5の定圧力室38に通じる孔38′および給油孔4
】とに連通している。52は排出油路であって、排油管
接続口49をパイロット弁2の排油孔15と固定ライナ
16の排油孔3oと可変弁5の排油孔43とに連通して
いる。53はピストン作慶用油路であって、パイロット
弁2の連通孔14を摺動ライナ】7の連通口32に連通
している。54はスツール作動用油路であって、パイロ
ット弁2の交番圧力室12に通じる孔12′を固定ライ
ナ16の連通口31に連通している。55は摺動ライナ
作動用油路であって、可変弁5の連通孔42とシリンダ
3の油室28に通じる孔28に連通している。56は可
変弁作動用油路であって、可変弁作動管接続口50と可
変弁5の調整圧力室39に通じる孔39′を連通してい
る。な1お57は摺動ライナ17のストッパ用止めナツ
トで、58は逆止弁59はタンクである。
Reference numerals 36 and 37 are a small-diameter operating rod and a large-diameter operating rod that press both ends of the spool 34, respectively. Reference numerals 38 and 39 are constant pressure chambers and regulating pressure chambers that introduce pressure and power oil into the end faces of the small diameter operating rod 36 and the large diameter operating rod 37, respectively. The side wall where the variable valve 5 is attached to the cylinder 3 is provided with an oil supply hole 41 with a built-in tEIt[-valve 40, a communication hole 42, and a υ14 oil hole 43, so that when the spool 34 moves to the upper blade, the supply and discharge chamber 35
11), the communication hole 42 and the oil drain hole 43 communicate with each other through the spool 34, and when the spool 34 moves downward, the communication hole 42 and the oil supply hole 41 communicate with each other through the supply and discharge chamber 35, and in the neutral position, the communication hole 42 communicates with the oil supply hole 43. It is designed to be cut off from both the hole 4ri and the Yuyu hole 43. The remote control valve 1 has a cylinder 44, a piston 45, and a handle 46ft. 47 is IU
This is an oil chamber formed by a cylinder 44 and a piston 45. The upper end surface of the cylinder 3 is provided with an oil supply pipe connection port 48, an oil drain pipe connection port 49, and a variable valve operating pipe connection OSO communicating with the oil chamber 47 of the remote control valve 6. Reference numeral 51 denotes a supply oil passage, which includes a hole ll' for bending the oil supply pipe access port 48 into the constant pressure chamber 11 of the pilot valve 2, the oil supply hole 13, the oil supply port 29 of the fixed liner 16, and the oil supply of the sliding liner 17. The port 33 and the hole 38' communicating with the constant pressure chamber 38 of the variable valve 5 and the oil supply hole 4
] is connected to. Reference numeral 52 denotes a drain oil passage, which communicates the drain oil pipe connection port 49 with the drain hole 15 of the pilot valve 2, the drain hole 3o of the fixed liner 16, and the drain hole 43 of the variable valve 5. 53 is an oil passage for piston operation, which communicates the communication hole 14 of the pilot valve 2 with the communication port 32 of the sliding liner 7. Reference numeral 54 denotes a stool operating oil passage, which communicates a hole 12' communicating with the alternating pressure chamber 12 of the pilot valve 2 with the communication port 31 of the fixed liner 16. Reference numeral 55 denotes an oil passage for operating the sliding liner, which communicates with the communication hole 42 of the variable valve 5 and the hole 28 that communicates with the oil chamber 28 of the cylinder 3. Reference numeral 56 denotes a variable valve operating oil passage, which communicates the variable valve operating pipe connection port 50 with the hole 39' communicating with the regulating pressure chamber 39 of the variable valve 5. 1. Reference numeral 57 is a stopper nut for the sliding liner 17, and reference numeral 58 is a check valve 59, which is a tank.

以上のように構成された本発明の振幅可変曲用発振機l
は可変振幅が要求される土木作業機等に組込み、シリン
ダ3の給油管接続口48と排油管接続口44とをそれぞ
れ図示されていない油圧源とタンク等に接続すると共に
、遠隔操作弁6を手元近くに配置して使用するものであ
る。
Variable amplitude music oscillator l of the present invention configured as described above
is installed in a civil engineering work machine or the like that requires variable amplitude, and the oil supply pipe connection port 48 and the oil drain pipe connection port 44 of the cylinder 3 are connected to a hydraulic power source and a tank, etc. (not shown), and the remote control valve 6 is connected to the cylinder 3. It is used by placing it close to hand.

そこで、油圧源から給油管接続口48を経て供給油路5
1に圧力油を供給すると、圧力油は孔11’および給油
口29を経てそれぞれパイロット弁2の定圧力室11と
シリンダ3の定圧力室21とに導入され、第2図に示す
ようにパイロット弁2においては小径作動杆9を介して
スプール7が下方向に移動すると共に、シリンダ3にお
いては油圧ピストン4が上方向への移動を開始する。こ
のときシリンダ3における交番圧力室22は連通口32
、ピストン作動用油路53、連通孔14、給排室8、排
油孔15、排出油路52および排油管接続口49を経て
図外のタンクに′□連通している。次いで、油圧ピスト
ンケの上方向への移動の過程において、俯1図に示すよ
うに、油圧ピストンダのスプール部19に形成した連通
室23を介して連通口31が給油口33に連通ずると、
給油口33に供給されている圧力油は連通室23、連通
ロ31.スプール作動用油路54および孔12′を経て
パイロット弁2の交番圧力室12に導入される。大径作
動杆lOの受圧面積が小径作動杆9の受圧面積よりも大
きいことによって、大径作動杆10が小径作動杆9の押
圧力に打勝ってスプール7を上方向に移動させる。スプ
ール7が上方向に移動すると給排室8を介して給油孔1
3と連通孔14が連通臥給油孔13に供給されている圧
力油は給排室8、連通孔14、ピストン作動用油路53
および連通口32を経てシリンダ3の交番圧力室22に
導入される。交番圧力室22内における油圧ピストン4
の受圧面積が定圧力室21内における油圧ピストン4の
受圧面積より大きいことによって、油圧ピストン4は下
方向への移動を開始する。次いで、油圧ピストン4の下
方向への移動の過程において、連通口31と排油口3o
が連通室23を介して連通ずると、パイロット弁2の交
番圧力室12内のの11力が低下するので、スプール7
は小径作動杆9に押圧されて下方向に移動する。このこ
とによって、シリンダ3の交番圧力室22は前記したよ
うに図外のタンクに連通し、交番圧力室22内の圧力が
低下するので、油圧ピストン4は定圧力室21内の圧力
油に押圧されて上方向に移動する。油圧ピストン4か上
方向に移動してブレーキ用段部27がブレーキ室25に
突入すると油がブレーキ室25内に封入されてブレーキ
作用を生じる。同様に油圧ピストン4か下方向に移動し
てブレーキ用段部26がブレーキ室24に突入すると油
がブレーキ室24内に封入されてブレーキ作用を生じる
。以後、前記の作動が繰返され、パイロット弁2内のス
プール7とシリンダ3内の油圧ピストン4との相互作用
によって油圧ピストン4を振動させることができるので
ある。
Therefore, the oil supply line 5 is connected from the oil pressure source through the oil supply pipe connection port 48.
When pressure oil is supplied to the pilot valve 1, the pressure oil is introduced into the constant pressure chamber 11 of the pilot valve 2 and the constant pressure chamber 21 of the cylinder 3 through the hole 11' and the oil supply port 29, respectively, and as shown in FIG. In the valve 2, the spool 7 moves downward via the small diameter operating rod 9, and in the cylinder 3, the hydraulic piston 4 starts moving upward. At this time, the alternating pressure chamber 22 in the cylinder 3 is connected to the communication port 32.
, a piston operating oil passage 53, a communication hole 14, a supply/discharge chamber 8, an oil drain hole 15, an oil discharge passage 52, and an oil drain pipe connection port 49, which communicate with a tank (not shown). Next, in the process of upward movement of the hydraulic piston, the communication port 31 communicates with the oil supply port 33 via the communication chamber 23 formed in the spool portion 19 of the hydraulic piston, as shown in the top view.
The pressure oil supplied to the oil supply port 33 is supplied to the communication chamber 23, the communication chamber 31. The oil is introduced into the alternating pressure chamber 12 of the pilot valve 2 via the spool operating oil passage 54 and the hole 12'. Since the pressure receiving area of the large diameter operating rod lO is larger than the pressure receiving area of the small diameter operating rod 9, the large diameter operating rod 10 overcomes the pressing force of the small diameter operating rod 9 and moves the spool 7 upward. When the spool 7 moves upward, it passes through the oil supply hole 1 through the supply and discharge chamber 8.
3 and the communication hole 14 are in communication.The pressure oil supplied to the oil supply hole 13 is connected to the supply/discharge chamber 8, the communication hole 14, and the piston operating oil path 53.
and is introduced into the alternating pressure chamber 22 of the cylinder 3 via the communication port 32. Hydraulic piston 4 in alternating pressure chamber 22
Since the pressure receiving area of the hydraulic piston 4 is larger than the pressure receiving area of the hydraulic piston 4 in the constant pressure chamber 21, the hydraulic piston 4 starts moving downward. Next, in the process of downward movement of the hydraulic piston 4, the communication port 31 and the oil drain port 3o
When the 11 force in the alternating pressure chamber 12 of the pilot valve 2 decreases, the spool 7
is pressed by the small diameter operating rod 9 and moves downward. As a result, the alternating pressure chamber 22 of the cylinder 3 communicates with the tank (not shown) as described above, and the pressure in the alternating pressure chamber 22 decreases, so that the hydraulic piston 4 is pressed against the pressure oil in the constant pressure chamber 21. and move upward. When the hydraulic piston 4 moves upward and the brake stepped portion 27 enters the brake chamber 25, oil is sealed in the brake chamber 25 to produce a braking action. Similarly, when the hydraulic piston 4 moves downward and the brake stepped portion 26 enters the brake chamber 24, oil is sealed in the brake chamber 24 to produce a braking action. Thereafter, the above operation is repeated, and the interaction between the spool 7 in the pilot valve 2 and the hydraulic piston 4 in the cylinder 3 makes it possible to vibrate the hydraulic piston 4.

次いで、振幅を調整するには、遠隔操作弁6のハンドル
46を中立位置から上方に引上げることにより遠隔操作
弁6の油室47に可変弁作動管接続口50、可変弁作動
用油路56、孔39′を経て連通している調整圧力室3
9の圧力が低下し、孔38′を経て定圧力室38に供給
されている圧力油により小径作動杆36を介してスプー
ル34は中立位置から上方に移動して排油孔43は開口
されf−”−通孔42と排油孔43がmオ±千給排室1
356を介して連通し、シリンダ3の油室28の圧1u
m。
Next, to adjust the amplitude, pull up the handle 46 of the remote control valve 6 from the neutral position to connect the variable valve operation pipe connection port 50 and the variable valve operation oil path 56 to the oil chamber 47 of the remote control valve 6. , the regulating pressure chamber 3 communicating through the hole 39'.
9 decreases, and the pressure oil supplied to the constant pressure chamber 38 through the hole 38' moves the spool 34 upward from the neutral position via the small diameter operating rod 36, and the oil drain hole 43 is opened. -"- The through hole 42 and the oil drain hole 43 are
356, and the pressure 1u of the oil chamber 28 of the cylinder 3
m.

は孔28′、摺動ライナ作動用油路55、連通孔42、
給排室35、排油孔43、排出油路52.排油管接続口
49を経て図外のタンクに導出され、シリンダ3の交番
圧力室22内にパイロット弁2を介して導入される圧力
油によ゛り摺動ライナ17は上方向に摺動する。所要距
離摺動ライナ17が上方向に移動した時、遠隔操作弁6
のハンドル46を中立位置まで押し込むことにより遠隔
操作弁6の油室47内の加圧された油は可変弁作動管接
続口:    50、可変弁作動用油路56、孔39′
を経て調整圧力室39に導入され、小径作動杆36の押
圧力に打勝って大径作動杆37はスプール34を下方に
押し一ドげ可変弁1の排油孔43が閉塞され、油室28
内の油は閉じ込められて摺動ライナ17は一定位置に保
持される。また遠隔操作弁6のハンドル46を中立位置
から下方に押し下げることにより前記したように可変弁
5のスプール34は大径作動杆37に押圧されて中立位
置から下方に移動して給油孔41は開口され、連通孔4
2と給油孔41が給排室35を介して連通し、給油孔4
1に供給されている圧力油は給油孔41に内蔵された逆
止弁40、給排室35、連通孔42、摺動ライナ作動用
油路55、孔28′を経て油室28に導入され、油室2
8内の受圧面積が交番圧力室22内の受圧面積よりも大
なるゆえに摺動ライナ17は下方に摺動する。所要距離
摺動ライナ17が下方向に移動した時、遠隔操作弁6の
ハンドル46を中立位置まで引上げることにより前記し
たように小径作動杆36に押圧されてスプール34は中
立位置まで上方向に摺動して給油孔41は閉塞され、油
室2B内の油は閉じ込められて摺動ライナ17は一牽位
置に保持される。以上のようにして摺動ライナ17を摺
動調整すると、シリンダ3に対して給油口33とブレー
キ室25との位置が調整され、このことによって固定ラ
イナ16の連通口31と摺動ライナ17の給油口33と
の距離が調整され、給油口33に供給されている圧力油
を油圧ピストン4の連通室23、連通ロ31.スプール
作動用油路54および孔12’を経てパイロット弁2の
交番圧力室12に導入するタイミングが調整されるので
ある。ブレーキ室25゛と給油口33との相対位置は不
変であるので、摺動ライナ17を固定ライナ16に接近
する方向に摺動調整すると、前記のタイミングが早めら
れ、これによってスフ−ルアが上方向へ移動し始めるタ
イミングが早められるとともに、振幅に関係しない一定
の位相差で油圧ピストン4が下方向へ移動し始めるタイ
ミングも早められる結果、油圧ピストン4の摺動距離が
小さくなり、振幅が小さくなる。摺動ライナ17か固定
ライナ16に当接すると振幅が最小にな゛す、摺動ライ
ナ17がストッパ用止めナツト57に当接すると振幅が
最大になる。よって遠隔操作弁6のハンドル46を中立
位置より引上げて、図外の油圧源と油室28を遮断する
と共に油室28と図外のタンクを連通ずることにより可
変弁5を介してシリンダ3の油室28内の圧力油が図外
のタンクに導出されて摺動ライナ17が上方向に摺動し
、油圧ピストン4の振幅が増大する。
are hole 28', sliding liner operating oil passage 55, communication hole 42,
Supply/discharge chamber 35, oil drain hole 43, drain oil path 52. The sliding liner 17 is caused to slide upward by the pressure oil that is led out to a tank (not shown) through the drain oil pipe connection port 49 and introduced into the alternating pressure chamber 22 of the cylinder 3 via the pilot valve 2. . When the sliding liner 17 moves upward the required distance, the remote control valve 6
By pushing the handle 46 to the neutral position, the pressurized oil in the oil chamber 47 of the remote control valve 6 is transferred to the variable valve operation pipe connection port: 50, variable valve operation oil passage 56, hole 39'.
The oil is introduced into the adjustment pressure chamber 39 through the pressure control chamber 39, and the large-diameter operating rod 37 overcomes the pressing force of the small-diameter operating rod 36 and pushes the spool 34 downward, thereby blocking the oil drain hole 43 of the variable valve 1 and draining the oil chamber. 28
The oil within is trapped and the sliding liner 17 is held in place. Further, by pushing the handle 46 of the remote control valve 6 downward from the neutral position, the spool 34 of the variable valve 5 is pressed by the large diameter operating rod 37 and moves downward from the neutral position, and the oil supply hole 41 is opened. and communication hole 4
2 and the oil supply hole 41 communicate with each other via the supply and discharge chamber 35, and the oil supply hole 4
1 is introduced into the oil chamber 28 through the check valve 40 built into the oil supply hole 41, the supply/discharge chamber 35, the communication hole 42, the sliding liner operating oil passage 55, and the hole 28'. , oil chamber 2
Since the pressure receiving area within the pressure chamber 8 is larger than the pressure receiving area within the alternating pressure chamber 22, the sliding liner 17 slides downward. When the sliding liner 17 moves downward the required distance, by pulling up the handle 46 of the remote control valve 6 to the neutral position, the spool 34 is pushed upward to the neutral position by being pressed by the small diameter operating rod 36 as described above. The oil supply hole 41 is closed by sliding, the oil in the oil chamber 2B is trapped, and the sliding liner 17 is held at the one-stroke position. When the sliding liner 17 is slidably adjusted as described above, the positions of the oil filler port 33 and the brake chamber 25 are adjusted with respect to the cylinder 3, and as a result, the positions of the communication port 31 of the fixed liner 16 and the sliding liner 17 are adjusted. The distance to the oil supply port 33 is adjusted, and the pressure oil supplied to the oil supply port 33 is transferred to the communication chamber 23 of the hydraulic piston 4, the communication chamber 31. The timing at which the oil is introduced into the alternating pressure chamber 12 of the pilot valve 2 through the spool operating oil passage 54 and the hole 12' is adjusted. Since the relative position between the brake chamber 25' and the fuel filler port 33 remains unchanged, sliding the sliding liner 17 in the direction closer to the stationary liner 16 will advance the timing described above, thereby causing the fuel filler to move upward. As a result, the timing at which the hydraulic piston 4 starts to move in the downward direction is brought forward, and the timing at which the hydraulic piston 4 starts to move downward with a constant phase difference that is not related to the amplitude is also brought forward. As a result, the sliding distance of the hydraulic piston 4 becomes smaller, and the amplitude becomes smaller. Become. When the sliding liner 17 abuts the fixed liner 16, the amplitude is at a minimum, and when the sliding liner 17 abuts against the stopper nut 57, the amplitude is at a maximum. Therefore, the handle 46 of the remote control valve 6 is pulled up from the neutral position to shut off the hydraulic pressure source (not shown) and the oil chamber 28, and the oil chamber 28 is communicated with the tank (not shown), thereby controlling the cylinder 3 via the variable valve 5. The pressure oil in the oil chamber 28 is led out to a tank (not shown), the sliding liner 17 slides upward, and the amplitude of the hydraulic piston 4 increases.

ハンドル46を中立位置に戻し、油室28が図外の1l
fl FE h’iとタンクのいずれとも遮断すると油
室28内に油が閉じこめられて摺動ライナ17の位置が
保持されることにより振幅は一定に保持される。
Return the handle 46 to the neutral position so that the oil chamber 28 is 1l (not shown).
When both fl FE h'i and the tank are shut off, oil is trapped in the oil chamber 28 and the position of the sliding liner 17 is maintained, thereby keeping the amplitude constant.

またハンドル46を押し下げ、油圧源と油室28とを連
通させることにより可変弁6を介して油室28内に圧力
油が導入されて摺動ライナ17が下方向に摺動し、油田
ピストン4の振幅が減少する。
In addition, by pushing down the handle 46 and communicating the oil pressure source with the oil chamber 28, pressure oil is introduced into the oil chamber 28 through the variable valve 6, and the sliding liner 17 slides downward, causing the oil field piston 4 amplitude decreases.

逆止弁40は油室28内に圧力油を導入して摺で摺動ラ
イナ17が上方向へ逆摺動するのを防止し、すみやかな
油圧ピストン予の反転を確保するものである。遠隔操作
弁6のハンドル46を中立位置から変位させた変位量は
ピストン45の変位量に比例し、ピストン45の変位量
は油室47内の油量変化に比例し、油室47内の油量変
化は可変弁5の調整圧力室39内の油量変化に1対1で
対応し、スプール34が摺動する摺動距離に比例するた
め、スプール34による給油孔41または排油孔43の
開口巾に対応し、給油孔41または排油孔43の開口巾
の大小はシリンダ3の油室28に給排される圧力油の時
間当りの油量が変化し、摺動ライナ17の摺動速度が変
化する。よって遠隔操作弁6のハンドル46の変位量は
油田ピストン4の振幅変化速度に対応している。なお遠
隔操作弁6の油室47に逆止弁58を介してタンク59
に連通せしめた油田回路は組立時および油の漏れ分を油
室47に供給する補給回路である。
The check valve 40 introduces pressure oil into the oil chamber 28 to prevent the sliding liner 17 from sliding upwards, thereby ensuring prompt reversal of the hydraulic piston. The amount of displacement of the handle 46 of the remote control valve 6 from the neutral position is proportional to the amount of displacement of the piston 45, and the amount of displacement of the piston 45 is proportional to the change in the amount of oil in the oil chamber 47. The amount change corresponds one-to-one to the oil amount change in the regulating pressure chamber 39 of the variable valve 5, and is proportional to the sliding distance of the spool 34. Corresponding to the opening width, the size of the opening width of the oil supply hole 41 or the oil drain hole 43 changes the amount of pressure oil per hour supplied to and discharged from the oil chamber 28 of the cylinder 3, and the sliding of the sliding liner 17 changes. Speed changes. Therefore, the amount of displacement of the handle 46 of the remote control valve 6 corresponds to the amplitude change rate of the oil field piston 4. Note that a tank 59 is connected to the oil chamber 47 of the remote control valve 6 via a check valve 58.
The oil field circuit communicated with is a replenishment circuit that supplies oil leakage to the oil chamber 47 during assembly and during assembly.

以上述べたことから容易に理解できるように、本発明の
振幅可変油田発振機における振幅制御装置は遠隔操ハで
油田ピストンの振幅が任意に調整可能で、か・つ遠隔操
作弁のハンドル変位量は油圧ピストンの振幅変化速度に
対応できるものであり、油圧ブレーカ等の油田打撃機に
用いた場合、油田ピストンの振幅と打撃力は1対1の対
応をしており、口付は作業等の際はハンドル操作のみで
容易に打撃力調整を行うことのできるものである。
As can be easily understood from the above description, the amplitude control device in the variable amplitude oilfield oscillator of the present invention is capable of arbitrarily adjusting the amplitude of the oilfield piston by remote control, and the amount of displacement of the handle of the remote control valve. can correspond to the rate of change in the amplitude of the hydraulic piston, and when used in oilfield impact machines such as hydraulic breakers, there is a one-to-one correspondence between the amplitude of the oilfield piston and the impact force, and the opening is designed to match the speed of change in the amplitude of the hydraulic piston. In case of an emergency, the striking force can be easily adjusted by simply operating the handle.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の振幅制御装置を備えた振幅可変油田発振
機の実施例を示すものであって、第1図は振幅を最小に
調整し、かつパイロット弁のスプールと1IIIq:、
ピストンとに交番圧力が作用している状態を示す縦断面
図、第2図は振幅を最大に調整し、かつパイロット弁の
スプールと油田ピストンとに定匣力が作用している状態
を示す縦断面図である。 1−・・振幅可変油田発振機、2−パイロット弁、3−
シリンダ、4−油田ピストン、5・−可変弁、6−遠隔
操作弁、7−7:、プール、8−・給排室、9−小径作
動杆、1〇−大径作動杆、11−・・定千カ室、12−
・交番圧力室、13−給油孔、14一連通孔、15−・
排油孔、16−・固定ライナ、17−摺動ライナ、18
−小径部、19−スプール部、20・−小径部、21一
定田力室、22−・交番圧力室、23一連通室、24.
25−・ブレーキ室、26.27− ブレーキ用段部、
28−・油室、29−給油口、30・〜排油[1,31
一連通口、32一連通口、33−・・給油口、34−・
スプール、35−給排室、36−小径作動杆、37−大
径作動杆、38一定田力室、39・・・調整圧力室、4
0・−逆止弁、41−給油孔、42一連通孔、43−供
給油路、52−・排出油路、53・・・ピストン作動用
油路、54・−スプール作動用油路、55・−摺動ライ
ナ作動用油路、56−・可変弁作動用油路指定代理人 
日本国有鉄道総裁室法務2!艮関場大資
The drawings show an embodiment of a variable amplitude oil field oscillator equipped with the amplitude control device of the present invention, in which FIG.
Fig. 2 is a longitudinal cross-sectional view showing a state in which alternating pressure is acting on the piston, and Fig. 2 is a longitudinal cross-sectional view showing a state in which the amplitude is adjusted to the maximum and a constant force is acting on the pilot valve spool and the oilfield piston. It is a front view. 1-...variable amplitude oil field oscillator, 2-pilot valve, 3-
Cylinder, 4-oil field piston, 5-variable valve, 6-remote control valve, 7-7:, pool, 8-supply/discharge chamber, 9-small diameter operating rod, 10-large diameter operating rod, 11-.・1000 rooms, 12-
・Alternating pressure chamber, 13-oil supply hole, 14 series of communication holes, 15-・
Oil drain hole, 16-Fixed liner, 17-Sliding liner, 18
- small diameter part, 19 - spool part, 20 - small diameter part, 21 constant pressure chamber, 22 - alternating pressure chamber, 23 continuous communication chamber, 24.
25-・Brake chamber, 26.27- Brake step section,
28-・Oil chamber, 29-Oil filler port, 30・~Oil drain [1, 31
Series of ports, 32 series of ports, 33-... Fuel filler port, 34-...
Spool, 35-supply/discharge chamber, 36-small diameter operating rod, 37-large diameter operating rod, 38 constant force chamber, 39...adjustment pressure chamber, 4
0.--Check valve, 41--Oil supply hole, 42-Series hole, 43--Supply oil path, 52--Discharge oil path, 53--Piston operating oil path, 54--Spool operating oil path, 55・-Oil passage for sliding liner operation, 56-・Oil passage for variable valve operation designated agent
Japanese National Railways Governor’s Office Legal Affairs 2! Sekiba Daishu

Claims (1)

【特許請求の範囲】[Claims] パイロット弁内において両側から定圧力と交番圧力とを
受けるようにしたスプールと、シリンダ内において両側
から定圧力と交番圧力とを受けるようにした油圧ピスト
ンとの相互作用によって該油圧ピストンを振動するよう
にすると共に、前記シリンダと油圧ピストンとの間に該
油圧ピストンの振動に適応するようになした摺動ライナ
を摺動調整する仁とにより油圧ピストンの振幅を可変な
らしめた振幅可変油圧発振機において、前記摺動ライナ
の一端に油室を設け、核油室に油を給排することにより
前記摺動ライナを摺動調整して油圧ピストンの振幅をu
J変ならしめる可変弁を設け、該可変弁は油圧源と前記
油室とを逆止弁を介して連通せしめる位置において油圧
ピストンの振幅を減少せしめ、油圧源と油室を遮断する
と共に油室とタンクを連通せしめる位置において油圧ピ
ストンの振幅を増大せしふ)、油量が油圧源とタンクの
いずれとも遮断される位置において油圧ピストンの振@
を一定に保持せしめることを特徴とした振幅可変油圧発
振機における掘−制御装置。
The hydraulic piston is vibrated by the interaction between a spool that receives constant pressure and alternating pressure from both sides in the pilot valve and a hydraulic piston that receives constant pressure and alternating pressure from both sides in the cylinder. and a variable amplitude hydraulic oscillator in which the amplitude of the hydraulic piston is made variable by slidingly adjusting a sliding liner between the cylinder and the hydraulic piston to adapt to the vibrations of the hydraulic piston. An oil chamber is provided at one end of the sliding liner, and by supplying and discharging oil to the core oil chamber, the sliding liner is slidably adjusted to adjust the amplitude of the hydraulic piston.
A variable valve is provided to provide a J-shift, and the variable valve reduces the amplitude of the hydraulic piston at a position where the hydraulic pressure source and the oil chamber communicate with each other via a check valve, cuts off the hydraulic pressure source and the oil chamber, and also closes the oil chamber. The amplitude of the hydraulic piston is increased at the position where the oil volume is communicated with the tank and the oil pressure source), and the vibration of the hydraulic piston is increased at the position where the oil volume is cut off from both the hydraulic source and the tank.
An excavation control device for a variable amplitude hydraulic oscillator, characterized in that the amplitude is maintained constant.
JP8320882A 1982-05-19 1982-05-19 Amplitude control device in amplitude variable oil pressure oscillator Granted JPS58200802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8320882A JPS58200802A (en) 1982-05-19 1982-05-19 Amplitude control device in amplitude variable oil pressure oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8320882A JPS58200802A (en) 1982-05-19 1982-05-19 Amplitude control device in amplitude variable oil pressure oscillator

Publications (2)

Publication Number Publication Date
JPS58200802A true JPS58200802A (en) 1983-11-22
JPH0112964B2 JPH0112964B2 (en) 1989-03-02

Family

ID=13795900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8320882A Granted JPS58200802A (en) 1982-05-19 1982-05-19 Amplitude control device in amplitude variable oil pressure oscillator

Country Status (1)

Country Link
JP (1) JPS58200802A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5769106A (en) * 1980-10-14 1982-04-27 Japanese National Railways<Jnr> Amplitude adjusting device oil hydraulic oscillator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5769106A (en) * 1980-10-14 1982-04-27 Japanese National Railways<Jnr> Amplitude adjusting device oil hydraulic oscillator

Also Published As

Publication number Publication date
JPH0112964B2 (en) 1989-03-02

Similar Documents

Publication Publication Date Title
US4192346A (en) Control valve
US4062411A (en) Hydraulic percussion tool with impact blow and frequency control
US4355691A (en) Hydraulic drilling apparatus
JP3378029B2 (en) Hydraulic breaker
JPH0919875A (en) Liquid pressure type percussion hammer
KR19990078408A (en) Hydraulically operated impact device
JP4838123B2 (en) Impact device and method for generating stress pulse in the device
US4082032A (en) Control of hydraulically powered equipment
CA2608067C (en) Impulse generator and method for impulse generation
US4100977A (en) Drop hammers
US6491114B1 (en) Slow start control for a hydraulic hammer
JPH0886182A (en) Hydraulic striker having controllable number of striking andstriking energy
JP4164132B2 (en) Hydraulic stepping piston device and method of operating a driving device having the same device and having variable thrust force
EP0080964B1 (en) Actuator for a hydraulic impact device
US20170247851A1 (en) Pneumatic or hydraulically operated linear driver
JPS58200802A (en) Amplitude control device in amplitude variable oil pressure oscillator
US3408897A (en) Fluid power hammer having accumulator means to drive the hammer through its working stroke independent of the system pump
US3298447A (en) Control of variable-stroke power hammers
JPH02131881A (en) Automatic control unit for percussion force and percussion times
US3568571A (en) Power hammer
US1955278A (en) Hydraulic press
JP4064868B2 (en) Hydraulic breaker
US2843092A (en) Pressure fluid operated valve structure
JPH09131671A (en) Hydraulic breaker
JP3544173B2 (en) Regeneration switching valve for hydraulic cylinder