JPH01129402A - Magnetic anisotropic bonded magnet and manufacture thereof - Google Patents

Magnetic anisotropic bonded magnet and manufacture thereof

Info

Publication number
JPH01129402A
JPH01129402A JP62287361A JP28736187A JPH01129402A JP H01129402 A JPH01129402 A JP H01129402A JP 62287361 A JP62287361 A JP 62287361A JP 28736187 A JP28736187 A JP 28736187A JP H01129402 A JPH01129402 A JP H01129402A
Authority
JP
Japan
Prior art keywords
weight
pores
porosity
molded
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62287361A
Other languages
Japanese (ja)
Inventor
Kimiyuki Jinno
神野 公行
Katakatsu Fukuda
方勝 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Steel Mfg Co Ltd
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Steel Mfg Co Ltd
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Steel Mfg Co Ltd, Mitsubishi Kasei Corp filed Critical Mitsubishi Steel Mfg Co Ltd
Priority to JP62287361A priority Critical patent/JPH01129402A/en
Publication of JPH01129402A publication Critical patent/JPH01129402A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To form pores effective for the impregnation of a binding agent in an R-B-Fe based and R-B-Co-Fe based thermally treated molded forms having sufficiently large coercive force and magnetic anisotropy, and to obtain an excellent bonded magnet by impregnation by optimally combining particle diameter (particle size distribution), porosity, the composition and mixing ratio of a pore forming agent on manufacture, molding pressure in a magnetic field, a heat treatment temperature, the impregnation method of the binding agent, etc. CONSTITUTION:The average particle diameter of an alloy mainly comprising 20-45wt.% R (R represents at least one kind of rare earth elements), 0.1-3.0wt.% B and 52-79.9wt.% Fe or Fe+Co (where Co is brought to half or less of Fe) is brought to 1-10mum, a resin as a pore forming agent and a lubricant are mixed into the alloy at 1-10wt.% in total, the alloy is molded at pressure of 0.5-10t/cm<2> in a magnetic field, and the molded form is thermally treated at a temperature of 350-1050 deg.C. The porosity of the thermally treated body after cooling extends over 15-40%, and 60-100% in the pores is communicated with the surface, and the thermally treated body is impregnated with a resin or a low melting-point metal.

Description

【発明の詳細な説明】 [技術分野] 本発明はその異方性を発揮するのにH効な気孔を白゛す
るR−B−Fe系およびR−B−C。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to R-B-Fe systems and R-B-Cs which have H-effective pores to exhibit their anisotropy.

−Fe系の磁気異方性ボンド磁石およびその製造方法に
関する。
The present invention relates to a -Fe-based magnetically anisotropic bonded magnet and a method for manufacturing the same.

[従来技術] R−B−Fe系およびR−B−Co−Fe系ボンド磁石
用粉末の製造方法としては、−投的に次の二つの方法か
知られている。
[Prior Art] The following two methods are known as methods for producing R-B-Fe and R-B-Co-Fe bonded magnet powders.

(a)合金を溶解鋳造あるいは還元法により作り、必要
に応じて熱処理を施し、それらを微粉砕する方法 (b)合金を溶解し、液体急冷凝固させて粉末を作る方
法 に()の方法では粉末を磁場中で配向させるために、粉
末を単結晶サイズまで微粉砕する必要があるが、そのよ
うな微粉砕により粉末の表面に磁気的な欠陥が生じ、大
きな保磁力かえられない。このような粉末で保磁力を増
加させるためには、粉末を熱処理する方法があるが、粉
末が酸化したり、あるいは、粉末同志が凝集してしまい
、こ征を解砕するとやはり保磁力が低下してしまい、高
い保磁力を持った粉末を得ることかむずかしい。
(a) A method in which the alloy is made by melting and casting or a reduction method, heat-treated as necessary, and then finely pulverized. (b) A method in which the alloy is melted and solidified by rapid liquid cooling to produce a powder. In order to orient the powder in a magnetic field, it is necessary to pulverize the powder to a single crystal size, but such pulverization creates magnetic defects on the surface of the powder, making it impossible to change the large coercive force. In order to increase the coercive force of such powder, there is a method of heat treating the powder, but the powder oxidizes or the powders aggregate, and when this powder is crushed, the coercive force decreases. Therefore, it is difficult to obtain powder with high coercive force.

一ノj、 (り)の方法では、十分大きな保磁力を持っ
た粉末が得られるが、粉末が非晶質あるいは微結晶の集
合体となっているために、通常は磁場による配向が困難
であるため磁気異方性を与えることがむずかしい。
Ichinoj, (ri) method yields powder with a sufficiently large coercive force, but since the powder is amorphous or an aggregate of microcrystals, it is usually difficult to orient it using a magnetic field. Therefore, it is difficult to provide magnetic anisotropy.

また、焼結した異方性磁石を粉砕して磁気異方性を持っ
た粒子の集合体を作る方法もあるが、この場合でも、粉
砕による機械的ひずみにより保磁力が低下してしまう。
Another method is to create an aggregate of particles with magnetic anisotropy by pulverizing a sintered anisotropic magnet, but even in this case, the coercive force decreases due to the mechanical strain caused by the pulverization.

以上のように従来の方法では磁気特性の殆ど出現しない
磁性体となるか、もしくは等方性のボンド磁石しか得ら
れなかった。
As described above, conventional methods either result in a magnetic material with almost no magnetic properties, or only provide isotropic bonded magnets.

[発明が解決しようとする問題点] 本発明は、十分に大きな保磁力と磁気異方性を自°する
R−B−Fe系およびR−B−Co−Fe系の熱処理成
形体において結合剤の含浸に何代な気孔をイイせしめ、
含浸による優秀なボンド磁石を得ることにある。
[Problems to be Solved by the Invention] The present invention is directed to the use of binders in R-B-Fe and R-B-Co-Fe heat-treated molded products that have sufficiently large coercive force and magnetic anisotropy. The impregnation of the pores is made good,
The purpose is to obtain an excellent bonded magnet by impregnation.

[問題点を解決するための手段] 上記の問題点を解決するためには、粒径(粒度分布)、
気孔率および製造時における気孔形成剤の組成と混合割
合、磁場中の成形圧力さらに熱処理温度や結合剤の含浸
方法等の最適な組合せが必要となる。その最適条件を見
出したのが本発明である。
[Means for solving the problem] In order to solve the above problem, particle size (particle size distribution),
Optimal combinations of porosity, composition and mixing ratio of pore-forming agent during production, molding pressure in a magnetic field, heat treatment temperature, binder impregnation method, etc. are required. The present invention has discovered the optimal conditions.

すなわち、本発明の第1発明は 20〜45重Jllii9’6のR(Rは希土類元素の
少(とも1種) 0.1〜3.0 ffl m 96 (7) B52〜
79.9重量%のFeまたはFe+C。
That is, the first invention of the present invention has R of 20 to 45 Jllii9'6 (R is one of rare earth elements) 0.1 to 3.0 ffl m 96 (7) B52 to
79.9% by weight of Fe or Fe+C.

(ただしCoはFeの1/2以下) からなる主組成を有し、甲均粒径1−10μlよりなる
合金で、気孔率が15〜40%で、その気孔のうち60
〜100%が表面に通しているものの、該気孔中に樹脂
または低融点金属を含浸させてなることを特徴とする繊
機異方性ボンド磁石である。
(However, Co is less than 1/2 of Fe), and has an average grain size of 1-10 μl, and has a porosity of 15-40%, with 60% of the pores being
Although ~100% of the pores pass through the surface, the pores are impregnated with a resin or a low-melting point metal.

K1第2発明は、 20〜45屯瓜9・6のR(Ri、!希土類元素の少く
とも1種) 0.1〜3.0重量96のB 52〜79 、9重量%のFeまたはFe十C。
K1 second invention is as follows: 20-45 tonne 9.6 R (Ri,! At least one rare earth element) 0.1-3.0 weight 96 B 52-79, 9 weight % Fe or Fe Ten C.

(ただり、 CoはFeの 1/2以下)を主成分とす
る合金を、平均粒径l〜10μm1“1し、これに気孔
形成剤として樹脂、滑剤の合計で1−10重−%混合し
、磁場中で口、5〜10t/c++2の圧力で成形し、
この成形体を350〜1050℃の1u度で熱処理し、
冷却後の熱処理体の気孔率が15〜40%であり、その
気孔のうち60〜100%が表面に通じるものとし、そ
の後、樹脂または低融点金属を含浸させてなることを特
徴とする磁気異方性ボンド磁石の製造方法である。
(Co is less than 1/2 of Fe) with an average particle size of 1 to 10 μm, and a total of 1 to 10% by weight of a resin and a lubricant as a pore forming agent are mixed therein. and molded in a magnetic field at a pressure of 5 to 10 t/c++2,
This molded body is heat-treated at 350 to 1050°C, 1u degree,
The heat-treated body after cooling has a porosity of 15 to 40%, 60 to 100% of the pores communicate with the surface, and is then impregnated with a resin or a low melting point metal. This is a method for manufacturing a oriented bonded magnet.

合金組成において、RとしてはSc、Y、ランタニド、
アクチニド系列の希土類から選択されるが、とくにY1
ランタニド系列の元素か好ましい。Rの量が20ffi
ff1%よりも少ないと、高い保磁力が得られず、45
重量%よりも多いと、磁化の大きさが低下し、いずれも
永久磁石には適さなくなる。Coはキュリー温度を上y
?さぜるL1的でFeと置換することが可能であるかF
euの1/2を越えて置換すると、磁化の大きさか低ド
しCくるので永久磁石には適さなくなる。また、合金の
保磁力を増加させるLj的で、Al5Si、Ti、V、
Cr、Mn、Ni。
In the alloy composition, R is Sc, Y, lanthanide,
selected from rare earths of the actinide series, especially Y1
Elements of the lanthanide series are preferred. The amount of R is 20ffi
If ff is less than 1%, high coercive force cannot be obtained, and 45
If the amount is more than 1% by weight, the magnitude of magnetization decreases and both become unsuitable for permanent magnets. Co exceeds the Curie temperature
? Is it possible to replace Fe in L1-like manner?
If more than 1/2 of eu is substituted, the magnitude of magnetization will decrease, making it unsuitable for use as a permanent magnet. In addition, Lj properties that increase the coercive force of the alloy include Al5Si, Ti, V,
Cr, Mn, Ni.

Cu、Zn、Ga5Ge、Z r、Nb、Mo。Cu, Zn, Ga5Ge, Zr, Nb, Mo.

Sn、Sb、Hfs Ta、W、B i等を必要に応じ
て添加することも可能である。
It is also possible to add Sn, Sb, Hfs Ta, W, Bi, etc. as necessary.

合金粉末のilJ、均粒径を1μmより小さくする場合
は、粉砕に時間がかかり、かつ、粉末が酸化したり発火
したりするおそれがあり、取り扱いがむずかしくなる。
When the ilJ and average particle size of the alloy powder are made smaller than 1 μm, it takes time to grind and there is a risk that the powder will oxidize or catch fire, making it difficult to handle.

また、粉末の・+1均粒径が10μmを越えると、熱処
理によっても十分大きな保磁力が得られなくなり、かつ
、磁場による配向性が低下する。
Moreover, if the +1 average particle diameter of the powder exceeds 10 μm, a sufficiently large coercive force cannot be obtained even by heat treatment, and the orientation due to a magnetic field is reduced.

また、気孔率15%未満では結合剤含浸後、磁気特性と
しては優れていても、永久磁石としての機械的強度が不
十分である。一方気孔率が40%を越えると熱処理をし
ても優れた磁気特性が得られない。こうした気孔の表面
への貫通率の限定も60%未満では充分な機械的強度が
得られないことによる。
Further, if the porosity is less than 15%, even if the magnetic properties are excellent after impregnation with the binder, the mechanical strength as a permanent magnet is insufficient. On the other hand, if the porosity exceeds 40%, excellent magnetic properties cannot be obtained even after heat treatment. This limitation on the penetration rate of the pores to the surface is also due to the fact that if it is less than 60%, sufficient mechanical strength cannot be obtained.

また、本発明に使用する樹脂または低融点金属は、格別
限定されるものではなく、公知のものを使用することが
できる。
Further, the resin or low melting point metal used in the present invention is not particularly limited, and known resins can be used.

製造条件の限定理由は次のとおりである。The reasons for limiting the manufacturing conditions are as follows.

気孔形成剤において樹脂は磁石粉末との結合を、滑剤は
磁石粉末の成形中の動きを滑かにする。これらの気孔形
成剤は1mm%未満では充分な気孔がIJられず、10
重量%を越えると熱処理後に充分な磁気特性を得られな
い。このことは気孔率の限定にも関連しており、本発明
の籟囲内で適正な気孔率が得られる。
In the pore-forming agent, the resin bonds with the magnet powder, and the lubricant smoothes the movement of the magnet powder during molding. If these pore-forming agents are less than 1 mm%, sufficient pores will not be formed;
If it exceeds % by weight, sufficient magnetic properties cannot be obtained after heat treatment. This also relates to limiting the porosity, so that within the framework of the present invention an appropriate porosity can be obtained.

成形圧力を0.5L/cm2より小さくすると、成形体
の強度が十分でなくなり取り扱いがむずかしくなる。ま
た、成形圧力をlot/clI12より大きくすると、
金型の強度や成形サイクルの増大などに業生産上困難が
伴う。
If the molding pressure is lower than 0.5 L/cm2, the strength of the molded product will not be sufficient and handling will become difficult. Moreover, when the molding pressure is made larger than lot/clI12,
Difficulties arise in industrial production due to increased mold strength and molding cycles.

スケルトンを得るための成形体の熱処理温度は、350
℃より低い温度では、気孔形成剤を完全に飛散させるこ
とができず、かつ、十分大きな保磁力をi′、Iるのに
効果がなく、また、l050℃を越える温度では、成形
体の緻密化が急速に進行し、焼結磁石となってしまい、
樹脂あるいは低融点金属を含浸させることかできず、ボ
ンド磁石には適さなくなる。
The heat treatment temperature of the molded body to obtain the skeleton is 350
At temperatures lower than 1050°C, the pore-forming agent cannot be completely dispersed and is ineffective in generating a sufficiently large coercive force, and at temperatures exceeding 1050°C, the compactness of the compact is The process progresses rapidly and becomes a sintered magnet.
It cannot be impregnated with resin or low melting point metal, making it unsuitable for bonded magnets.

[実施例] 以ド、本発明を実施例によって説明する。[Example] The present invention will now be described by way of examples.

実施例1 33.5重量%Nd、  1.3重量%B、残部Feの
組成の合金をArガス中でアーク溶解し、ノルマルへ牛
サン中で粗・微粉砕を行い、平均粒径4.5μmとした
。これにアクリル系樹脂粉末5重量 96及びステアリ
ン酸粉末’ ff’ m96を混合したもの(A)と、
気孔形成剤を添加しないもの(B)と、15 KOeの
磁場中で磁場方向とは直角方向に8L/co+’の加圧
力で成形した。この成形体をA「雰囲気中(0、5kg
/ca+ 2の加圧下)で400℃まで5℃/hで昇温
し、ここで1時間保持した。
Example 1 An alloy having a composition of 33.5% by weight Nd, 1.3% by weight B, and the balance Fe was arc melted in Ar gas, coarsely and finely pulverized to normal in beef sun, and the average particle size was 4. It was set to 5 μm. This was mixed with acrylic resin powder 5 weight 96 and stearic acid powder 'ff' m96 (A),
A sample (B) containing no pore-forming agent was molded in a magnetic field of 15 KOe at a pressure of 8 L/co+' in a direction perpendicular to the direction of the magnetic field. This molded body was placed in an atmosphere of A (0.5 kg).
The temperature was raised to 400° C. at a rate of 5° C./h under a pressure of /ca+2 and held there for 1 hour.

続いて4 X 1O−4Torrの真空中で900℃−
2時間の熱処理を行った後炉冷した。この状態での真密
度より計算した気孔率は (A)−31%、(13) 
−1O%、表面に通じる気孔率はBET法より求めた結
果、(A)は気孔中の65%が、(B)は28%が表面
に通じていた。
Subsequently, it was heated at 900°C in a vacuum of 4 X 1O-4 Torr.
After heat treatment for 2 hours, the mixture was cooled in the furnace. The porosity calculated from the true density in this state is (A) -31%, (13)
-10%, and the porosity that communicated with the surface was determined by the BET method, and as a result, 65% of the pores in (A) and 28% of the pores in (B) communicated with the surface.

こうしてjvられたスケルトンに3倍に希釈したエポキ
シ液を真空中で含浸させ、80℃で1時間の硬化処理を
行い、磁気al11定を行った。結果は下記に示すとお
りであった。
The thus prepared skeleton was impregnated with an epoxy solution diluted three times in vacuum, hardened at 80° C. for 1 hour, and subjected to magnetic Al11 determination. The results were as shown below.

i!1′4の平行方向 11の垂直方向試   料  
   (A )    (13)    (A ’) 
   (B )B r  (k G)    10.2
  9.0 0.9   +、3iHc  (koe)
    8.5  7.8 9.2  9.5(131
1>□、   (MGOc)    24.1  17
J   O,20,7さらに本試料の機械的特性を調べ
た結果ド記のとおりであった。
i! 1'4 parallel direction 11 vertical direction samples
(A) (13) (A')
(B)Br (kG) 10.2
9.0 0.9 +, 3iHc (koe)
8.5 7.8 9.2 9.5 (131
1>□, (MGOc) 24.1 17
J O, 20, 7 Furthermore, the mechanical properties of this sample were investigated and the results were as described below.

=t 料   抗折力  アイゾツト衝撃1直(kgl
’/cIf12 )   (kgr−cm/cm2 )
(A)       520           5
.0(n)       80          0
.7このように、気孔形成剤を添加した材料は、無添加
のものに較べて明らかに磁気特性、機械特性に優れるこ
とが判る。
=t Material Transverse rupture force Izod impact 1st shift (kgl
'/cIf12) (kgr-cm/cm2)
(A) 520 5
.. 0(n) 80 0
.. 7 Thus, it can be seen that the material to which the pore-forming agent is added clearly has better magnetic and mechanical properties than the material to which no pore-forming agent is added.

実施例2 表1に示す組成の合金をアーク溶解し、m・微粉砕し、
平均粒径か4〜6μmになるように、>J? l−た。
Example 2 An alloy having the composition shown in Table 1 was arc melted, finely pulverized,
>J? so that the average particle size is 4 to 6 μm. l-ta.

気孔形成剤と12でアクリル系樹脂粉末4,5重計96
、ステアリン酸粉末2.5重量%をてれぞれの磁石粉末
と混合し、15k Oeの磁場中で5t/ea+’の圧
力で成形した。この成形体を100℃までlO℃/11
で加圧昇温(A r OJkg/ca+” )1、、.
1時間保持後、4 X 10’ Torrに真空曵きし
、800℃、4nyi間の熱処理を行い、スケルトンを
11Iた。これらのスケルトンの気孔率は38%、そn
T)中表に通じている気孔率は70〜80%であった。
Acrylic resin powder 4.5 weight total 96 with pore forming agent and 12
, 2.5% by weight of stearic acid powder was mixed with each magnet powder, and molded at a pressure of 5t/ea+' in a magnetic field of 15k Oe. This molded body was heated to 100°C at lO°C/11
Pressure and temperature increase (A r OJkg/ca+”) 1, .
After holding for 1 hour, the skeleton was vacuumed to 4 x 10' Torr and heat treated at 800°C for 4nyi to give a skeleton of 11I. The porosity of these skeletons is 38%, so
T) The porosity leading to the inner surface was 70 to 80%.

これを50B i −25P b −25S n合金(
融点約1()0℃)の溶湯中に0.5時間浸漬し、取り
出12て冷却固化した。その磁気特性、機械特性を人2
に示す。
This was converted into 50B i -25P b -25S n alloy (
It was immersed in a molten metal with a melting point of about 1 (0°C) for 0.5 hours, taken out, and cooled to solidify. The magnetic and mechanical properties of the
Shown below.

表1 表2 なお、機械特性i!r、 1.、、では引張り強さは5
00〜700kg!’/1oI11’であり、柔軟な結
合剤の低融点金属の機械特性に似る。
Table 1 Table 2 In addition, mechanical properties i! r, 1. , the tensile strength is 5
00~700kg! '/1oI11', similar to the mechanical properties of a low melting point metal of a flexible binder.

実施例3 29小Q %N d 、 4 txmOop Y % 
 1.5重瓜% B 。
Example 3 29 Small Q %N d , 4 txmOop Y %
1.5 heavy melon% B.

残部Feのi41成の合金をアーク溶解し、祖・微粉砕
して甲均粒径か65μmの粉末を作った。
An alloy of i41 composition with the balance being Fe was arc melted and finely pulverized to produce a powder with an average grain size of 65 μm.

これに気孔+19.成剤としてアクリル系樹脂粉末は3
 !11m 96で、ステアリン酸粉末を4重Q 06
と 8ifi Wl 96添加した試料(e) 、(d
)を15k Oeの磁場中でGt/cm’のぼ力で成形
した。この成i19体を0.3kgr/cm 2のAr
ガス加圧下で380℃まで7℃/hで昇温し、1時間保
F、’fシた。引続き真空度5 X IQ’ Torr
で950℃、3時間の熱処理後、3倍に希釈したエポキ
シ樹脂iI&を人気中な没後、80℃、30分のキユア
リングを行った。その諸特性を下記に示す。
This has +19 pores. Acrylic resin powder as a component is 3
! 11m 96, stearic acid powder 4 times Q 06
and 8ifi Wl 96 added sample (e), (d
) was molded in a magnetic field of 15 kOe with a force of Gt/cm'. The 19 adult bodies were treated with Ar at 0.3 kgr/cm2.
The temperature was raised to 380° C. at a rate of 7° C./h under gas pressure, and the temperature was kept at F for 1 hour. Continue vacuum level 5 X IQ' Torr
After heat treatment at 950°C for 3 hours, the 3-fold diluted epoxy resin iI was cured at 80°C for 30 minutes. Its characteristics are shown below.

試料 Dr(KG)  1lle(kOi:)  (1
1・II)、、。(MGOi、r、)(C)   9.
0  15.0     19.5(D)      
 13.5      11.3          
  10.2試穿、1 気孔率 貫通率  抗折力 (%)    (96)    (kgr/co”  
)(C)     32     70      4
80(D)     45     55      
110実施例4 25重量96Ndx5 屯Q 06 P r、 4重H
Ce、15重fa’、6B%8重km 9o CO1残
部Feのmi戊のアーク溶解ボタンを、スタンプミルで
粗粉砕し、さらにボールミルで種々の平均粒径になるよ
うに微粉砕した。気孔形成剤はアクリル系樹脂粉末4 
ffLm %li、ステアリン酸粉末3 LII m 
96をδ平均粒径の磁石粉末に添加混合(7,15k 
Oeの磁場中、4L/cm2の圧力で成形した。熱処理
は0.3に$’l’/cm’のAr加圧下で350℃ま
で5℃/hて昇温し、ここで2時間保持後、5 X 1
0’1°orrに真空曵きし、980℃に昇温後2時間
保持し、炉中ガス冷却した。このスケルトンをエポキシ
で含浸し、常温硬化後、各試料の保磁力をA11J定し
た。結果を第1図に示す。図中に白丸で示す特性は上述
の熱処理を行イ〕ない試料である。
Sample Dr(KG) 1lle(kOi:) (1
1.II),. (MGOi, r,) (C) 9.
0 15.0 19.5 (D)
13.5 11.3
10.2 test drilling, 1 Porosity Penetration rate Transverse rupture strength (%) (96) (kgr/co”
)(C) 32 70 4
80(D) 45 55
110 Example 4 25 weight 96Ndx5 ton Q 06 P r, 4-fold H
An arc-melted button containing Ce, 15 weight fa', 6B% 8 weight km 9o CO1 balance Fe was coarsely ground in a stamp mill, and further finely ground in a ball mill to have various average particle sizes. Pore forming agent is acrylic resin powder 4
ffLm %li, stearic acid powder 3 LII m
96 is added and mixed into magnet powder with δ average particle size (7,15k
Molding was carried out at a pressure of 4 L/cm2 in a magnetic field of Oe. The heat treatment was performed by raising the temperature to 350°C at a rate of 5°C/h under an Ar pressure of $'l'/cm' to 0.3°C, and after holding at this temperature for 2 hours, 5 × 1
The reactor was vacuum pumped to 0'1° orr, heated to 980°C, held for 2 hours, and cooled with gas in the furnace. This skeleton was impregnated with epoxy and after curing at room temperature, the coercive force of each sample was determined to be A11J. The results are shown in Figure 1. The characteristics indicated by white circles in the figure are samples that were not subjected to the above-mentioned heat treatment.

実施例5 34N d −2D y −1,5B −6Co−残部
Feよりなるアーク溶解したボタンインボッ1−を、実
施例4にみる製造方法でスケルトンを作った。
Example 5 A skeleton of an arc-melted button-in-bottom 1 consisting of 34N d -2D y -1,5B -6Co and the remainder being Fe was made by the manufacturing method shown in Example 4.

この場合、熱処理としては、350℃で気孔形成剤を溶
出させた後、350℃から1100℃まで、それぞれの
温度で4時間保持した。熱処理温度と保磁力の関係を第
2図に示す。これより磁場中成形した成形体を350℃
(気孔形成剤を完全除)属するlu度)以上で熱処理す
ることにより保磁力が増加j7、優れたボンド磁石とな
ることが判る。
In this case, the heat treatment involved elution of the pore-forming agent at 350°C, and then holding at each temperature from 350°C to 1100°C for 4 hours. Figure 2 shows the relationship between heat treatment temperature and coercive force. From this, the molded body was molded in a magnetic field at 350°C.
It can be seen that the coercive force is increased by heat treatment at a temperature higher than (completely removing the pore-forming agent) above the lu degree, resulting in an excellent bonded magnet.

一ノj、1050℃を越える熱処理温度でも保磁力は増
加するが、前述の如く緻密化が進行I7、ボンド磁石に
は適さなくなる。このことは、試料がリング状の場合特
に大切である。
Although the coercive force increases even if the heat treatment temperature exceeds 1050° C., as mentioned above, densification progresses and the magnet becomes unsuitable for use as a bonded magnet. This is especially important when the sample is ring-shaped.

すなわち、通常のR2Fe、、B化合物やR2(F e
  CO) 14B化合物は、その正方品において、a
軸とa軸の線膨張係数が著るしく異なるため、リング状
試料において士径方向に異方性配向した磁石粉末成形体
を焼結すると、ヒビ割れが発生して磁石体を形成しなく
なることが通常である。それに比較して、本発明スケル
トン磁石は、その気孔の存在することによりヒビ割れの
発生をまぬがれることかでき、通常の焼結体では製作困
難な放射状配向したリング状磁石を容易に製作できるこ
とも大きな特徴である。
That is, ordinary R2Fe, B compounds and R2(Fe
CO) 14B compound, in its square form, a
Because the linear expansion coefficients of the axis and a-axis are significantly different, when a ring-shaped sample is sintered with a magnet powder compact that is anisotropically oriented in the radial direction, cracks will occur and the magnet will no longer be formed. is normal. In comparison, the skeleton magnet of the present invention can avoid cracking due to the presence of pores, and it is also important that it can easily produce radially oriented ring-shaped magnets, which are difficult to produce with ordinary sintered bodies. It is a characteristic.

[発明の効果] 本発明によれば、従来不可能であったNd系異))性ボ
ンド磁石を得る熱処理と、ボンド磁石として機械的に優
れた磁石体をiする熱処理を兼Jl+でき、一方スゲル
トンとすることで焼結型できは極めて製作困難であった
放射状異方化磁石を容易に11j−ることができる。
[Effects of the Invention] According to the present invention, it is possible to perform both the heat treatment to obtain a Nd-based bonded magnet, which was previously impossible, and the heat treatment to produce a mechanically excellent magnetic body as a bonded magnet. By using Sgelton, it is possible to easily produce a radially anisotropic magnet, which is extremely difficult to manufacture using a sintered type.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例4における保磁力のApl定結定結水す
グラフ、第2図は実施例5における熱処理温度と保磁力
の関係を示すグラフである。
FIG. 1 is a graph of Apl fixation of coercive force in Example 4, and FIG. 2 is a graph showing the relationship between heat treatment temperature and coercive force in Example 5.

Claims (1)

【特許請求の範囲】 (1)20〜45重量%のR(Rは希土類元素の少くと
も1種) 0.1〜3.0重量%のB 52〜79.9重量%のFeまたはFe+Co(ただし
CoはFeの1/2以下) からなる主組成を有し、平均粒径1〜10μmよりなる
合金で、気孔率が15〜40%で、その気孔のうち60
〜100%が表面に通しているものの、該気孔中に樹脂
または低融点金属を含浸させてなることを特徴とする磁
機異方性ボンド磁石。 (2)20〜45重量%のR(Rは希土類元素の少くと
も1種) 0.1〜3.0重量%のB 52〜79.9重量%のFeまたはFe+Co(ただし
CoはFeの1/2以下) を主成分とする合金を、平均粒径1〜10μmとし、こ
れに気孔形成剤として樹脂、滑剤の合計で1〜10重量
%混合し、磁場中で0.5〜10t/cm^2の圧力で
成形し、この成形体を350〜1050℃の温度で熱処
理し、冷却後の熱処理体の気孔率が15〜40%であり
、その気孔のうち60〜100%が表面に通じるものと
し、その後、樹脂または低融点金属を含浸させることを
特徴とする磁気異方性ボンド磁石の製造方法。
[Claims] (1) 20 to 45% by weight of R (R is at least one rare earth element) 0.1 to 3.0% by weight of B 52 to 79.9% by weight of Fe or Fe+Co ( However, Co is an alloy with a main composition of 1/2 or less of Fe), an average grain size of 1 to 10 μm, a porosity of 15 to 40%, and 60% of the pores
A magnetic anisotropic bonded magnet characterized in that ~100% of the pores pass through the surface, and the pores are impregnated with a resin or a low melting point metal. (2) 20-45% by weight of R (R is at least one kind of rare earth element) 0.1-3.0% by weight of B 52-79.9% by weight of Fe or Fe+Co (however, Co is 1% of Fe) /2 or less) with an average particle size of 1 to 10 μm, mixed with a total of 1 to 10% by weight of a resin and a lubricant as a pore forming agent, and heated at 0.5 to 10 t/cm in a magnetic field. The molded body is molded at a pressure of ^2, and the molded body is heat-treated at a temperature of 350 to 1050°C. After cooling, the porosity of the heat-treated body is 15 to 40%, and 60 to 100% of the pores communicate with the surface. 1. A method for producing a magnetically anisotropic bonded magnet, which comprises: and then impregnating it with a resin or a low melting point metal.
JP62287361A 1987-11-16 1987-11-16 Magnetic anisotropic bonded magnet and manufacture thereof Pending JPH01129402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62287361A JPH01129402A (en) 1987-11-16 1987-11-16 Magnetic anisotropic bonded magnet and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62287361A JPH01129402A (en) 1987-11-16 1987-11-16 Magnetic anisotropic bonded magnet and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH01129402A true JPH01129402A (en) 1989-05-22

Family

ID=17716370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62287361A Pending JPH01129402A (en) 1987-11-16 1987-11-16 Magnetic anisotropic bonded magnet and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH01129402A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1150309A2 (en) * 2000-04-24 2001-10-31 Seiko Epson Corporation Magnetic powder and bonded magnet
EP1150308A2 (en) * 2000-04-24 2001-10-31 Seiko Epson Corporation Magnetic powder and bonded magnet

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62177150A (en) * 1986-01-29 1987-08-04 Daido Steel Co Ltd Permanent magnet material and its production

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62177150A (en) * 1986-01-29 1987-08-04 Daido Steel Co Ltd Permanent magnet material and its production

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1150309A2 (en) * 2000-04-24 2001-10-31 Seiko Epson Corporation Magnetic powder and bonded magnet
EP1150308A2 (en) * 2000-04-24 2001-10-31 Seiko Epson Corporation Magnetic powder and bonded magnet
EP1150309A3 (en) * 2000-04-24 2002-07-24 Seiko Epson Corporation Magnetic powder and bonded magnet
EP1150308A3 (en) * 2000-04-24 2002-07-24 Seiko Epson Corporation Magnetic powder and bonded magnet
US6648989B2 (en) 2000-04-24 2003-11-18 Seiko Epson Corporation Magnetic powder and bonded magnet
US6660178B2 (en) 2000-04-24 2003-12-09 Seiko Epson Corporation Magnetic powder and bonded magnet
CN100380536C (en) * 2000-04-24 2008-04-09 精工爱普生株式会社 Magnetic powder and bound magnet

Similar Documents

Publication Publication Date Title
US5338371A (en) Rare earth permanent magnet powder, method for producing same and bonded magnet
US5282904A (en) Permanent magnet having improved corrosion resistance and method for producing the same
US5443617A (en) Powdery raw material composition for a permanent magnet
JP3129593B2 (en) Manufacturing method of rare earth, iron and boron sintered magnets or bonded magnets
EP0249973B1 (en) Permanent magnetic material and method for producing the same
JP2002038245A (en) Rare earth alloy powder for rermanent magnet and method for manufacturing rare earth permanent magnet
JPH0685369B2 (en) Permanent magnet manufacturing method
JPH01129402A (en) Magnetic anisotropic bonded magnet and manufacture thereof
JPS60228652A (en) Magnet containing rare earth element and its manufacture
JPS62177158A (en) Permanent magnet material and its production
JP4862269B2 (en) Rare earth-transition metal-nitrogen based magnet powder, method for producing the same, composition for bonded magnet using the same, and bonded magnet
JPH04338605A (en) Manufacture of metallic bonded magnet and metallic bonded magnet
JP3770734B2 (en) Method for producing Sm-Fe-N alloy powder
JPS62177150A (en) Permanent magnet material and its production
JPH06279915A (en) Rare earth magnet material and rare earth bonded magnet
JPS62181402A (en) R-b-fe sintered magnet and manufacture thereof
JPH0494502A (en) High magnetic permeability material, its manufacturing method, and method for manufacturing high magnetic permeability alloy powder
JPS5830107A (en) Manufacture of permanent magnet
JPH07130517A (en) Raw material powder for anisotropic bonded magnet and its manufacture
JPS59154004A (en) Manufacture of permanent magnet
JPH02155203A (en) Manufacture of polymer composite type rare earth magnet
JPH10125517A (en) Manufacture of raw material powder for permanent magnet
JPH07302725A (en) Manufacture of r-fe-m-n based bond magnet
JPH09330842A (en) Manufacture of anisotropic bond magnet
JP2006060049A (en) Rare earth-iron-manganese-nitrogen based magnet powder and its production method