JPH01128574A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH01128574A
JPH01128574A JP62285438A JP28543887A JPH01128574A JP H01128574 A JPH01128574 A JP H01128574A JP 62285438 A JP62285438 A JP 62285438A JP 28543887 A JP28543887 A JP 28543887A JP H01128574 A JPH01128574 A JP H01128574A
Authority
JP
Japan
Prior art keywords
resist
single crystal
insulating layer
forming
soi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62285438A
Other languages
Japanese (ja)
Inventor
Seiichiro Kawamura
河村 誠一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP62285438A priority Critical patent/JPH01128574A/en
Publication of JPH01128574A publication Critical patent/JPH01128574A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Abstract

PURPOSE:To manufacture an SOI/MOSFET, in which integrated stray capacitance is decreased, by forming an insulating layer by laser recrystallizing SOI technology and O<+> ion implantation, and forming seeds in the device. CONSTITUTION:Resist 3 is applied on an insulating layer 1. Then the resist 3 is patterned. With said resist 3 as a mask, windows 4 for seed parts A and B are provided by dry etching such as RIE. A part of a substrate is exposed. Single crystal parts are grown through the seed parts A and B with CW argon laser. A polycrystalline silicon layer 5 is recrystallized, and single crystal part is obtained. Then, O<+> ions are selectively implanted(I.I.) into upper parts C and D on the seed parts A at 400keV and 1.5X100<18>/cm<2>. Thereafter, heat treatment is performed at a temperature of 1,250 deg.C for two hours in N2. Insulating layers 8 and 9 are continuously formed. Thus SOI(Silicon On Insulating Substrate) single crystal structure is obtained. Thereafter an insulating layer 10 is formed. Elements are isolated. Then the device is formed through the steps of an ordinary SOI/MOSFET (S.D.G is formed). A numeral 10 indicates a gate electrode.

Description

【発明の詳細な説明】 〔概 要] 本発明は半導体装置の製造方法に係り、特にレーザ再結
晶SOI技術と、0°イオン注入技術でシート部分を選
択的にSol化する技術(SIMOX技術)とを用いた
SOI/MOSFETの製造方法に関し、本発明はレー
ザ再結晶SOI技術を用いても集積度が低下しないMO
SFETを製造することを目的とし、 下記(イ)−(、l工程: (イ)  単結晶シリコン基板上に絶縁層を形成する工
程、 (o)  該デバイス形成領域内でしかもチャネル領域
以外の領域にある該絶縁層部にレジストを用いて単結晶
成長用の窓開けを行なう工程、(IN  該レジストを
残存、させた状態で多結晶シリコン層を全露出面に形成
する工程、 (勾 リフトオフ技術により前記残存レジスト及び該レ
ジスト上の多結晶シリコン層を除去した後全面に第2の
多結晶シリコン層を形成する工程、休) レーザアニー
ル処理により前記第1の多結晶シリコン層全体を単結晶
化する工程、(→ 前記シート部に選択的に0゛イオン
を注入し、アニール処理を行なう工程、 を含むことを構成とする。
[Detailed Description of the Invention] [Summary] The present invention relates to a method for manufacturing a semiconductor device, and particularly relates to a method for manufacturing a semiconductor device, and in particular a method for selectively turning a sheet portion into Sol using a laser recrystallization SOI technology and a 0° ion implantation technology (SIMOX technology). The present invention relates to a method for manufacturing an SOI/MOSFET using
For the purpose of manufacturing an SFET, the following steps (a)-(,l) are performed: (a) a step of forming an insulating layer on a single crystal silicon substrate; (o) a region within the device formation region and other than the channel region; A process of opening a window for single crystal growth using a resist in the insulating layer part (IN) A process of forming a polycrystalline silicon layer on the entire exposed surface with the resist remaining (IN) A process of forming a polycrystalline silicon layer on the entire exposed surface with the resist remaining (IN) Step of forming a second polycrystalline silicon layer on the entire surface after removing the remaining resist and the polycrystalline silicon layer on the resist by laser annealing. (→ a step of selectively implanting 0° ions into the sheet portion and performing an annealing treatment.

C産業上の利用分野〕 本発明は半導体装置の製造方法に係り、特にレーザ再結
晶SOI技術と、0°イオン注入技術でシート部分を選
択的にsor化する技術(SIMOX技術)とを用いた
SOI/MO3FETの製造方法に関する。
C. Industrial Application Field] The present invention relates to a method for manufacturing a semiconductor device, and in particular, a method using a laser recrystallization SOI technology and a technology for selectively converting a sheet portion into sor using a 0° ion implantation technology (SIMOX technology). The present invention relates to a method for manufacturing SOI/MO3FET.

[従来の技術] SOI (Silicon On Insulatin
g 5ubstrate)構造はバルク結晶内に酸素や
窒素をイオン注入し内部に絶縁層を形成し、絶縁層を介
して単結晶層が分離された構造をとるものである。
[Conventional technology] SOI (Silicon On Insulatin)
The structure (g5ubstrate) has a structure in which oxygen or nitrogen ions are implanted into a bulk crystal to form an insulating layer therein, and a single crystal layer is separated via the insulating layer.

従来種結晶(シート)を有するシリコン基板上に多結晶
シリコンをCVD法等で堆積した後、レーザアニールに
よって多結晶シリコンを種結晶の持つ結晶方位と同一方
位の単結晶に再結晶させるいわゆるレーザ再結晶Sol
技術を用いてMOS )ランジスタ等のデバイスを製造
する方法が知られている。
Conventionally, polycrystalline silicon is deposited on a silicon substrate having a seed crystal (sheet) by a CVD method, and then the polycrystalline silicon is recrystallized into a single crystal with the same crystal orientation as that of the seed crystal by laser annealing. Crystal Sol
Methods of manufacturing devices such as MOS (MOS) transistors using technology are known.

C発明が解決しようとする問題点〕 従来のレーザ再結晶Sol技術を用いてデバイスを製造
するにはシート部分をソース、ドレイン領域等のデバイ
ス形成領域以外に形成する必要があり、シート部分同志
の距離が数十μm程度にもなりデバイスの集積度を低下
させ、しかもシート部分からの単結晶成長が10〜20
μm程度で停止して、絶縁層上の全多結晶シリコンを均
一に再結晶化することが出来なかった。
C Problems to be Solved by the Invention] In order to manufacture devices using the conventional laser recrystallization Sol technology, it is necessary to form sheet portions in areas other than device formation regions such as source and drain regions, and The distance is on the order of tens of micrometers, reducing the degree of device integration, and single crystal growth from the sheet portion is 10 to 20 μm.
It stopped at about μm, and it was not possible to uniformly recrystallize all the polycrystalline silicon on the insulating layer.

また集積度を低下させないようにシート部分をデバイス
領域内に形成するとシート部分が凹部となり段差を形成
し、しかもSol構造にならないので容量的にSOIの
利点を生かせない問題があった。
Furthermore, if the sheet portion is formed within the device region so as not to reduce the degree of integration, the sheet portion becomes a recess, forming a step, and furthermore, the Sol structure is not formed, so there is a problem in that the advantages of SOI cannot be utilized in terms of capacitance.

本発明はレーザ再結晶Sol技術を用いても集積度が低
下しない?1O5FETを製造することを目的とする。
Does the present invention not reduce the degree of integration even if laser recrystallization Sol technology is used? The purpose is to manufacture 1O5FET.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点は本発明によれば、 (イ) 単結晶シリコン基板上に絶縁層を形成する工程
、 (0)該デバイス形成領域内でしかもチャネル領域以外
の領域にある該絶縁層部にレジストを用いて単結晶成長
用の窓開けを行なう工程、&9 該レジストを残存させ
た状態で第1の多結晶シリコン層を全露出面に形成する
工程、に) リフトオフ技術により前記残存レジスト及
び該レジスト上の多結晶シリコン層を除去した後、全面
に第2の多結晶シリコン層を形成する工程、体) レー
ザアニール処理により前記第1の多結晶シリコン層全体
を単結晶化する工程、(→ 前記シート部に選択的に0
″″イオンを注入し、アニール処理を行なう工程、 を含む半導体製造方法によって解決される。
According to the present invention, the above-mentioned problems can be solved by: (a) forming an insulating layer on a single crystal silicon substrate; (0) applying a resist to the insulating layer in the device formation region and in a region other than the channel region; (9) forming a first polycrystalline silicon layer on the entire exposed surface with the resist remaining; a step of forming a second polycrystalline silicon layer on the entire surface after removing the polycrystalline silicon layer; a step of converting the entire first polycrystalline silicon layer into a single crystal by laser annealing; selectively 0
The problem is solved by a semiconductor manufacturing method including the steps of implanting ions and performing an annealing process.

〔作 用〕[For production]

本発明によれば従来のレーザ再結晶SOI技術と0゛イ
オン注入による絶縁層の形成(SIMOX技術)により
シートをデバイス内に形成して集積化された浮遊容量を
低減した5ロ)7MO5FETの製造を可能にする。
According to the present invention, a 7 MO5FET is manufactured using conventional laser recrystallization SOI technology and the formation of an insulating layer by ion implantation (SIMOX technology) to form a sheet in the device to reduce the integrated stray capacitance. enable.

〔実施例〕〔Example〕

以下本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.

第1図から第6A図は本発明の製造工程を説明するため
の断面図であり、そのうち第3B図は第3A図の模式平
面図であり、第6B図は第6A図の模式平面図である。
1 to 6A are cross-sectional views for explaining the manufacturing process of the present invention, of which FIG. 3B is a schematic plan view of FIG. 3A, and FIG. 6B is a schematic plan view of FIG. 6A. be.

第1図に示すようにS i (100)基板1上に約4
000人の厚さの5iロ)からなる絶縁層2をCVD(
化学的気相成長)法により成長させた後、該絶縁Ml上
にレジスト3を塗布後バターニングし該レジスト3をマ
スクとしてRIB等のドライエツチングによりシート部
A、Bの窓4を開けを行ないSi基板を一部露出する。
As shown in FIG.
The insulating layer 2 consisting of 5.000 mm thick (5i) is deposited by CVD (
After growth by chemical vapor deposition), a resist 3 is coated on the insulating Ml and then buttered, and windows 4 in the sheet parts A and B are opened by dry etching such as RIB using the resist 3 as a mask. Part of the Si substrate is exposed.

シート部A、BはSi基板の一部でありしかもソース・
ドレイン等のデバイス形成領域内(但しチャネル部を除
く)に形成される。このシート部は2ケ所のみならず多
数形成可能である。
Seat parts A and B are part of the Si substrate and are not the source.
It is formed in a device formation region such as a drain (excluding the channel part). This sheet portion can be formed not only in two locations but also in a large number of locations.

次に第2図に示すようにレジスト3を残存させた状態で
多結晶シリコンを蒸着により絶縁層と同じ厚さの約40
00人に堆積する。
Next, as shown in FIG. 2, with the resist 3 remaining, polycrystalline silicon is deposited to the same thickness as the insulating layer.
Deposited in 00 people.

次に第3A図に示すように第2図に示したレジスト3と
その上の多結晶シリコン層5を除去するといわゆるリフ
トオフによりレジストを除去し平坦化を行なった後、全
面に多結晶シリコンを約4000人の厚さに蒸着する。
Next, as shown in FIG. 3A, after removing the resist 3 shown in FIG. 2 and the polycrystalline silicon layer 5 thereon, the resist is removed and planarized by so-called lift-off, and then polycrystalline silicon is applied to the entire surface. Deposited to a thickness of 4,000 people.

第3B図には第3A図におけるデバイスのソース(S)
、ドレイン(D)。
Figure 3B shows the source (S) of the device in Figure 3A.
, Drain (D).

ゲート(G)の各位置とシート部の位置関係を示す。The positional relationship between each position of the gate (G) and the seat portion is shown.

本実施例ではシート部A、Bがそれぞれ第3B図のS、
D部に対応している。シート部は次に第4図に示すよう
にCW−アルゴンレーザによりシート部A、Bから単結
晶を成長させ第3A図の多結晶シリコン層5を再結晶化
し単結晶化する。
In this embodiment, the seat portions A and B are S and S in FIG. 3B, respectively.
It corresponds to part D. Next, as shown in FIG. 4, a single crystal is grown from the sheet portions A and B using a CW-argon laser, and the polycrystalline silicon layer 5 shown in FIG. 3A is recrystallized to become a single crystal.

次に0+のイオン注入(1,1,)を400KeV。Next, 0+ ion implantation (1, 1,) was performed at 400 KeV.

1.5X10”7cmで選択的ニシート部上方C,Dに
注入し、その後、1250℃の温度、2時間N2熱処理
を施こし絶縁層8.9を第5図に示すように連続的に形
成しSol (5ilicon On Insulat
ingSubstrate )単結晶化の構造を得る。
A layer of 1.5 x 10"7 cm was injected into the upper portions C and D of the selective sheets, and then subjected to N2 heat treatment at a temperature of 1250° C. for 2 hours to form an insulating layer 8.9 continuously as shown in FIG. Sol (5ilicon On Insulat
ingSubstrate) Obtain a single crystal structure.

その後絶縁層IOを形成し素子分離を行ない、通常のS
OI/MOSFETの工程(S、D、Gの形成)を経て
第6A図に示すデバイスが形成される。10はゲート電
極である。
After that, an insulating layer IO is formed to perform element isolation, and a normal S
The device shown in FIG. 6A is formed through the OI/MOSFET process (formation of S, D, and G). 10 is a gate electrode.

o”−1,[、でSiO□からなる絶縁層8.9を形成
した場合その層厚は約3000人と他のSiO□からな
る絶縁層2の領域に比較し若干薄くなるがデバイス特性
上問題はない。第6B図は第6A図におけるデバイスの
ソース(S)、ドレイン(D)、ゲート(G)の各位置
とシート部の位置関係を示す。
o"-1, [, when the insulating layer 8.9 made of SiO There is no problem. FIG. 6B shows the positional relationship between the source (S), drain (D), and gate (G) of the device in FIG. 6A and the seat portion.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によればシート部が複数個デ
バイス内に形成できるのでシート部を介して多結晶シリ
コン層が容易に単結晶化し、且つリフトオフ技術を使用
しているのでシート部の凹凸もなく、その後0”−1,
1,でシート部をSol化しているので浮遊容量も低減
化できる。再にシート部をデバイス内に形成できるので
集積度の低下も防ぐことができる。
As explained above, according to the present invention, a plurality of sheet portions can be formed in a device, so that the polycrystalline silicon layer can be easily made into a single crystal through the sheet portions, and since a lift-off technique is used, the unevenness of the sheet portion can be easily formed. None, then 0”-1,
1, since the sheet portion is made into Sol, stray capacitance can also be reduced. Since the sheet portion can be formed within the device again, a decrease in the degree of integration can also be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図から第6A図は本発明の製造工程を説明するため
の断面図であり、そのうち第3B図は第3A図の模式平
面図であり、第6B図は第6A図の模式平面図である。 1・・・5i(100)基板、   2・・・絶縁層、
3・・・レジスト、      4・・・窓、5.6・
・・多結晶シリコン層、 7・・・単結晶シリコン層、 8.9・・・絶縁層、1
0・・・ゲート電極。 第1図 第2図 第3Al122! 第38図 1・・・5i(Zoo)基板 2・・絶縁層 3・ レノスト
1 to 6A are cross-sectional views for explaining the manufacturing process of the present invention, of which FIG. 3B is a schematic plan view of FIG. 3A, and FIG. 6B is a schematic plan view of FIG. 6A. be. 1... 5i (100) substrate, 2... Insulating layer,
3...Resist, 4...Window, 5.6.
... Polycrystalline silicon layer, 7... Single crystal silicon layer, 8.9... Insulating layer, 1
0...Gate electrode. Figure 1 Figure 2 Figure 3 Al122! Figure 38 1...5i (Zoo) Substrate 2... Insulating layer 3 Renost

Claims (1)

【特許請求の範囲】 1、下記工程(イ)−(ヘ): (イ)単結晶シリコン基板(1)上に絶縁層を形成する
工程、 (ロ)該デバイス形成領域内でしかもチャネル領域以外
の領域にある該絶縁層(2)にレジスト(3)を用いて
単結晶成長用の窓(4)開けを行なう工程、(ハ)該レ
ジスト(3)を残存させた状態で第1の多結晶シリコン
層(5)を全露出面に形成する工程、(ニ)リフトオフ
技術により前記残存レジスト(3)及び該レジスト上の
多結晶シリコン層を除去した後全面に第2の多結晶シリ
コン層(6)を形成する工程、 (ホ)レーザアニール処理により前記第1の多結晶シリ
コン層全体を単結晶化する工程、 (ヘ)前記シート部に選択的にO^+イオンを注入し、
アニール処理を行なう工程、 を含む半導体装置の製造方法。
[Claims] 1. The following steps (a) to (f): (a) forming an insulating layer on the single crystal silicon substrate (1); (b) forming an insulating layer within the device formation region and other than the channel region; (c) opening a window (4) for single crystal growth in the insulating layer (2) in the region using a resist (3); (c) opening a window (4) for single crystal growth with the resist (3) remaining; Step (d) of forming a crystalline silicon layer (5) on the entire exposed surface, (d) removing the remaining resist (3) and the polycrystalline silicon layer on the resist by a lift-off technique, and then forming a second polycrystalline silicon layer (2) on the entire surface; (e) forming the entire first polycrystalline silicon layer into a single crystal by laser annealing; (f) selectively implanting O^+ ions into the sheet portion;
A method for manufacturing a semiconductor device, including the step of performing an annealing treatment.
JP62285438A 1987-11-13 1987-11-13 Manufacture of semiconductor device Pending JPH01128574A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62285438A JPH01128574A (en) 1987-11-13 1987-11-13 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62285438A JPH01128574A (en) 1987-11-13 1987-11-13 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH01128574A true JPH01128574A (en) 1989-05-22

Family

ID=17691524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62285438A Pending JPH01128574A (en) 1987-11-13 1987-11-13 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH01128574A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6074928A (en) * 1997-02-12 2000-06-13 Nec Corporation Method of fabricating SOI substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6074928A (en) * 1997-02-12 2000-06-13 Nec Corporation Method of fabricating SOI substrate

Similar Documents

Publication Publication Date Title
JP3019885B2 (en) Method for manufacturing field effect thin film transistor
JP2804539B2 (en) Semiconductor device and manufacturing method thereof
JPS61145868A (en) Manufacture of semiconductor device
US5122473A (en) Process for forming a field isolation structure and gate structures in integrated misfet devices
JPH01128574A (en) Manufacture of semiconductor device
JPS5885520A (en) Manufacture of semiconductor device
JPH01220858A (en) Manufacture of semiconductor device
JPS62160769A (en) Thin film transistor element
JPS61187274A (en) Manufacture of thin-film transistor
JPS62202559A (en) Semiconductor device and its manufacture
JPS6247151A (en) Formation of mutual connection on substrate
JPH0794721A (en) Semiconductor device and manufacture thereof
JPH01128570A (en) Manufacture of semiconductor device
JPH06132292A (en) Semiconductor device and manufacture thereof
JPH0548108A (en) Semiconductor device and its manufacture
JP2002033485A (en) Tft liquid crystal display device and its manufacturing method
JPS59182570A (en) Semiconductor device
JPS62104078A (en) Manufacture of semiconductor integrated circuit device
JPH0290569A (en) Manufacture of semiconductor device
JPH0567634A (en) Manufacture of mis type semiconductor device
JPS59186343A (en) Manufacture of semiconductor device
JPH0260131A (en) Manufacture of field-effect semiconductor device
JPH06163681A (en) Semiconductor device and manufacture thereof
JPH05102033A (en) Manufacture of semiconductor device
JPH06275839A (en) Manufacture of vertical semiconductor element

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20050413

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20050419

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050816