JPH0112852B2 - - Google Patents

Info

Publication number
JPH0112852B2
JPH0112852B2 JP60278384A JP27838485A JPH0112852B2 JP H0112852 B2 JPH0112852 B2 JP H0112852B2 JP 60278384 A JP60278384 A JP 60278384A JP 27838485 A JP27838485 A JP 27838485A JP H0112852 B2 JPH0112852 B2 JP H0112852B2
Authority
JP
Japan
Prior art keywords
heating
hydrogen chloride
fibers
temperature
activated carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60278384A
Other languages
Japanese (ja)
Other versions
JPS62141126A (en
Inventor
Akio Shindo
Yoshihiro Sawada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP60278384A priority Critical patent/JPS62141126A/en
Publication of JPS62141126A publication Critical patent/JPS62141126A/en
Publication of JPH0112852B2 publication Critical patent/JPH0112852B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Inorganic Fibers (AREA)

Description

【発明の詳細な説明】 本発明は、セルロース系繊維から高度の吸着能
と可焼性のある繊維状活性炭、すなわち活性炭素
繊維を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing fibrous activated carbon, ie, activated carbon fiber, having a high adsorption capacity and sinterability from cellulosic fibers.

活性炭素繊維は、粒状活性炭に比較して外表面
積が大きく、気体あるいは液体中で使用するさい
の被吸着物質の吸着、脱着速度が大きい利点があ
り、またフエルト、不織布、織物等繊維集積物が
円筒、波形その他の形状を保持することができる
等、粉状、粒状活性炭とは明らかに異なる、取扱
い上の利点をそなえており、気体の脱臭、液体の
脱色あるいは触媒担体等への応用が期待される。
Activated carbon fibers have a larger outer surface area than granular activated carbon, and have the advantage of high adsorption and desorption rates for adsorbed substances when used in gas or liquid. It has advantages in handling that are clearly different from powdered and granular activated carbon, such as being able to maintain cylindrical, corrugated, and other shapes, and is expected to be used for deodorizing gases, decolorizing liquids, and as catalyst carriers, etc. be done.

従来、セルロース系繊維を原料とする活性炭素
繊維の製造法としては、セルロース系繊維を不活
性ガス中で極めて遅い昇温速度で加熱して炭化し
た後賦活する方法、あるいは原料繊維にリン化合
物、アムモニウム塩類、金属ハロゲン化物等を水
溶液を用いて担持させてから加熱して炭化し、そ
の後賦活する方法等が知られている。しかし、昇
温速度を遅くして炭化する方法は極めて長時間を
要し、得られる活性炭素繊維の吸着能、機械的性
能ともに満足なものとはなつていない。また、リ
ン化合物、アムモニア塩類、金属ハロゲン化物等
を担持させて、炭化させる工程を含む方法は、炭
化のための加熱処理に先立つ、原料繊維の薬剤処
理工程が、薬剤溶液含浸、乾燥等の操作を必要と
し、経済的に不利であるばかりでなく、乾燥に先
立つ圧搾操作によつて原料繊維が圧着され、炭化
過程で部分的に膠着して、機械的性能を損いがち
になる。また、上記薬剤処理工程を組入れた製法
では、無機不純物を全く含有しない活性炭素繊維
の製造は困難であり、食品工業等への利用上必し
も十分に満足なものとはなつていない。
Conventionally, methods for producing activated carbon fibers using cellulose fibers as raw materials include heating cellulose fibers in an inert gas at an extremely slow heating rate to carbonize and then activating the fibers, or adding phosphorus compounds to the raw material fibers. A method is known in which ammonium salts, metal halides, and the like are supported using an aqueous solution, then heated to carbonize, and then activated. However, the method of carbonization by slowing down the heating rate requires an extremely long time, and the adsorption capacity and mechanical performance of the resulting activated carbon fibers are unsatisfactory. In addition, in a method that includes a process of supporting phosphorus compounds, ammonia salts, metal halides, etc. and carbonizing them, the process of treating the raw material fiber with chemicals prior to the heat treatment for carbonization includes operations such as impregnation with a chemical solution and drying. Not only is this economically disadvantageous, but the raw material fibers are compressed by the compression operation prior to drying, and they tend to stick together partially during the carbonization process, impairing mechanical performance. Furthermore, with the manufacturing method incorporating the above-mentioned chemical treatment step, it is difficult to manufacture activated carbon fibers that do not contain any inorganic impurities, and the results are not necessarily fully satisfactory for use in the food industry.

さらに、セルロース系材料を原料とする活性炭
の製造法として、酸あるいは酸の無水物のガスあ
るいは蒸気を含む雰囲気中で炭化処理を施した後
賦活する方法(特公昭47−7687)が提案されてい
る。この方法は、上記薬剤担持法にみられるよう
な短所は有していないが、酸あるいは酸無水物と
して塩酸、亜硫酸ガス、臭素酸、ギ酸、その他多
くの種類を提案している。また、目的とする活性
炭の形状は粉体等不定形のものであつて、本発明
が意図している繊維状活性炭の繊維としての性
能、すなわち繊維集積物の形状保持性、高吸脱着
速度等に関しては何ら示唆するところがない。そ
こで、本発明者らは、セルロース系繊維から、工
業的に十分に有用な、かさ密度の低い、繊維集積
物の形状を保持するに足る可焼性あるいは柔軟性
をそなえた活性炭素繊維の製造が可能かどうかを
確かめるために種々検討を行つた。
Furthermore, as a method for producing activated carbon using cellulosic materials as raw materials, a method has been proposed in which carbonization is performed in an atmosphere containing acid or acid anhydride gas or steam, followed by activation (Japanese Patent Publication No. 47-7687). There is. Although this method does not have the disadvantages seen in the above-mentioned drug loading methods, it proposes hydrochloric acid, sulfur dioxide gas, bromic acid, formic acid, and many other types of acids or acid anhydrides. In addition, the target activated carbon is in an amorphous form such as powder, and the performance of the fibrous activated carbon as a fiber intended by the present invention, such as shape retention of fiber aggregates, high adsorption/desorption rate, etc. There is nothing to suggest about it. Therefore, the present inventors have attempted to produce activated carbon fibers from cellulose fibers that are industrially useful, have a low bulk density, and have sufficient burnability or flexibility to maintain the shape of the fiber aggregate. We conducted various studies to confirm whether this is possible.

まず各種の酸の、炭化収率への作用効果を比較
検討し、その結果セルロース繊維から活性炭素繊
維を製造するさいの炭化工程において、炭化触媒
として使用する酸のガスとしては、塩化水素が最
もすぐれていることを確認した。そこで次に、塩
化水素ガスを用いて炭化処理を施すさいの条件
と、水蒸気および炭酸ガスを用いて賦活する条
件、およびそれらの組合せ、さらにそれに伴う生
成活性炭素繊維の性能を、より詳細に検討した。
その結果、塩化水素ガスを3容量%以上含有する
雰囲気中で、150〜250℃の温度から270〜500℃の
温度までの領域で加熱する工程と、水蒸気あるい
は炭素ガスを5容量%以上含む雰囲気中で600〜
1000℃の間で加熱する賦活工程を含む処理を、構
成単繊維が互いにからみ合うことのできる長さを
そなえたセルロース系繊維に施すことによつて、
400〜2000m2/gの比表面積が示す高吸着性能と高
い繊維集積物形状保持性、可焼性をそなえ、無機
不純物を実質的に含有していない、あるいは極度
に少ない活性炭素繊維を短時間で製造し得ること
を見出した。なお、上記比表面積は、窒素ガス等
温吸着量からBET法を用いて得たものである。
また、本発明方法においては、可焼性は、繊維集
積物あるいは集積体の形状保持性をも意味するも
のとする。また、ここで形状保持性とは、繊維集
積物が、板状、円筒、波形その他付与された形状
を比較的良好に保持する性質を意味する。なおこ
の場合、所定の形状を付与するために金属その他
の骨組あるいはわくを利用することも許される。
検討の結果、このような形状保持性をそなえた活
性炭素繊維の繊維集積物は、構成単繊維の長さが
平均10mm前後以上のセルロース系繊維からのみ製
造され得ることを認めた。
First, we compared the effects of various acids on carbonization yield, and found that hydrogen chloride was the most effective acid gas used as a carbonization catalyst in the carbonization process to produce activated carbon fibers from cellulose fibers. I confirmed that it was excellent. Next, we will examine in more detail the conditions for carbonization using hydrogen chloride gas, the conditions for activation using steam and carbon dioxide, their combinations, and the performance of the resulting activated carbon fibers. did.
As a result, a process of heating in a temperature range from 150 to 250°C to a temperature of 270 to 500°C in an atmosphere containing 3% by volume or more of hydrogen chloride gas, and an atmosphere containing 5% by volume or more of water vapor or carbon gas. 600~ inside
By subjecting cellulose fibers that have a length that allows the constituent single fibers to intertwine with each other, a treatment including an activation step of heating at 1000 degrees Celsius,
It has high adsorption performance indicated by a specific surface area of 400 to 2000 m 2 /g, high fiber aggregate shape retention, and flammability, and can be used to absorb activated carbon fibers that contain virtually no or extremely little inorganic impurities for a short period of time. It was discovered that it can be manufactured using Note that the above specific surface area was obtained from the isothermal adsorption amount of nitrogen gas using the BET method.
Furthermore, in the method of the present invention, sinterability also means the shape retention of the fiber aggregate or aggregate. In addition, the term "shape retention" used herein refers to the property of the fiber aggregate to relatively well retain the shape it has been given, such as a plate, cylinder, wave, or the like. In this case, it is also permissible to use a framework or frame made of metal or other materials in order to provide a predetermined shape.
As a result of the study, it was found that a fiber aggregate of activated carbon fibers with such shape retention properties could be produced only from cellulose fibers in which the average length of the constituent single fibers was around 10 mm or more.

以上述べたところから明らかなように、本発明
は不純物を実質的に含有していないか、極度に少
ない活性炭であつて、吸脱着の速い、高吸着性能
の、しかも繊維集積物形状保持性、可焼性の高い
活性炭を、高収率で、短時間に製造する方法を提
出するものである。
As is clear from the above, the present invention is an activated carbon that does not substantially contain impurities or has an extremely small amount of impurities, has fast adsorption and desorption, has high adsorption performance, and has good ability to retain the shape of fiber aggregates. The present invention proposes a method for producing highly combustible activated carbon in high yield and in a short time.

本発明方法においては、繊維集積物の形状保持
性をそなえた活性炭素繊維の製造を可能にするた
めに、単繊維の長さが平均して約10mm以上のセル
ロース系繊維を原料繊維として使用する必要があ
る。したがつて、それらは麻、ラミー等の靭皮繊
維と綿等の天然セルロース繊維とビスコースレー
ヨン、ポリノジツク、銅アムモニア法レーヨン等
の再生セルロース繊維を含んでいる。ビスコース
レーヨンは、ここではセルローズアセテートをも
含んでいる。その形状、形態は糸状、綿状、フエ
ルト状、トウ状、紙状、網状、織布状等であり、
またこれら以外の形状の繊維集積物であることが
できる。上記長さの繊維は単繊維相互のからみあ
いを可能にし、低かさ密度化を可能にし、原料繊
維集積物全体における各部繊維への炭化用ガス、
あるいは賦活ガスの接触を容易にし、製造時間の
短縮と品質の均一性の実現を可能にするものであ
る。なお、上記平均長さは同一繊維試料から少く
とも30本無作為に抽出した単繊維の長さの平均を
意味する。
In the method of the present invention, cellulose fibers having an average single fiber length of approximately 10 mm or more are used as raw material fibers in order to enable the production of activated carbon fibers with shape retention properties of fiber aggregates. There is a need. Accordingly, they include bast fibers such as hemp, ramie, natural cellulose fibers such as cotton, and regenerated cellulose fibers such as viscose rayon, polynosik, cuprammonium rayon, etc. Viscose rayon here also contains cellulose acetate. Its shape and form are thread-like, cotton-like, felt-like, tow-like, paper-like, net-like, woven cloth-like, etc.
Further, fiber aggregates having shapes other than these may be used. Fibers of the above-mentioned length enable intertwining of single fibers and lower bulk density.
Alternatively, it facilitates contact with the activating gas, thereby making it possible to shorten manufacturing time and achieve uniform quality. Note that the above average length means the average length of at least 30 single fibers randomly extracted from the same fiber sample.

本発明方法は、セルロース系繊維を炭化し、そ
の後賦活するものであるが、炭化工程においては
塩化水素ガスを含む雰囲気中で原料繊維が加熱さ
れる。塩化水素は常温でガス化し、しかも高温に
おいても酸化性がないため取扱いが比較的容易で
ある。炭化雰囲気中の塩化水素濃度は容積で3%
であつても炭化触媒として有効であり、25%であ
れば最高に近い効果を示す。また高い場合は50%
以上でも生成繊維の性能を劣化させるものではな
いが、作用効果の点からみても、このような高濃
度で用いることは必要ではない。塩化水素ガスの
稀釈には、たとえば窒素、アルゴン等不活性ガス
を用いることができる。また、他の酸化性のない
ガスを用いることもできる。炭化温度領域では炭
酸ガスは、賦活温度にかなり近くなるまでは酸化
性を示すことがないので、炭化用稀釈ガスに炭酸
ガスを含ませることもできる。
In the method of the present invention, cellulose fibers are carbonized and then activated, and in the carbonization step, the raw material fibers are heated in an atmosphere containing hydrogen chloride gas. Hydrogen chloride gasifies at room temperature and is not oxidizing even at high temperatures, so it is relatively easy to handle. The hydrogen chloride concentration in the carbonization atmosphere is 3% by volume.
It is effective as a carbonization catalyst even when the concentration is 25%, and the effect is close to the maximum. 50% if higher
Although the above does not deteriorate the performance of the produced fiber, it is not necessary to use it at such a high concentration from the viewpoint of effectiveness. An inert gas such as nitrogen or argon can be used to dilute the hydrogen chloride gas. Moreover, other non-oxidizing gases can also be used. In the carbonization temperature range, carbon dioxide gas does not exhibit oxidizing properties until the temperature is quite close to the activation temperature, so carbon dioxide gas can also be included in the diluent gas for carbonization.

本発明方法の炭化工程においては、塩化水素ガ
ス含有雰囲気中で150〜500℃の範囲内の温度で加
熱される。さらに、塩化水素ガス含有雰囲気中加
熱は150〜250℃の範囲内の温度から270〜500℃の
範囲内の温度までなされることが好ましい。した
がつて、250〜270℃の温度領域を塩化水素雰囲気
中炭化工程とすることができるが、上記温度範囲
において、できるだけ低い温度から高い温度まで
塩化水素含有雰囲気中で昇温加熱することが好ま
しい。したがつて、150〜500℃の全温度範囲にお
いてセルロース系繊維を塩化水素ガスに接触させ
ることがより好ましい。塩化水素含有雰囲気中加
熱を500℃以上に続けることは、炭化繊維の収率
増大をなおもたらすものであるが、600℃以上で
はその効果は軽少になる。しかし、得られる活性
炭素繊維の性能にとつて不利になるものではな
い。塩化水素含有雰囲気中の加熱は150℃以下の
温度から始めることも可能であるが、80℃以下で
塩化水素をセルロース系繊維に接触させることは
避けることが望ましい。
In the carbonization step of the method of the present invention, heating is performed at a temperature within the range of 150 to 500°C in an atmosphere containing hydrogen chloride gas. Further, heating in an atmosphere containing hydrogen chloride gas is preferably performed from a temperature in the range of 150 to 250°C to a temperature in the range of 270 to 500°C. Therefore, the carbonization process can be carried out in a hydrogen chloride atmosphere in the temperature range of 250 to 270°C, but it is preferable to heat the product in an atmosphere containing hydrogen chloride from as low a temperature as possible to as high as possible within the above temperature range. . Therefore, it is more preferable to contact the cellulose fibers with hydrogen chloride gas in the entire temperature range of 150 to 500°C. Continuing heating in a hydrogen chloride-containing atmosphere above 500°C still brings about an increase in the yield of carbonized fibers, but above 600°C the effect becomes weaker. However, the performance of the obtained activated carbon fibers is not disadvantageous. Heating in a hydrogen chloride-containing atmosphere can be started at a temperature of 150°C or lower, but it is desirable to avoid contacting the cellulose fiber with hydrogen chloride at a temperature of 80°C or lower.

塩化水素ガス雰囲気中加熱工程の後、賦活工程
までの昇温加熱は不活性雰囲気中でなされるが、
この雰囲気が水蒸気、炭酸ガスを含んでいること
は、本発明方法の実施に大きい障害をもたらすも
のではない。したがつて、塩化水素含有雰囲気中
加熱工程終了後、繊維を賦活ガス中加熱工程ある
いは直接賦活工程に移すことも可能である。すな
わち、塩化水素ガス含有雰囲気中加熱処理を270
℃まで施した後、ただちに賦活工程に移すことも
できる。
After the heating step in a hydrogen chloride gas atmosphere, the heating process up to the activation step is performed in an inert atmosphere.
The fact that this atmosphere contains water vapor and carbon dioxide does not pose a major hindrance to the implementation of the method of the present invention. Therefore, after the heating step in a hydrogen chloride-containing atmosphere is completed, it is also possible to transfer the fiber to a heating step in an activation gas or directly to an activation step. That is, heat treatment in an atmosphere containing hydrogen chloride gas was performed at 270°C.
It is also possible to immediately proceed to the activation process after heating to ℃.

賦活方法としては、水蒸気、炭酸ガスを賦活剤
とする方法が、本発明方法における炭化処理を施
した繊維に適用し得ることを、種々賦活条件を検
討した結果知ることができた。この場合の賦活に
は水蒸気あるいは炭酸ガスを5容量%以上含む雰
囲気を用いることができるが、これに混合するガ
スは窒素、アルゴン等の不活性ガスが主である。
しかし、これに限定するものではない。賦活工程
の温度は600〜1000℃の範囲内であり、好ましく
は700〜900℃である。賦活温度が高いときは時間
を短縮することができ、賦活の度合を賦活ガス濃
度、温度、時間によつて調節することができる。
これによつて、活性炭素繊維の吸着能、あるいは
ガス吸着比表面積を調節することができる。ま
た、細孔分布は炭酸ガスによる場合比較的広く、
水蒸気による場合は比較的狭く、細孔平均径も小
さい。したがつて、水蒸気賦活のものはガス吸着
用により適している。
As a result of studying various activation conditions, it was found that the activation method using water vapor or carbon dioxide gas as an activator can be applied to the fibers subjected to the carbonization treatment in the method of the present invention. For activation in this case, an atmosphere containing 5% by volume or more of water vapor or carbon dioxide gas can be used, but the gas mixed therein is mainly an inert gas such as nitrogen or argon.
However, it is not limited to this. The temperature of the activation step is within the range of 600 to 1000°C, preferably 700 to 900°C. When the activation temperature is high, the time can be shortened, and the degree of activation can be adjusted by adjusting the activation gas concentration, temperature, and time.
This allows the adsorption capacity or gas adsorption specific surface area of the activated carbon fiber to be adjusted. In addition, the pore distribution is relatively wide when carbon dioxide gas is used;
In the case of water vapor, the pores are relatively narrow and the average pore diameter is small. Therefore, those activated by water vapor are more suitable for gas adsorption.

塩化水素ガス含有雰囲気中加熱によつて繊維に
吸収あるいは吸着されている塩化水素は、その後
の不活性ガス中加熱工程あるいは賦活工程におい
て容易に、しかも完全に逸出し、生成する活性炭
素繊維に残留することはない。また、繊維中に存
在していた無機不純物に作用して、多くを揮発し
やすい塩化物に変え、賦活の加熱工程において逸
出させる利点がある。
Hydrogen chloride absorbed or adsorbed into the fibers by heating in a hydrogen chloride gas-containing atmosphere easily and completely escapes during the subsequent heating process in an inert gas or activation process, and remains in the activated carbon fibers produced. There's nothing to do. It also has the advantage of acting on inorganic impurities present in the fibers, converting most of them into easily volatile chlorides, which escape during the activation heating process.

以上のようにして、本発明方法においては、塩
化水素ガス中加熱による炭化工程と賦活工程とを
組合せることにより、3〜30%、あるいはそれ以
上の収率で、400〜2000m2/gあるいはそれ以上の
比表面積の活性炭素繊維を任意に製造することが
できる。また、活性炭素繊維の引張り強さは収率
によつて変るが、たとえば収率が7〜32%の間
で、平均引張り強さは5〜39Kgf/mm2を示す。この
ような引張に強さは、本発明方法によつて得られ
る炭素繊維に、繊維集積物の形状保持性と可焼性
を付与するに有用な特性である。
As described above, in the method of the present invention, by combining the carbonization step by heating in hydrogen chloride gas and the activation step, a yield of 400 to 2000 m 2 /g or Activated carbon fibers with a specific surface area larger than this can be arbitrarily produced. Further, the tensile strength of activated carbon fibers varies depending on the yield, but for example, when the yield is between 7 and 32%, the average tensile strength is between 5 and 39 Kgf/mm 2 . Such tensile strength is a useful property for imparting shape retention and sinterability to the fiber aggregate to the carbon fibers obtained by the method of the present invention.

実施例 1 ビスコースレーヨン(単繊維デニール7)トウ
を10容量%塩化水素ガスを含むアルゴン中で、
170℃から270〜600℃の間の数段階の温度まで昇
温し、その後窒素ガス中で800℃まで加熱し、つ
いで30容量%の水蒸気を含む窒素ガス中で、800
℃で30分間加熱して賦活した。塩化水素ガス中加
熱最高温度270、300、400、500、600℃に対し、
活性炭素繊維の収率それぞれ21.1、21.4、23.5、
24.2、24.8%、比表面積それぞれ1060、1120、
1130、1100、1080m2/gの活性炭素繊維を得た。
この結果は、塩化水素雰囲気中加熱温度範囲が
600℃までは高くなればなるほど収率が高くなる
ことを示している。しかし、塩化水素雰囲気中加
熱が270℃あるいは300℃においても十分に高い収
率で、十分に高い比表面積をそなえた活性炭素繊
維が得られることを示している。なお、これらの
繊維は繊維集積物の形状を保持するに足る高い可
焼性を示した。
Example 1 Viscose rayon (single fiber denier 7) tow was heated in argon containing 10% by volume hydrogen chloride gas.
The temperature is increased from 170℃ to several steps between 270 and 600℃, then heated to 800℃ in nitrogen gas, and then heated to 800℃ in nitrogen gas containing 30% water vapor by volume.
It was activated by heating at ℃ for 30 minutes. For maximum heating temperature of 270, 300, 400, 500, 600℃ in hydrogen chloride gas,
The yield of activated carbon fibers is 21.1, 21.4, 23.5, respectively.
24.2, 24.8%, specific surface area 1060, 1120, respectively
Activated carbon fibers of 1130, 1100, and 1080 m 2 /g were obtained.
This result shows that the heating temperature range in a hydrogen chloride atmosphere is
It is shown that the higher the temperature up to 600°C, the higher the yield. However, it has been shown that activated carbon fibers with a sufficiently high specific surface area can be obtained with a sufficiently high yield even when heated in a hydrogen chloride atmosphere at 270°C or 300°C. In addition, these fibers exhibited high combustibility sufficient to maintain the shape of the fiber aggregate.

実施例 2 ポリノジツク繊維(デニール2)のトウを250
℃までアルゴン中、250〜300℃の間を塩化水素30
容量%含む窒素ガス中で加熱し、その後窒素ガス
中で800℃まで1時間に600℃の速度で昇温し、つ
いで水蒸気25容量%を含む窒素ガス中で、800℃
まで30分間加熱した。比表面積1050m2/g、可焼
性のある活性炭素繊維を得た。
Example 2 Polynosic fiber (denier 2) tow 250
Hydrogen chloride between 250 and 300 °C in argon to 30 °C
Heating in nitrogen gas containing 25% by volume, then raising the temperature to 800°C in nitrogen gas at a rate of 600°C per hour, and then heating to 800°C in nitrogen gas containing 25% by volume of water vapor.
heated for 30 minutes. A sinterable activated carbon fiber with a specific surface area of 1050 m 2 /g was obtained.

実施例 3 実施例1に用いた同一のビスコースレーヨン繊
維のトウを塩化水素ガス4%を含有する窒素ガス
中で200℃から400℃まで、それ以上窒素ガス中で
800℃まで加熱した。続けて水蒸気15%含有窒素
ガス中で900℃で30分間、あるいは800℃で80分
間、800℃で30分間加熱した。それぞれ10、21、
31%の収率で1700、1200、410m2/gの比表面積、
10、24、36Kg/mm2の平均強さをそれぞれ示す活性
炭素繊維を得た。
Example 3 The same viscose rayon fiber tow used in Example 1 was heated in nitrogen gas containing 4% hydrogen chloride gas from 200°C to 400°C, and further in nitrogen gas.
Heated to 800℃. Subsequently, it was heated at 900°C for 30 minutes, or at 800°C for 80 minutes, or at 800°C for 30 minutes in nitrogen gas containing 15% water vapor. 10, 21, respectively
Specific surface area of 1700, 1200, 410 m 2 /g, with a yield of 31%
Activated carbon fibers with average strengths of 10, 24, and 36 Kg/mm 2 were obtained, respectively.

実施例 4 実施例1に用いたと同一のビスコースレーヨン
トウを塩化水素を20容量%含む窒素ガス中で200
〜500℃まで、1時間に1200℃の速度で昇温した。
得られた炭化繊維を炭酸ガス50%と窒素ガスを含
む雰囲気中で800℃あるいは900℃で60分間加熱し
た。比表面積それぞれ490、1060m2/gの可焼性あ
る活性炭素繊維を得た。
Example 4 The same viscose rayon tow used in Example 1 was heated to 200% by volume in nitrogen gas containing 20% by volume of hydrogen chloride.
The temperature was raised to ~500°C at a rate of 1200°C per hour.
The obtained carbonized fibers were heated at 800°C or 900°C for 60 minutes in an atmosphere containing 50% carbon dioxide gas and nitrogen gas. Burnable activated carbon fibers with specific surface areas of 490 and 1060 m 2 /g were obtained.

Claims (1)

【特許請求の範囲】 1 単繊維の平均長さが10mm以上のセルロース系
繊維を、塩化水素ガス3容量%以上を含む雰囲気
中で、150〜500℃の範囲内の温度で加熱する炭化
工程と、その後水蒸気あるいは炭酸ガス5容量%
以上含む雰囲気中で600〜1000℃の間の温度で加
熱する賦活工程とを含むことを特徴とする、高吸
着能と可焼性をそなえた活性炭素繊維の製造方
法。 2 塩化水素ガスを含む雰囲気中で加熱する炭化
工程が150〜250℃の範囲内の温度から270〜500℃
の範囲内の温度まで加熱する工程である特許請求
範囲1項記載の方法。 3 塩化水素ガスを含む雰囲気中の加熱炭化工程
が150〜500℃の全温度範囲である特許請求範囲1
項記載の方法。 4 賦活工程が、水蒸気5容量%以上含有する雰
囲気中で700〜900℃の範囲内の温度で加熱する工
程である特許請求範囲1項記載の方法。
[Claims] 1. A carbonization step in which cellulose fibers having an average single fiber length of 10 mm or more are heated at a temperature within the range of 150 to 500°C in an atmosphere containing hydrogen chloride gas at 3% by volume or more. , then water vapor or carbon dioxide 5% by volume
A method for producing activated carbon fibers having high adsorption capacity and sinterability, the method comprising an activation step of heating at a temperature between 600 and 1000°C in an atmosphere containing the above. 2 The carbonization process, which involves heating in an atmosphere containing hydrogen chloride gas, ranges from 150 to 250 degrees Celsius to 270 to 500 degrees Celsius.
The method according to claim 1, wherein the step is heating to a temperature within the range of . 3. Claim 1 in which the heating carbonization step in an atmosphere containing hydrogen chloride gas is carried out at a total temperature range of 150 to 500°C.
The method described in section. 4. The method according to claim 1, wherein the activation step is a step of heating at a temperature within the range of 700 to 900°C in an atmosphere containing 5% by volume or more of water vapor.
JP60278384A 1985-12-10 1985-12-10 Production of activated carbon fiber Granted JPS62141126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60278384A JPS62141126A (en) 1985-12-10 1985-12-10 Production of activated carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60278384A JPS62141126A (en) 1985-12-10 1985-12-10 Production of activated carbon fiber

Publications (2)

Publication Number Publication Date
JPS62141126A JPS62141126A (en) 1987-06-24
JPH0112852B2 true JPH0112852B2 (en) 1989-03-02

Family

ID=17596587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60278384A Granted JPS62141126A (en) 1985-12-10 1985-12-10 Production of activated carbon fiber

Country Status (1)

Country Link
JP (1) JPS62141126A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1034133C (en) * 1994-07-28 1997-02-26 刘智仁 Prepn of high-adsorption active carbon fibre
FR2801908B1 (en) * 1999-12-06 2002-03-01 Snecma PROCESS FOR OBTAINING CARBON FIBER TISSUE BY CONTINUOUS CARBONIZATION OF A CELLULOSIC FIBER TISSUE
JP2002146636A (en) * 2000-11-10 2002-05-22 Tokai Senko Kk Activated carbon fibers using natural cellulosic fibers as precursor
KR100398062B1 (en) * 2001-05-11 2003-09-19 한국과학기술연구원 High functional viscose rayon activated carbon and a process of making them
JPWO2003068386A1 (en) * 2002-02-15 2005-06-02 トヨタ紡織株式会社 Adsorbent and method for producing adsorbent
JP5084024B2 (en) * 2007-01-24 2012-11-28 富士フイルム株式会社 Activated carbon manufacturing method and waste film recycling system
CN102296374A (en) * 2010-06-24 2011-12-28 沈靖 Active carbon fiber-containing viscose fiber and preparation method thereof
KR102171393B1 (en) * 2014-06-24 2020-10-28 코오롱인더스트리 주식회사 A fishing net comprising activity carbon fiber and method of manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5510473A (en) * 1978-07-10 1980-01-24 Takeda Chem Ind Ltd Production of activated carbon fiber
JPS5813722A (en) * 1981-07-13 1983-01-26 Asahi Chem Ind Co Ltd Production of activated carbon fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5510473A (en) * 1978-07-10 1980-01-24 Takeda Chem Ind Ltd Production of activated carbon fiber
JPS5813722A (en) * 1981-07-13 1983-01-26 Asahi Chem Ind Co Ltd Production of activated carbon fiber

Also Published As

Publication number Publication date
JPS62141126A (en) 1987-06-24

Similar Documents

Publication Publication Date Title
CA2047474C (en) Process for producing high surface area activated carbon
Ahmadpour et al. The preparation of active carbons from coal by chemical and physical activation
US4699896A (en) Manufacture of fibrous activated carbons
JP2735491B2 (en) Microporous activated carbon and its production method
US3969268A (en) Process for preparing active carbon fibers
Philip et al. Adsorption characteristics of microporous carbons from apricot stones activated by phosphoric acid
JPH01139865A (en) Production of large surface area carbon fiber
US3639266A (en) Carbonization of compressed cellulose crystallite aggregates
JPS6353294B2 (en)
JP2009292670A (en) Method for producing high specific surface area activated carbon
US5202302A (en) Preparation of activated carbons by impregnation with a boron compound and a phosphorus compound
JPH0112852B2 (en)
JP2013237595A (en) Activated carbon and method for producing the same
JPS61282430A (en) Production of activated carbon fiber
JP3074261B2 (en) Antibacterial fibrous activated carbon and method for producing the same
CN113117732B (en) Active carbon composite material with three-dimensional pore channel structure and preparation method thereof
WO1992006919A1 (en) Method for manufacturing activated carbon from cellulosic material
JPH05502698A (en) Adsorption activated carbonized polyarylamide
JP3125808B2 (en) Activated carbon honeycomb structure and manufacturing method thereof
JPH06191962A (en) Production of porous carbonaceous material
JPS6135286B2 (en)
JP2565769B2 (en) Activated carbon fiber and manufacturing method thereof
EP0489133B1 (en) Method for manufacturing activated carbon from cellulosic material
CN117244527B (en) Activated carbon for water purification and preparation method thereof
Gurudatt et al. Adsorbent carbon fabrics: new generation armour for toxic chemicals

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term