JPH01128527A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH01128527A
JPH01128527A JP28690187A JP28690187A JPH01128527A JP H01128527 A JPH01128527 A JP H01128527A JP 28690187 A JP28690187 A JP 28690187A JP 28690187 A JP28690187 A JP 28690187A JP H01128527 A JPH01128527 A JP H01128527A
Authority
JP
Japan
Prior art keywords
pressure
reflow
heating
substrate
lamps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28690187A
Other languages
Japanese (ja)
Inventor
Yasuo Uoochi
魚落 泰雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP28690187A priority Critical patent/JPH01128527A/en
Publication of JPH01128527A publication Critical patent/JPH01128527A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To reduce damages of elements formed on a substrate and to further highly integrate a semiconductor device easily by heating a reflow in a pressure atmosphere. CONSTITUTION:A pressure chamber 11 in which a substrate 1 is disposed and its atmosphere is pressurized to 10atm is composed at a wall facing the surface of the substrate 1 of a thick quartz glass plate 12 having approx. 25mm of thickness, heating lamps 13 are disposed at its outside, and a reflecting plate 14 is disposed at its outside. A plurality of the lamps 13 are aligned in a rod state in such a manner that the upper and lower lamps are crossed perpendicularly to each other. The chamber 11 for forming the pressure atmosphere of a reflow is pressurized by supplying nitrogen from a high pressure nitrogen gas cylinder 15 through a regulator 16 and an auxiliary tank 17. Numeral 18 denotes a valve disposed suitably in a nitrogen supply passage, and numeral 19 denotes a pressure gauge for monitoring the pressure in the chamber 11. The reflow is heated by turning ON the lamps 13, and its heating temperature and time are controlled by controlling supply power and lighting time.

Description

【発明の詳細な説明】 〔概 要〕 不純物をドープしたシリコン酸化膜からなり半導体基板
上にあって表面が凹凸をなす絶縁膜に対し、表面をなだ
らかにさせる加熱処理(リフロー)を行う半導体装置の
製造方法に関し、 加熱の短時間化または低温化を目的とし、加熱を加圧雰
囲気下で行うように構成する。
[Detailed Description of the Invention] [Summary] A semiconductor device in which an insulating film made of a silicon oxide film doped with impurities and having an uneven surface on a semiconductor substrate is subjected to heat treatment (reflow) to smooth the surface. Regarding the manufacturing method, the heating is performed in a pressurized atmosphere for the purpose of shortening the heating time or lowering the temperature.

〔産業上の利用分野〕[Industrial application field]

本発明は、半導体装置の製造方法に係り、特に、不純物
をドープしたシリコン酸化膜からなり半導体基板上にあ
って表面が凹凸をなす絶縁膜に対して行う、表面をなだ
らかにさせる加熱処理に関す。
The present invention relates to a method for manufacturing a semiconductor device, and in particular to a heat treatment to smooth the surface of an insulating film made of a silicon oxide film doped with impurities and having an uneven surface on a semiconductor substrate. .

半導体装置では、基板上に絶縁膜を設けその上に配線が
形成される。その絶縁膜は、ゲート電極が下にあったり
電極窓が設けられたりして表面が凹凸になると配線を不
安定なものにするため、不純物をドープしたシリコン酸
化膜即ちPSG(燐ガラス)やBPSG (硼素燐ガラ
ス)などを用いて融点を低いものにし、表面をなだらか
にする加熱処理(リフロー)が施される。
In a semiconductor device, an insulating film is provided on a substrate, and wiring is formed on the insulating film. The insulating film is made of silicon oxide film doped with impurities, such as PSG (phosphorus glass) or BPSG, to prevent the wiring from becoming unstable if the surface becomes uneven due to the gate electrode being located below or an electrode window being provided. Heat treatment (reflow) is performed to lower the melting point using materials such as (borophosphorus glass) and to make the surface smooth.

〔従来の技術〕[Conventional technology]

第4図はりフローを説明する側断面図である。 FIG. 4 is a side sectional view explaining the beam flow.

同図において、1は半導体基板、2は基板l上に形成さ
れた例えばゲート電極などの凸部、3は不純物をドープ
したシリコン酸化膜が例えばCVD(化学気相成長)な
どにより被着されてリフロ−の対象とする絶縁膜、であ
る。
In the figure, 1 is a semiconductor substrate, 2 is a convex portion such as a gate electrode formed on the substrate l, and 3 is a silicon oxide film doped with impurities deposited by, for example, CVD (chemical vapor deposition). This is an insulating film to be reflowed.

凸部2は、基板1上でパターン化形成されて側面が段差
2aを形成している。
The convex portion 2 is patterned and formed on the substrate 1, and the side surface forms a step 2a.

これに伴い、被着された時点の絶縁膜3は、図(alに
示すように、表面が凸部2に倣って凹凸になり、段差2
aの部分では、下側の厚さが上側より薄くなる傾向もあ
る。そのためこの上に直接に配線を形成すると、その配
線は段差2aの部分で断線し易いものとなる。
As a result, the surface of the insulating film 3 after being deposited becomes uneven following the convex portions 2, as shown in FIG.
In the part a, the thickness of the lower side also tends to be thinner than that of the upper side. Therefore, if a wiring is formed directly on this, the wiring is likely to be disconnected at the step 2a.

そこで、絶縁膜3が半溶融状態になって部分的に流れる
ように加熱して、図(blに示すように、表面をなだら
かにする。この加熱処理がリフローである。このリフロ
ーにより形成される表面の段差2a部分の傾斜α(ここ
ではαをリフロー角と呼ぶことにする)を例えば30度
程度にすれば、その上に形成された配線は安定なものと
なる。
Therefore, the insulating film 3 is heated so that it becomes semi-molten and partially flows, making the surface smooth as shown in Figure (bl).This heating treatment is reflow. If the slope α (herein α is referred to as a reflow angle) of the surface step 2a is set to about 30 degrees, for example, the wiring formed thereon will be stable.

また、不図示ではあるが、絶縁膜3に電極窓が設けられ
た場合にも、その部分に段差が形成されて上記と同様に
なり、リフローの適用が有効である。
Further, although not shown, even when an electrode window is provided in the insulating film 3, a step is formed in that portion, similar to the above, and the application of reflow is effective.

ところで、従来のりフローは、常圧下の加熱によって行
っている。
By the way, conventional glue flow is performed by heating under normal pressure.

このため、段差2aの高さおよび絶縁膜3の厚さがそれ
ぞれ約1μmでリフロー角αを約30度にしようとする
と、PSGの場合には、1000℃30分〜1050℃
lO分程度の加熱が必要であり、それより融点の低いB
PSGの場合であっても、900℃30分〜950℃1
0分程度の加程度必要である。
Therefore, if the height of the step 2a and the thickness of the insulating film 3 are each about 1 μm and the reflow angle α is about 30 degrees, in the case of PSG, the temperature is 1000°C for 30 minutes to 1050°C.
B, which has a lower melting point, requires heating for about 10 minutes.
Even in the case of PSG, 900℃ 30 minutes to 950℃1
Approximately 0 minutes of additional time is required.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、リフローにおける上記温度と時間の組合
せは、高温または長時間のために、基板1に形成された
素子の拡散領域を更に拡散させるなどして素子の特性を
劣化させる。この影響は、特に半導体装置の高集積化が
増大した場合に問題となる。
However, the combination of temperature and time in the reflow process causes the diffusion region of the element formed on the substrate 1 to be further diffused due to the high temperature or long time, thereby deteriorating the characteristics of the element. This effect becomes a problem especially when the degree of integration of semiconductor devices increases.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点は、リフローの加熱を加圧雰囲気下で行う本
発明の製造方法によって解決される。
The above problems are solved by the manufacturing method of the present invention, which performs reflow heating under a pressurized atmosphere.

〔作用〕[Effect]

本発明者は、豊富な経験の中から、リフローの加熱を加
圧雰囲気下で行うことにより、同じリフロー角αを実現
させるのに、常圧下で加熱する場合より短い時間または
低い温度の加熱で足りることを見いだした。
Based on extensive experience, the present inventor has determined that by performing reflow heating under a pressurized atmosphere, the same reflow angle α can be achieved in a shorter time or at a lower temperature than when heating under normal pressure. I found what was enough.

本発明はこの現象を利用したものであり、かくすること
により、基板に形成された素子の特性へ与える影響が低
減する。
The present invention utilizes this phenomenon, thereby reducing the influence on the characteristics of elements formed on the substrate.

〔実施例〕〔Example〕

以下本発明の実施例について第1図〜第3図を用いて説
明する。第1図は加圧雰囲気によるリフローの1例の特
性図、第2図および第3図はそれぞれ第1および第2の
実施例を行う装置例の構成図、である。
Embodiments of the present invention will be described below with reference to FIGS. 1 to 3. FIG. 1 is a characteristic diagram of an example of reflow using a pressurized atmosphere, and FIGS. 2 and 3 are configuration diagrams of examples of apparatus for carrying out the first and second embodiments, respectively.

第1図は、第4図に示した構成の1例を対象にした場合
の、雰囲気圧力および加熱時間をパラメータにした、リ
フロー角α−加熱温度特性図である。絶縁膜3は、硼素
が4wt%、燐が5wt%のBPSGであり、段差2a
の高さおよび絶縁膜3の厚さは、それぞれ約1μmであ
る。
FIG. 1 is a reflow angle α-heating temperature characteristic diagram using atmospheric pressure and heating time as parameters for one example of the configuration shown in FIG. 4. The insulating film 3 is BPSG containing 4 wt% boron and 5 wt% phosphorus, and the step 2a
The height of the insulating film 3 and the thickness of the insulating film 3 are each about 1 μm.

同図によれば、10atmに加圧すれば950℃、3分
で、また、1100atに加圧すれば450℃、1分で
リフロー角αを約30度にすることができる。前者では
加熱時間が従来の10分から3分に短縮され、後者では
加熱時間が更に短縮されるばかりでな(加熱温度も大幅
に低くなっている。そして・、このような加熱の短時間
化または低温化が、基板に形成された素子へ与える悪影
響を低減させることは明らかである。
According to the figure, if the pressure is increased to 10 atm, the reflow angle α can be set to about 30 degrees at 950° C. for 3 minutes, and if the pressure is increased to 1100 atm, the reflow angle α can be set to about 30 degrees at 450° C. for 1 minute. In the former, the heating time has been shortened from the conventional 10 minutes to 3 minutes, and in the latter, the heating time has not only been further shortened (the heating temperature has also been significantly lowered.) It is clear that lowering the temperature reduces the negative effects on devices formed on the substrate.

なお、上述のりフロー特性は絶縁膜3がBPSGの場合
であるが、PSGの場合も同様な傾向を示す。
Note that although the above-described flow characteristics are obtained when the insulating film 3 is made of BPSG, a similar tendency is exhibited when the insulating film 3 is made of PSG.

10at+wに加圧したりフロー(第1の実施例)は、
第2図に示す装置で実施することができる。
The pressure is applied to 10at+w and the flow (first example) is as follows:
This can be carried out using the apparatus shown in FIG.

第2図において、基板lを配置して雰囲気を10atm
に加圧する圧力室11は、基板1の面に対向する壁吟(
厚さ25mm程度の厚い石英ガラス板12で構成され、
その外側に加熱用ランプ13、更にその外側に反射板1
4が配設されている。ランプ13は、棒状をなして複数
本が並べられ、上側と下側では互いに直交した配列にな
っている。
In Figure 2, the substrate l is placed and the atmosphere is set to 10 atm.
The pressure chamber 11 that is pressurized has a wall facing the surface of the substrate 1 (
It is composed of a thick quartz glass plate 12 with a thickness of about 25 mm,
A heating lamp 13 is placed on the outside of the heating lamp 13, and a reflector 1 is placed on the outside of the heating lamp 13.
4 are arranged. A plurality of lamps 13 are arranged in a bar shape, and the upper and lower sides are arranged perpendicularly to each other.

リフローの加圧雰囲気を形成する圧力室11の加圧は、
高圧窒素ボンベ15からレギュレータ16、補助タンク
17を介して窒素を供給することによって行う。18は
窒素の供給路に適宜に配置されたパルプ、19は圧力室
ll内の圧力を監視する圧力計である。
The pressurization of the pressure chamber 11 that forms the pressurized atmosphere for reflow is as follows:
This is carried out by supplying nitrogen from a high-pressure nitrogen cylinder 15 via a regulator 16 and an auxiliary tank 17. Reference numeral 18 indicates pulp appropriately placed in the nitrogen supply path, and reference numeral 19 indicates a pressure gauge for monitoring the pressure within the pressure chamber 11.

そして、リフローの加熱はランプ13の点灯によって行
い、供給電力および点灯時間の制御により加熱温度およ
び加熱時間を制御する。
Heating for reflow is performed by lighting the lamp 13, and the heating temperature and heating time are controlled by controlling the supplied power and lighting time.

また、1100atに加圧したりフロー(第2の実施例
)は、第3図に示す装置で実施することができる。
Further, pressurization to 1100 at and flow (second embodiment) can be carried out using the apparatus shown in FIG.

第3図において、基板1を配置して雰囲気を1100a
tに加圧する圧力室21は、高圧に耐えるように球形で
ある。圧力室21内には加熱用ヒータ22が配置され、
基板1はその上に載置される。このヒータ22は、加熱
の応答性をよくするため熱容量を小さくしである。
In FIG. 3, the substrate 1 is placed and the atmosphere is set at 1100a.
The pressure chamber 21 pressurized to t is spherical so as to withstand high pressure. A heating heater 22 is arranged inside the pressure chamber 21,
A substrate 1 is placed thereon. This heater 22 has a small heat capacity to improve heating responsiveness.

リフローの加圧雰囲気を形成する圧力室21の加圧は、
高圧窒素ボンベ25からレギュレータ26、補助タンク
27を介して窒素を供給することによって行う。28は
窒素の供給路に適宜に配置されたパルプ、29は圧力室
21内の圧力を監視する圧力計である。
The pressurization of the pressure chamber 21 that forms the pressurized atmosphere for reflow is as follows:
This is carried out by supplying nitrogen from a high-pressure nitrogen cylinder 25 via a regulator 26 and an auxiliary tank 27. Reference numeral 28 represents a pulp appropriately placed in the nitrogen supply path, and reference numeral 29 represents a pressure gauge for monitoring the pressure within the pressure chamber 21.

器 そして、リフローの加熱はヒータ22への給電よって行
い、供給電力および給電時間の制御により加熱温度およ
び加熱時間を制御する。
Heating for reflow is performed by supplying power to the heater 22, and the heating temperature and heating time are controlled by controlling the supplied power and power supply time.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明の構成によれば、半導体装置
の製造方法、特に、不純物をドープしたシリコン酸化膜
からなり半導体基板上にあって表面が凹凸をなす絶縁膜
に対して行うリフローにおいて、加熱の短時間化または
低温化が可能になり、基板に形成された素子へ与えるダ
メージを低減させて、半導体装置の一層の高集積化を容
易にさせる効果がある。
As explained above, according to the configuration of the present invention, in a method for manufacturing a semiconductor device, particularly in reflowing an insulating film made of a silicon oxide film doped with impurities and having an uneven surface on a semiconductor substrate, This has the effect of making it possible to shorten the heating time or lower the temperature, reduce damage to elements formed on the substrate, and facilitate higher integration of semiconductor devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は加圧雰囲気によるリフローの1例の特性図、 第2図は第1の実施例を行う装置例の構成図、第3図は
第2の実施例を行う装置例の構成図、第4図はりフロー
を説明する側断面図、である。 図におきて、 1は半導体基板、 2は凸部、 3は絶縁膜、 11.21は圧力室、 12は石英ガラス板、 13は加熱用ランプ、 14は反射板、 22は加熱用ヒータ、 15.25は高圧窒素ボンベ、 16.26はレギュレータ、 17.27は補助タンク、 18.28はパルプ、 19.29は圧力計、 αはリフロー角、 である。 ソフo−f!蛯BAすづj!ψh幻后 葦4畠 町
Fig. 1 is a characteristic diagram of an example of reflow using a pressurized atmosphere, Fig. 2 is a block diagram of an example of an apparatus for carrying out the first embodiment, and Fig. 3 is a block diagram of an example of an apparatus for carrying out the second embodiment. FIG. 4 is a side sectional view explaining the beam flow. In the figure, 1 is a semiconductor substrate, 2 is a convex portion, 3 is an insulating film, 11.21 is a pressure chamber, 12 is a quartz glass plate, 13 is a heating lamp, 14 is a reflection plate, 22 is a heating heater, 15.25 is a high pressure nitrogen cylinder, 16.26 is a regulator, 17.27 is an auxiliary tank, 18.28 is pulp, 19.29 is a pressure gauge, and α is a reflow angle. Sofof! Ebi BA Suzuj! ψh Gengo Ashi 4 Hatakemachi

Claims (1)

【特許請求の範囲】[Claims]  不純物をドープしたシリコン酸化膜からなり半導体基
板上にあって表面が凹凸をなす絶縁膜に対し、表面をな
だらかにさせる加熱処理を行うに際して、その加熱を加
圧雰囲気下で行うことを特徴とする半導体装置の製造方
法。
When performing heat treatment to smooth the surface of an insulating film made of a silicon oxide film doped with impurities and having an uneven surface on a semiconductor substrate, the heating is performed under a pressurized atmosphere. A method for manufacturing a semiconductor device.
JP28690187A 1987-11-13 1987-11-13 Manufacture of semiconductor device Pending JPH01128527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28690187A JPH01128527A (en) 1987-11-13 1987-11-13 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28690187A JPH01128527A (en) 1987-11-13 1987-11-13 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH01128527A true JPH01128527A (en) 1989-05-22

Family

ID=17710466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28690187A Pending JPH01128527A (en) 1987-11-13 1987-11-13 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH01128527A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6277706B1 (en) 1997-06-13 2001-08-21 Nec Corporation Method of manufacturing isolation trenches using silicon nitride liner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6277706B1 (en) 1997-06-13 2001-08-21 Nec Corporation Method of manufacturing isolation trenches using silicon nitride liner

Similar Documents

Publication Publication Date Title
CN1555424B (en) For controlling technique and the product produced thereby of uniformity of film
US4668840A (en) Photovoltaic device
US5108952A (en) Method of depositing a tungsten film
KR100387549B1 (en) Method and device for treating semiconductor with treating gas while substrate is heated
JPH0917742A (en) Heat-treating apparatus
JPH01128527A (en) Manufacture of semiconductor device
KR100214073B1 (en) Bpsg film forming method
US20040163599A1 (en) Film deposition system and method of fabricating semiconductor device employing the film deposition system
CN100513358C (en) Placing table structure, method for manufacturing the placing table structure and heat treatment apparatus
JPS63308350A (en) Formation of insulating layer
JPH03225829A (en) Manufacture of semiconductor device
JPH0262036A (en) Semiconductor device manufacturing apparatus
JPH0230835Y2 (en)
JP2002069645A (en) Thin film and method for producing the same
JP3318938B2 (en) Vapor phase etching method and apparatus
JP3231914B2 (en) Film forming method and film forming apparatus
WO2021134239A1 (en) Light emitting device and manufacturing method therefor, and display apparatus
JPS6346736A (en) Semiconductor device
JPS63173344A (en) Manufacture of semiconductor device
KR0172550B1 (en) Planarizing method of interlayer insulating film in a semiconductor device
JP4326314B2 (en) Manufacturing method of solar cell
JPH01103832A (en) Plasma doping process
JPH02246214A (en) Manufacture of semiconductor device
JPH05258717A (en) Fluorescent lamp and manufacture thereof
KR100273239B1 (en) Method for forming wire of semiconductor