JPH01127904A - Scanner for scanning tunnel microscope - Google Patents

Scanner for scanning tunnel microscope

Info

Publication number
JPH01127904A
JPH01127904A JP62285837A JP28583787A JPH01127904A JP H01127904 A JPH01127904 A JP H01127904A JP 62285837 A JP62285837 A JP 62285837A JP 28583787 A JP28583787 A JP 28583787A JP H01127904 A JPH01127904 A JP H01127904A
Authority
JP
Japan
Prior art keywords
axis
scanner
displacement
pzt
stuck
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62285837A
Other languages
Japanese (ja)
Other versions
JPH0583121B2 (en
Inventor
Masashi Iwatsuki
岩槻 正志
Koro Oi
公郎 大井
Ikuya Nishimura
西村 生哉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP62285837A priority Critical patent/JPH01127904A/en
Publication of JPH01127904A publication Critical patent/JPH01127904A/en
Publication of JPH0583121B2 publication Critical patent/JPH0583121B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To miniaturize the title scanner so that it can be integrated into a holder for a transmission type electron microscope TEM by using a thickness shift direction displacement of PZT for a displacement in each direction of X, Y and Z. CONSTITUTION:An X axis element EM 17 and a Y axis EM 18 consisting of a sheet of PZT are stuck and laminated, and to the surface of the EM 18, an insulator 14 is stuck and fixed. To the other surface of the insulator 14, Z axis EMs 16 (16a-16d) formed by laminating four sheets of PZT are stuck and fixed, and with respect to a displacement caused by a shift of the EM 16a, the EM 16b also generates a displacement caused by the shift, the shift displacement is superposed successively, and as a result, in the head part, a large displacement quantity is obtained. In such a way, as for a scanner body 11, the EM of one sheet each is thinned extremely (for instance, 0.3mm), and also, they are stuck by a thin adhesive layer, by which a natural frequency in a PZT simple substance scarcely drops, and a motion of each axis is independent each other, therefore, a displacement having no distortion is obtained. Accordingly, a miniature scanner can be constituted, and can be contained in a holder for TEM.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は走査型トンネル顕微鏡(STM)のスキャナに
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a scanner for a scanning tunneling microscope (STM).

〔従来の技術] 一般に、探針先端の原子と試料の原子の電子雲とが重な
り合うIn’m程度まで探針を試料に近づけ、この状態
で探針と試料との間に電圧をかけると電流が流れる。こ
の電流はトンネル電流と呼ばれ、電圧が数mV〜数■の
とき、1〜10nA程度である。このトンネル電流の大
きさは、試料と探針との間の距離により変化し、]・ン
ネル電流の大きさを測定することにより試料と探針との
間の距離を超精密測定することができ、探針位置が既知
であれば試料の表面形状を求めることができる。またト
ンネル電流が一定になるように探計位置を制御すれば探
針位置軌跡により同様に試料の表面形状を測定すること
ができる。
[Prior Art] In general, when the probe is brought close to the sample to a point where the atoms at the tip of the probe overlap with the electron cloud of the sample atoms, and in this state a voltage is applied between the probe and the sample, a current is generated. flows. This current is called a tunnel current, and is about 1 to 10 nA when the voltage is from several mV to several square meters. The magnitude of this tunneling current changes depending on the distance between the sample and the tip, and by measuring the magnitude of the tunneling current, the distance between the sample and the tip can be measured with ultra-precision. , if the probe position is known, the surface shape of the sample can be determined. Furthermore, if the probe position is controlled so that the tunneling current is constant, the surface shape of the sample can be similarly measured based on the probe position locus.

第5図はこのような走査型トンネル顕微鏡の概略構成を
示す図で、1は深針、2は試料、3は3次元アクチュエ
ータ、4はXY走査回路、5はす−水回路、6はトンネ
ル電流増幅器、7はバイアス電源、8はメモリ、9はC
PU、10は表示装置である。
Figure 5 is a diagram showing the schematic configuration of such a scanning tunneling microscope, in which 1 is a deep needle, 2 is a sample, 3 is a three-dimensional actuator, 4 is an XY scanning circuit, 5 is a water circuit, and 6 is a tunnel. Current amplifier, 7 is bias power supply, 8 is memory, 9 is C
PU, 10 is a display device.

3次元アクチュエータ3は一つの圧電素子をくりぬいて
構成しており、CPU9、メモリ8を通して制御され、
XY走査回路4によりY軸、Y軸方向圧電素子に対して
印加電圧を掃引することにより探針1をY軸、Y軸方向
に移動して走査し、またサーボ回路5を通してZ軸方向
圧電素子に対する電圧を制御することによりトンネル電
流が一定に制御され、そのときの電圧値はCPUに読み
込まれて表示装置10に表示され、試料の表面形状を観
察することができる。
The three-dimensional actuator 3 is constructed by hollowing out one piezoelectric element, and is controlled through the CPU 9 and memory 8.
The probe 1 is moved and scanned in the Y-axis and Y-axis directions by sweeping the voltage applied to the Y-axis and the Y-axis piezoelectric element by the XY scanning circuit 4, and the probe 1 is moved and scanned in the Y-axis and Y-axis direction piezoelectric elements through the servo circuit 5. The tunneling current is controlled to be constant by controlling the voltage for the sample, and the voltage value at that time is read into the CPU and displayed on the display device 10, so that the surface shape of the sample can be observed.

このような3次元アクチエエータ3としては、第6図に
示すように圧電素子11をトライポット型にネジ止め等
により結合した片持ち式のものや、またこれよりも剛性
を高くするために、第7図に示すように圧電素子11を
、Y軸、Y軸は両端支持、Y軸は一端支持するようにし
たものも使用されている。
As such a three-dimensional actuator 3, as shown in FIG. 6, there is a cantilever type actuator in which the piezoelectric element 11 is connected to a tripod type by screws, etc. As shown in FIG. 7, a piezoelectric element 11 is also used in which the Y-axis is supported at both ends and the Y-axis is supported at one end.

〔発明が解決すべき問題点〕[Problems to be solved by the invention]

しかしながら、従来のトライポット型のものは固存振動
数が1〜3 K )[zと低く、そのため走査速度を速
くすることができなかった。そのため熱ドリフト等の影
響を受は易く、流れた像になり易いという問題があった
。またY軸、Y軸、Y軸の各動きが他の軸に影響を与え
てしまい、その歪を小さくすると共に、動きを大きくと
ろうとすると、どうしても大型になってしまうという問
題があった。
However, the conventional tri-pot type has a low natural frequency of 1 to 3 K)[z, which makes it impossible to increase the scanning speed. Therefore, there is a problem in that it is easily affected by thermal drift and the like, resulting in a washed-out image. Furthermore, each movement of the Y-axis, Y-axis, and Y-axis affects the other axes, and if you try to reduce the distortion and increase the movement, there is a problem that the device inevitably becomes large.

ところで走査ンネル顕微鏡の場合、試料のどこを観察し
ているのか分りにくいので、透過型電子顕微鏡(TEM
)に組込んでTEMにより、或いは反射電子顕微鏡(R
EM)法により視野探しを行うと共に、さらに超精密に
トンネル顕微鏡で観察することが望まれているが、従来
のトライポット型のスキャナではTEMホルダに搭載す
ることは不可能で、STMをTEMの試料室に組み入れ
て使用することはできなかった。
By the way, in the case of a scanning tunnel microscope, it is difficult to tell which part of the sample is being observed, so a transmission electron microscope (TEM) is used.
) into a TEM or a reflection electron microscope (R
In addition to searching the field of view using the EM) method, it is desired to perform ultra-precise observation using a tunneling microscope, but it is impossible to mount the conventional tri-pot scanner on the TEM holder, and it is difficult to use the STM as a TEM. It could not be used by incorporating it into the sample chamber.

本発明は上記問題点を解決するためのもので、各軸が独
立して歪を少なくすることができ、高速走査が可能であ
ると共に、TEM用ホルダ内に組み込むことができ、T
EM像或いはREM像と37M像の同時観察を行うこと
ができる走査トンネル顕微鏡のスキャナを提供すること
を目的とする。
The present invention is intended to solve the above-mentioned problems. Each axis can independently reduce distortion, high-speed scanning is possible, and it can be incorporated into a TEM holder.
It is an object of the present invention to provide a scanner for a scanning tunneling microscope that can simultaneously observe an EM image or a REM image and a 37M image.

【問題点を解決するための手段〕[Means to solve problems]

そのために本発明の走査トンネル顕微鏡のスキャナは、
直交する3軸方向にそれぞれ変位するように駆動電圧が
印加される薄板からなる3軸ピエゾ素子エレメントから
なるスキャナであって、直交する3軸のうち2つの軸の
ピエゾ素子エレメントは積層して接着され、他の1つの
軸のピエゾ素子エレメントは、前記2つの軸のピエゾ素
子エレメントの面に接着された絶縁体の他の面に接着さ
れると共に、前記2つの軸のエレメントと直交するよう
に配置され、各軸のピエゾ素子エレメントはスベリ変位
を生ずるように駆動されることを特徴とする。
For this purpose, the scanner of the scanning tunneling microscope of the present invention is
A scanner consisting of a 3-axis piezo element made of a thin plate to which a driving voltage is applied so as to be displaced in each of three orthogonal axes, and the piezo element elements of two of the three orthogonal axes are laminated and bonded. and the other one-axis piezoelectric element is bonded to the other surface of the insulator bonded to the surface of the two-axis piezoelectric element, and is perpendicular to the two-axis piezoelectric element. The piezo element elements of each axis are driven to cause sliding displacement.

〔作用〕[Effect]

本発明は、直交する3軸方向にそれぞれ変位するように
駆動電圧が印加される薄板からなる3軸ピエゾ素子エレ
メントを、3軸のうち2つの軸のピエゾ素子子レメント
を積層して接着し、他の1つの軸のピエゾ素子エレメン
トを、前記2つの軸のピエゾ素子エレメントの面に接着
された絶縁体の他の面に接着すると共に、前記2つの軸
のエレメントと直交するように配置し、各軸のピエゾ素
子エレメントにスベリ変位を生じさせるように駆動する
ことにより3軸方向に対して独立して変位を生じさせる
と共に、スキャナを極めて小さ(構成することができる
The present invention includes a three-axis piezo element element made of a thin plate to which a driving voltage is applied so as to be displaced in three orthogonal axes directions, and piezo element elements of two of the three axes are laminated and bonded, A piezoelectric element of another axis is bonded to the other surface of an insulator bonded to the surfaces of the piezoelectric element of the two axes, and is arranged so as to be orthogonal to the elements of the two axes, By driving the piezo element elements of each axis to cause sliding displacement, displacement is caused independently in the three axial directions, and the scanner can be configured to be extremely small.

〔実施例〕〔Example〕

以下、実施例を図面を参照して説明する。 Examples will be described below with reference to the drawings.

第1図は本発明による走査トンネル顕微鏡のスキャナの
一実施例を示す図で、同図(イ)は平面図、同図(ロ)
は側面図、第2図はスキャナのZ軸変位を説明すための
図である。図中、11はスキャナー本体、12は端子板
、13は絶縁板、14は絶縁体、16はZ軸エレメント
、17はX軸エレメント、18はY軸エレメント、19
〜21はX軸、Y軸、Z軸の各端子、22はGND端子
、23はリード線である。
FIG. 1 is a diagram showing an embodiment of the scanner of a scanning tunneling microscope according to the present invention, in which (a) is a plan view and (b) is a plan view.
is a side view, and FIG. 2 is a diagram for explaining the Z-axis displacement of the scanner. In the figure, 11 is the scanner body, 12 is a terminal board, 13 is an insulating plate, 14 is an insulator, 16 is a Z-axis element, 17 is an X-axis element, 18 is a Y-axis element, 19
- 21 are terminals for the X, Y, and Z axes, 22 is a GND terminal, and 23 is a lead wire.

図において、PZTのFiuiからなるX軸エレメント
17と、Y軸エレメント18とは端子板12に固定され
て互いに接着して積層されており、Y軸ニレメンl−1
8の面に絶縁体14が接着固定されている。また絶縁体
14の他の面にはPZTの薄板4枚が積層されたZ軸エ
レメント16が接着固定されている。また端子板12か
らウレタン被覆したリード線23によりそれぞれ駆動電
圧が供給されている。図に示す各X、Y、Z方向の変位
にはPZTの厚みすべり(ズレ)方向変位を用いている
。またZ軸方向はPZTを4枚積み重ねて積層型とし、
それによって変位層を大きくするようにしている。この
Z軸エレメントの先端に図示しない探針を取りつける。
In the figure, an X-axis element 17 and a Y-axis element 18 made of PZT Fiui are fixed to the terminal plate 12 and laminated with each other with adhesive.
An insulator 14 is adhesively fixed to the surface of 8. Further, on the other surface of the insulator 14, a Z-axis element 16 made of four laminated PZT thin plates is adhesively fixed. Further, driving voltages are supplied from the terminal plate 12 through urethane-coated lead wires 23, respectively. For the displacements in each of the X, Y, and Z directions shown in the figure, the displacement in the thickness sliding (slip) direction of PZT is used. In addition, in the Z-axis direction, four sheets of PZT are stacked to form a laminated type.
This increases the displacement layer. A probe (not shown) is attached to the tip of this Z-axis element.

例えばZ軸の変位について説明すると、第2図に示すよ
うにZ軸エレメント16aのズレによる変位に対して、
エレメント16bがさらにズレによる変位を生じ、順次
ズレ変位が重畳され、その結果先端部においζは大きな
変位用を得ることができる。
For example, to explain the displacement of the Z-axis, as shown in FIG.
The element 16b further undergoes displacement due to misalignment, and the misalignment displacements are sequentially superimposed, and as a result, a large displacement of ζ can be obtained at the tip.

このような本発明におけるスキャナでは、−枚−・枚の
エレメントを極めて薄くすると共に、これらを非常に藩
い接着I3で接着することにより、PZT単体における
固有振動数を殆ど低下させることなく、組み立てた状態
で250 K Hz以上の固を振動数を得ることができ
る。また各Φ」1の動きは互いに独立であるので、歪の
ない変位を得ることが可能となる。また各エレメントは
0.3+nと薄く、接着層を極めて薄くすることにより
全体でも約1 、 6 am x 3 mm X 5 
+u程度の大きさで構成することができる。
In the scanner according to the present invention, by making the elements extremely thin and bonding them together using a very delicate adhesive I3, assembly is possible without substantially lowering the natural frequency of the PZT alone. It is possible to obtain a high vibration frequency of 250 KHz or more in a state where the Furthermore, since the movements of each Φ'1 are independent of each other, it is possible to obtain distortion-free displacement. In addition, each element is as thin as 0.3+n, and by making the adhesive layer extremely thin, the total size is approximately 1.6 am x 3 mm x 5.
It can be configured with a size of about +u.

第3図は本発明のスキャナを組み込んだ透過型電子顕微
鏡により反射像を得る場合の概略構成を示す図、第4図
は電子線の軌跡を示す図で、図中、31はホルダ、32
は試料、33は試t4固定台、34はSTM走査部、3
5はSTM針、36は対物レンズ(OL)ポールピース
、37は光軸、38は偏向器、38a、38bは第1、
第2偏向器、39は対物レンズである。
FIG. 3 is a diagram showing a schematic configuration for obtaining a reflected image using a transmission electron microscope incorporating the scanner of the present invention, and FIG. 4 is a diagram showing the trajectory of an electron beam. In the figure, 31 is a holder, 32
3 is the sample, 33 is the test T4 fixing table, 34 is the STM scanning unit, 3
5 is the STM needle, 36 is the objective lens (OL) pole piece, 37 is the optical axis, 38 is the deflector, 38a, 38b are the first,
The second deflector 39 is an objective lens.

ホルダ3Iは、図示しないサイドエントリゴニオメータ
により移動させられて試料32を所定位置にセットする
ようになっている。このホルダ31内には、試料32が
試料固定台33に図示のように取りつけられ、またピエ
ゾ素子からなるSTM走査走査部外4納され、STM針
35が試料31に対向して設けられている。このSTM
走査走査部外4前述したように約1,6鶴×3鶴x5g
程度のものであるので、ホルダ31内に十分収納可能で
ある。
The holder 3I is moved by a side entry goniometer (not shown) to set the sample 32 at a predetermined position. Inside this holder 31, a sample 32 is attached to a sample fixing table 33 as shown in the figure, and an STM scanning section consisting of a piezo element is housed in the outside 4, and an STM needle 35 is provided facing the sample 31. . This STM
Scanning outside the scanning section 4 As mentioned above, about 1.6 cranes x 3 cranes x 5g
Since it is of a small size, it can be sufficiently stored in the holder 31.

上記構成において、光軸に沿って試料面に平行に放出さ
れた電子線が、対物レンズ39の前方磁場と対物レンズ
上方に設置された偏向器38により曲げられかつ集束さ
れて試料面にある角度を持ってスポット状に照射されそ
こで反射されたビームは光軸上を通って対物レンズ下方
に反射像を結像する。その反射像が図示しない感光面状
に結像されて試料面の観察が行われる。このとき、試料
面が光軸に平行であるために、凹凸部分が電子線に対し
て影となるために、その形状に対応して縞が観察される
。ごの凹凸の程度はSTM走査走査部外4動してSTM
走査針35により超精密に測定される。この場合、前述
したようにST、Mの分解能は原子レヘルであるので、
STM針の許容される振動の振幅は0.1Å以下である
が、本発明においては試料と針とが1つのホルダ内に固
定されているため耐振上極めて有利となる。また、ST
Mの探針を試料に近づける際、TEM像として観察する
ことができるのでSTMの探針を試料面に衝突させてし
まうようなことを防止することができる。
In the above configuration, an electron beam emitted parallel to the sample surface along the optical axis is bent and focused by the forward magnetic field of the objective lens 39 and the deflector 38 installed above the objective lens, and is focused at an angle to the sample surface. The beam is irradiated in the form of a spot and reflected there, passing on the optical axis to form a reflected image below the objective lens. The reflected image is formed on a photosensitive surface (not shown), and the sample surface is observed. At this time, since the sample surface is parallel to the optical axis, the uneven portion casts a shadow on the electron beam, so that stripes are observed corresponding to the shape. The degree of unevenness of the surface can be determined by moving the outside of the STM scanning section.
The scanning needle 35 performs ultra-precise measurement. In this case, as mentioned above, the resolution of ST and M is in the atomic level, so
Although the permissible vibration amplitude of the STM needle is 0.1 Å or less, in the present invention, the sample and the needle are fixed in one holder, which is extremely advantageous in terms of vibration resistance. Also, ST
When bringing the M probe close to the sample, it can be observed as a TEM image, making it possible to prevent the STM probe from colliding with the sample surface.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、小型のスキャナを構成す
ることができるので、STMをT I?、M用ホルダ内
に収納可能となり、探針を試料に近づける際にTEMま
たはItEM像を観察しながら行うことができ、またT
EMとST?viを併用することによりTEM像とST
M像の同時観察が可能となる。さらに、スキャナの固有
振動数を高くして高速走査ができるのでSTM像のTV
観察が可能になり、また各軸が独立に変位可能であるの
で、歪の少ない走査を行うことかできる。
As described above, according to the present invention, it is possible to configure a compact scanner, so that the STM can be used as a TI? , it can be stored in the holder for M, and it can be carried out while observing the TEM or ItEM image when bringing the probe close to the sample.
EM and ST? By using vi together, TEM images and ST
Simultaneous observation of M images becomes possible. Furthermore, the scanner's natural frequency can be raised to enable high-speed scanning, making it possible to improve the TV quality of STM images.
Since observation is possible and each axis can be independently displaced, scanning can be performed with less distortion.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による走査トンネル顕微鏡のスキャナの
一実施例を示す図、第2図はスキャナのZ軸変位を説明
すための図、第3図は本発明のスキャナを組み込んだ透
過型′電子w4微鏡により反射像を得る場合の概略構成
を示す図、第4図は電子線の軌跡を示す図、第5図は走
査型トンネル顕微鏡の概略構成を示す図、第6図、第7
図は従来のトライポット型スキャナを示す図である。 11・・・スキャナー本体、12・・・端子板、13.
14・・・絶縁板、16・・・Z軸エレメント、17・
・・X軸エレメント、18・・・Y軸エレメント、19
〜21・・・X軸、Y軸、Z軸の各端子、22・・・G
ND端子、2:(・・・リード線。 出  願  人  日本電子株式会社
FIG. 1 is a diagram showing an embodiment of the scanner of a scanning tunneling microscope according to the present invention, FIG. 2 is a diagram for explaining the Z-axis displacement of the scanner, and FIG. 3 is a diagram showing an embodiment of the scanner of the scanning tunneling microscope according to the present invention. A diagram showing a schematic configuration when obtaining a reflected image with an electron W4 microscope, Figure 4 is a diagram showing the trajectory of an electron beam, Figure 5 is a diagram showing a schematic configuration of a scanning tunneling microscope, Figures 6 and 7
The figure shows a conventional tripod type scanner. 11... Scanner body, 12... Terminal board, 13.
14... Insulating plate, 16... Z-axis element, 17.
...X-axis element, 18...Y-axis element, 19
~21...X-axis, Y-axis, Z-axis terminals, 22...G
ND terminal, 2: (...Lead wire. Applicant: JEOL Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)直交する3軸方向にそれぞれ変位するように駆動
電圧が印加される薄板からなる3軸ピエゾ素子エレメン
トからなるスキャナであって、直交する3軸のうち2つ
の軸のピエゾ素子エレメントは積層して接着され、他の
1つの軸のピエゾ素子エレメントは、前記2つの軸のピ
エゾ素子エレメントの面に接着された絶縁体の他の面に
接着されると共に、前記2つの軸のエレメントと直交す
るように配置され、各軸のピエゾ素子エレメントはスベ
リ変位を生ずるように駆動されることを特徴とする走査
トンネル顕微鏡のスキャナ。
(1) A scanner consisting of a 3-axis piezo element made of a thin plate to which a drive voltage is applied so as to be displaced in each of the three orthogonal axes, in which the piezo element elements for two of the three orthogonal axes are laminated. The piezoelectric element of the other axis is bonded to the other surface of the insulator bonded to the surface of the piezoelectric element of the two axes, and the piezoelectric element of the other one axis is bonded to the other side of the insulator, and the piezoelectric element of the other one axis is bonded to 1. A scanner for a scanning tunneling microscope, characterized in that the piezo element elements on each axis are driven to cause sliding displacement.
(2)直交する3軸のうち少なくとも1軸のピエゾ素子
エレメントは、2枚以上のピエゾ素子が積層されている
特許請求の範囲第1項記載の走査トンネル顕微鏡のスキ
ャナ。
(2) A scanner for a scanning tunneling microscope according to claim 1, wherein the piezo element element for at least one of the three orthogonal axes is a stack of two or more piezo elements.
JP62285837A 1987-11-12 1987-11-12 Scanner for scanning tunnel microscope Granted JPH01127904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62285837A JPH01127904A (en) 1987-11-12 1987-11-12 Scanner for scanning tunnel microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62285837A JPH01127904A (en) 1987-11-12 1987-11-12 Scanner for scanning tunnel microscope

Publications (2)

Publication Number Publication Date
JPH01127904A true JPH01127904A (en) 1989-05-19
JPH0583121B2 JPH0583121B2 (en) 1993-11-24

Family

ID=17696724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62285837A Granted JPH01127904A (en) 1987-11-12 1987-11-12 Scanner for scanning tunnel microscope

Country Status (1)

Country Link
JP (1) JPH01127904A (en)

Also Published As

Publication number Publication date
JPH0583121B2 (en) 1993-11-24

Similar Documents

Publication Publication Date Title
US5861549A (en) Integrated Silicon profilometer and AFM head
US5507179A (en) Synchronous sampling scanning force microscope
US20130174300A1 (en) High-scan rate positioner for scanned probe microscopy
JP4511544B2 (en) Scanning probe microscope
US20010049959A1 (en) Integrated silicon profilometer and AFM head
JP3577141B2 (en) Probe scanning mechanism and scanning probe microscope using the same
US5223713A (en) Scanner for scanning tunneling microscope
US6437343B1 (en) Scanner system and piezoelectric micro-inching mechansim used in scanning probe microscope
JP2891510B2 (en) Piezoelectric element driver
JPH01127904A (en) Scanner for scanning tunnel microscope
JP2556533B2 (en) Scanning tunneling microscope scanner
JP3222410B2 (en) Cantilever unit, its holder, and scanning probe microscope equipped therewith
JPH0833405B2 (en) Scanning microscope
US9625491B2 (en) Scanning mechanism and scanning probe microscope
JPH0868799A (en) Scanning type probe microscope
JP3892184B2 (en) Scanning probe microscope
WO2021044934A1 (en) Scanning probe microscope and driving control device for scanning probe microscope
JPH01127903A (en) Scanning tunnel microscope provided with sample moving mechanism
JP2004101206A (en) Scanning mechanism for scanning probe microscope
JPH07311029A (en) Fine adjustment and scanning probe microscope
JP4448508B2 (en) Scanning probe microscope
JP2962612B2 (en) Scanning microscope
JPH0625642B2 (en) Scanning tunnel microscope device
JPH0771913A (en) Fine adjustment, and scanning type probe microscope
JP3512259B2 (en) Scanning probe microscope

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term