JPH01127872A - Heat pump device - Google Patents

Heat pump device

Info

Publication number
JPH01127872A
JPH01127872A JP28576687A JP28576687A JPH01127872A JP H01127872 A JPH01127872 A JP H01127872A JP 28576687 A JP28576687 A JP 28576687A JP 28576687 A JP28576687 A JP 28576687A JP H01127872 A JPH01127872 A JP H01127872A
Authority
JP
Japan
Prior art keywords
heat exchanger
heat
refrigerant
heating
heat storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28576687A
Other languages
Japanese (ja)
Inventor
Yoshiaki Tanimura
佳昭 谷村
Hideaki Nagatomo
秀明 永友
Kazuhide Yunai
和秀 勇内
Kiyoshi Sakuma
清 佐久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP28576687A priority Critical patent/JPH01127872A/en
Publication of JPH01127872A publication Critical patent/JPH01127872A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE: To improve efficiency of heating and defrosting operation, and shorten defrosting time by storing heat in a heat storage material with the aid of a refrigerant after completing heating at all times upon heating operation, and defrosting an outdoor heat exchanger utilizing stored heat without interrupting the heating even upon defrosting operation. CONSTITUTION: Refrigerant liquid demonstrating heating effect and effusing an indoor heat exchanger 3 is divided after passage through an opening/closing valve 21, a part of which is sent to a heat exchanger 11 in a heat storage unit 9 and a main part of which is sent to a pressure reducing apparatus 30. The partial refrigerant liquid is stored in a heat storage material 11 and is guided to a refrigeration cycle after passage through a pressure reducing apparatus 12 and a check valve 24. In contrast, the main refrigerant liquid becomes a 2 phase refrigerant of a gas/liquid mixture in the pressure reducing apparatus 30 and enters a gas/liquid separator 26. It is separated here to liquid and gas, and the separated gas passes through an opening/closing valve 25 and is absorbed into an injection port 1a of the compressor 1. Further, upon defrosting operation, the refrigerant sent to an outdoor heat exchanger 5 and defrosted enters the heat exchanger 11 in the heat storage unit 9 after passage through the pressure reducing apparatus 11. It absorbs heat there and becomes refrigerant gas, and is returned to the compressor 1 after passage through an opening/closing valve 23.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 との発明は、蓄熱材に蓄えた熱を利用して除霜を行うヒ
ートポンプ装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The invention relates to a heat pump device that performs defrosting using heat stored in a heat storage material.

〔従来の技術〕[Conventional technology]

第2図は特開昭61−125555号公報に示された従
来のヒートポンプ装置の冷凍サイクルを示す冷媒回路の
構成図である。
FIG. 2 is a configuration diagram of a refrigerant circuit showing a refrigeration cycle of a conventional heat pump device disclosed in Japanese Unexamined Patent Publication No. 125555/1982.

第2図において、1は圧縮機、2は四方弁、3は室内熱
交換器、4は第1減圧装置、5は室外熱交換器であり、
これらの部材が順次環状になるように接続されて、冷凍
サイクルが構成されている。
In FIG. 2, 1 is a compressor, 2 is a four-way valve, 3 is an indoor heat exchanger, 4 is a first pressure reducing device, 5 is an outdoor heat exchanger,
A refrigeration cycle is constructed by sequentially connecting these members in a ring shape.

冷凍サイクルの四方弁2と室内熱交換WI3の間に設け
られた第1三方弁6に一端が接続されたバイパスWs1
3の他端が室内熱交換@3と第1減圧装置4の間に接続
され、この接続部と第1減圧装置4の間に蓄熱回路14
の両端が接続されている。
A bypass Ws1 whose one end is connected to the first three-way valve 6 provided between the four-way valve 2 of the refrigeration cycle and the indoor heat exchanger WI3.
The other end of 3 is connected between the indoor heat exchange @ 3 and the first pressure reducing device 4, and a heat storage circuit 14 is connected between this connection and the first pressure reducing device 4.
both ends are connected.

蓄熱回路14には第2減圧装M12、第2三方弁7、蓄
熱器9に充填された蓄熱材10と熱交換する熱交fil
lllがこの順に設けられ、熱交換器11が第3三方弁
8を介して冷媒回路の第1減圧装置4近くに接続されて
いる。また、第2三方弁7を介して蓄熱器1@14が冷
媒回路の四方弁2と圧縮機1の吸入側の間に1キユムレ
ータ17を介して接続されている。なお、第2図中15
.16は第1.第2減圧装置74.12のバイパス@路
に設けた開閉弁である。
The heat storage circuit 14 includes a second pressure reducing device M12, a second three-way valve 7, and a heat exchanger fil that exchanges heat with the heat storage material 10 filled in the heat storage device 9.
1ll are provided in this order, and the heat exchanger 11 is connected to the refrigerant circuit near the first pressure reducing device 4 via the third three-way valve 8. Further, a heat storage device 1@14 is connected via a second three-way valve 7 between the four-way valve 2 of the refrigerant circuit and the suction side of the compressor 1 via a first storage unit 17. In addition, 15 in Figure 2
.. 16 is the first. This is an on-off valve provided in the bypass @path of the second pressure reducing device 74.12.

以上のように構成された従来のヒートポンプ装置の動作
について説明する。
The operation of the conventional heat pump device configured as described above will be explained.

冷房運転時には、圧縮機1から吐出された冷媒は、第2
図の実線矢印に示すように流れ、四方弁2、室外熱交換
vs5、第1減圧装置4、第3三方fp8、室内熱交換
器3、第1三方弁6を経て圧縮機1に戻る。また暖房運
転時には、圧縮機1から吐出された冷媒は、第2図の破
線矢印に示すように流れ、四方弁2、第2三方弁7、室
内熱交換器3、第3三方弁8、減圧装置4、室外熱交換
器5、四方弁2を経て圧縮機1に戻り、この場合には蓄
熱材10への蓄熱を行っていない。蓄熱運転時には、圧
縮機1から吐出された冷媒は、四方弁2、第2三方弁7
、開閉弁16、第2三方弁7を通って蓄熱器9内の熱交
換器11に導かれ、冷媒から蓄熱器9内の蓄熱材10に
放熱されてこれに蓄熱され、第3三方弁8、減圧値W4
、室外熱交換器5、四方弁2を経て圧縮機1に戻り、こ
の場合には暖房を行っていない。
During cooling operation, the refrigerant discharged from the compressor 1 is
It flows as shown by the solid arrow in the figure, and returns to the compressor 1 via the four-way valve 2, the outdoor heat exchange vs5, the first pressure reducing device 4, the third three-way fp8, the indoor heat exchanger 3, and the first three-way valve 6. In addition, during heating operation, the refrigerant discharged from the compressor 1 flows as shown by the broken arrow in FIG. It returns to the compressor 1 via the device 4, the outdoor heat exchanger 5, and the four-way valve 2, and in this case, heat is not stored in the heat storage material 10. During heat storage operation, the refrigerant discharged from the compressor 1 is transferred to the four-way valve 2 and the second three-way valve 7.
, the refrigerant passes through the on-off valve 16 and the second three-way valve 7 to the heat exchanger 11 in the heat storage device 9, and heat is radiated from the refrigerant to the heat storage material 10 in the heat storage device 9 and stored therein. , reduced pressure value W4
, the outdoor heat exchanger 5, and the four-way valve 2 before returning to the compressor 1, and in this case, heating is not performed.

除霜運転時には、圧縮機1から吐出された冷媒は、第2
図の1Jii!矢印に示すように流れ、四方弁2、第1
三方弁6、室内熱交換器3、開閉弁16を通ってW熱器
9内の熱交換器11に導かれ、蓄熱材10に蓄熱された
熱によって冷媒が加熱され、蓄熱Wi9を出た冷媒は、
第3三方弁8、開閉弁15を通って室外熱交換Wi5に
導かれ、この熱交換器5に付着した霜を融かし四方弁2
を経て圧縮機1に戻る。そして、このヒートポンプ装置
では、室内熱交換N3の負荷が小さい場合のみ、上述し
た蓄熱運転を行い、冷凍サイクル内の余熱を蓄熱器9内
の蓄熱材10に蓄熱している。
During defrosting operation, the refrigerant discharged from the compressor 1 is
Figure 1Jii! Flow as shown by the arrow, four-way valve 2, 1st
The refrigerant is guided through the three-way valve 6, the indoor heat exchanger 3, and the on-off valve 16 to the heat exchanger 11 in the W heater 9, where the refrigerant is heated by the heat stored in the heat storage material 10, and exits the heat storage Wi9. teeth,
It is guided to the outdoor heat exchanger Wi5 through the third three-way valve 8 and the on-off valve 15, and is used to melt the frost adhering to the heat exchanger 5.
It returns to compressor 1 via . In this heat pump device, the heat storage operation described above is performed only when the load on the indoor heat exchanger N3 is small, and residual heat in the refrigeration cycle is stored in the heat storage material 10 in the heat storage device 9.

〔発明が解決しようとする問題点3 以上のように構成された従来のヒートポンプ装置では、
蓄熱運転時には暖房を行わず、室内熱交換Wi3の負荷
が小さい場合にのみ蓄熱材に1f熱しており、暖房およ
び除霜運転時の効率がよくないという問題点があった。
[Problem 3 to be solved by the invention In the conventional heat pump device configured as above,
Heating is not performed during heat storage operation, and 1f of heat is applied to the heat storage material only when the load on indoor heat exchange Wi3 is small, resulting in a problem that efficiency during heating and defrosting operation is not good.

この発明は、上記のような問題点を解決するためになさ
れたもので、暖房運転時には常に暖房を行った後の冷媒
によって暖房能力を低下させずに、蓄熱器内の蓄熱材に
蓄熱させ、また除霜運転時にも暖房を停止させずに、上
記蓄熱材に蓄熱された熱を利用して室外熱交換器の除霜
を行うことができ、暖房および除霜運転が効率よくでき
、除霜時間も短くなるヒートポンプ装置を得ることを目
的としている。
This invention was made in order to solve the above-mentioned problems. During heating operation, the refrigerant used after heating is used to store heat in the heat storage material in the heat storage device without reducing the heating capacity. In addition, during defrosting operation, the outdoor heat exchanger can be defrosted using the heat stored in the heat storage material without stopping heating, allowing efficient heating and defrosting operation. The aim is to obtain a heat pump device that takes less time.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係るヒートポンプ装置は、蓄熱器に内蔵した
熱交換器に第2減圧装置が接続された暖房蓄熱回路を、
この回路の入口端および出口端に設けられた弁を介して
冷凍サイクルの室内熱交換器と第1減圧装置の間に設け
、除霜運転時に上記蓄熱器に内蔵した蓄熱材によって室
外熱交換器から出た冷媒を加熱する除霜回路を冷凍サイ
クルの室外熱交換器と圧m*の吸入側の間に介挿し、上
記暖房蓄熱回路の入口端側に設けた弁と1tit’il
lに内蔵した熱交換器の間に第37)iJ圧圧装色気液
分離器を有する管路の入口端を接続し、上記気液分離器
の底を暖房運転時にのみ冷媒を流す弁を介して+mri
J蓄熱回路の入口端と出口端の間で冷凍サイクルに接続
すると共に、圧縮機のインジェクションボートと上記気
液分g1冊の気体出口を、これらを暖房運転時にのみ連
通させる弁が設けられたインジェクション回路によって
接続したものである。
The heat pump device according to the present invention includes a heating heat storage circuit in which a second pressure reducing device is connected to a heat exchanger built in a heat storage device.
It is installed between the indoor heat exchanger of the refrigeration cycle and the first pressure reducing device through valves provided at the inlet and outlet ends of this circuit, and during defrosting operation, the heat storage material built in the heat storage device is used to connect the outdoor heat exchanger to the outdoor heat exchanger. A defrosting circuit that heats the refrigerant discharged from the refrigeration cycle is inserted between the outdoor heat exchanger of the refrigeration cycle and the suction side of the pressure m*, and a valve provided on the inlet end side of the heating heat storage circuit
The inlet end of a pipe having a No. 37) iJ pressure-equipped color gas-liquid separator is connected between the heat exchanger built in the 1. +mri
An injection circuit connected to the refrigeration cycle between the inlet end and the outlet end of the J heat storage circuit, and equipped with a valve that allows communication between the injection boat of the compressor and the gas outlet of the gas-liquid component G1 volume only during heating operation. They are connected by a circuit.

〔作用〕[Effect]

この発明におけるヒートポンプ装置は、暖房運転時には
、第2.第3減圧装置の絞り景によって、室内熱交換器
から出て暖房蓄熱回路に入った冷媒の重量を調整し、こ
の冷媒液の一部のみを蓄熱盤内の熱交換器に通して蓄熱
させ、暖房蓄熱回路に入った主流となる大部分の冷媒液
を第3減圧装置を通して気液分離器に導き、ここで分離
したガスをインジェクション回路によって圧縮機のイン
ジェクションボートに供給することで、冷媒ガスのイン
ジェクションを有効に行わせ、しかも暖房能力を低下さ
せずに蓄熱材に蓄熱でき、暖房と蓄熱が十分にできる。
In the heat pump device of the present invention, during heating operation, the second. The weight of the refrigerant that exits the indoor heat exchanger and enters the heating heat storage circuit is adjusted by the aperture of the third pressure reducing device, and only a portion of this refrigerant liquid is passed through the heat exchanger in the heat storage board to store heat. Most of the refrigerant liquid that is the main stream that has entered the heating heat storage circuit is led to the gas-liquid separator through the third pressure reducing device, and the gas separated here is supplied to the injection boat of the compressor through the injection circuit, thereby reducing the amount of refrigerant gas. Injection is carried out effectively, and heat can be stored in the heat storage material without reducing the heating capacity, allowing sufficient heating and heat storage.

また、除霜運転時には室内熱交換器から出た冷媒を第1
減圧装置および室外熱交換器に通し、この熱交換器に付
着した霜を融かした後、除霜回路に導き、除霜回路を通
る冷媒を上記蓄熱材に蓄熱された熱で加熱して圧1li
i機に戻すことができ、冷媒の蒸発温度を高く維持でき
、更に除霜運転時にも暖房が連続しているので、lll
房および除霜運転が効率よくでき、除霜時間も短くてす
む。
Also, during defrosting operation, the refrigerant discharged from the indoor heat exchanger is
The refrigerant is passed through a pressure reduction device and an outdoor heat exchanger to melt the frost adhering to the heat exchanger, and then led to a defrosting circuit, where the refrigerant passing through the defrosting circuit is heated with the heat stored in the heat storage material and pressurized. 1li
The evaporation temperature of the refrigerant can be maintained at a high level, and heating continues even during defrosting operation.
The cells and defrosting operation can be performed efficiently, and the defrosting time can be shortened.

〔実施例〕〔Example〕

以下、この発明の実施例を図について説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図はこの発明の一実施例によるヒートポンプ装置を
示す冷凍サイクルの冷媒回路構成図である。第1図にお
いて、1はインジェクションボート1aを有する圧縮機
、2は四方弁、3は室内熱交換器、4は第1減圧装置、
5は室外熱交換器であり、これらの部材が順次接続され
て冷凍サイクルが構成されている。18は暖房蓄熱回路
であり、この回路18は蓄熱器9に蓄熱材10と共に内
蔵された熱交換@11に第1減圧装置12が接続されて
いる。冷凍サイクルの熱交換器3と第1減圧装置4の間
に第1開閉弁19が設けられ、暖房蓄熱回路18の入口
端は第3開閉弁21を介して冷凍サイクルの室内熱交換
WI3と第1開閉弁19の間に接続され、暖房蓄熱回路
18の出口端は第1逆止弁24を介して冷凍サイクルの
第1減圧装置4の直前に接続されている、26は暖房蓄
熱回路18の第3開閉弁21と熱交換器11の間に入口
端が接続された管路32に第3減圧装置30を介して入
口端が接続された気液分離器であり、気液分離器26は
底が第2逆止弁31を介して暖房蓄熱回路18の入口端
と出口端の間で冷凍サイクルに接続され、気液分離器2
6の上部に設けた気体出口が第6開閉弁25を有するイ
ンジェクション回路27によって圧縮機1のインジェク
ションボ−I−1aに接続されている。29は除霜回路
であり、この回路29は中間部が暖房蓄熱回路18と第
2減圧装置12および熱交換器11を共用して構成され
ている。冷凍サイクルの室外熱交換器5と四方弁2の間
に第2rJIJ閉弁20が設けられ、除霜回路29の入
口端は第4開閉弁22を介して冷凍サイクルの室外熱交
換@5と第2開閉弁20の間に接続され、除霜回$29
の出口端は暖房蓄熱回路18の熱交換器11と管路32
の分岐部の間から分岐した管路28でこの管路28に設
けた第5rM閉弁23を介して冷凍サイクルの四方弁2
と圧縮4!11の吸入口の間に接続されている。
FIG. 1 is a refrigerant circuit diagram of a refrigeration cycle showing a heat pump device according to an embodiment of the present invention. In FIG. 1, 1 is a compressor having an injection boat 1a, 2 is a four-way valve, 3 is an indoor heat exchanger, 4 is a first pressure reducing device,
Reference numeral 5 denotes an outdoor heat exchanger, and these members are successively connected to form a refrigeration cycle. Reference numeral 18 denotes a heating heat storage circuit, and in this circuit 18, a first pressure reducing device 12 is connected to a heat exchange @11 built in the heat storage device 9 together with a heat storage material 10. A first on-off valve 19 is provided between the heat exchanger 3 of the refrigeration cycle and the first pressure reducing device 4, and the inlet end of the heating heat storage circuit 18 is connected to the indoor heat exchanger WI3 of the refrigeration cycle through the third on-off valve 21. 1 on-off valve 19 , and the outlet end of the heating heat storage circuit 18 is connected immediately before the first pressure reducing device 4 of the refrigeration cycle via the first check valve 24 . It is a gas-liquid separator whose inlet end is connected via a third pressure reducing device 30 to a pipe line 32 whose inlet end is connected between the third on-off valve 21 and the heat exchanger 11, and the gas-liquid separator 26 is The bottom is connected to the refrigeration cycle between the inlet end and the outlet end of the heating heat storage circuit 18 via the second check valve 31, and the gas-liquid separator 2
A gas outlet provided at the upper part of the compressor 6 is connected to the injection port I-1a of the compressor 1 through an injection circuit 27 having a sixth on-off valve 25. Reference numeral 29 denotes a defrosting circuit, and this circuit 29 has an intermediate portion that shares the heating heat storage circuit 18, the second pressure reducing device 12, and the heat exchanger 11. A second rJIJ closing valve 20 is provided between the outdoor heat exchanger 5 of the refrigeration cycle and the four-way valve 2, and the inlet end of the defrosting circuit 29 is connected to the outdoor heat exchanger @5 of the refrigeration cycle and the fourth opening/closing valve 22. Connected between 2 on-off valves 20, defrosting times $29
The outlet end is connected to the heat exchanger 11 of the heating heat storage circuit 18 and the pipe line 32
The four-way valve 2 of the refrigeration cycle is connected to a pipe 28 branched from between the branch parts of the pipe 28 through a fifth rM closing valve 23 provided in this pipe 28.
and the compressor 4!11 inlet.

なお、蓄熱I#9に充填された蓄熱材10は相変化温度
がO℃〜30−℃の間にある水や各種パラフィン、塩化
カルシウム系混合塩などの潜熱利用蓄熱材が用いられて
いる。また第1図において、実線矢印は冷房運転時、破
線矢印は暖房運転時、鎖線矢印は除霜運転時のそれぞれ
冷媒の流れ方向を示す。
Note that the heat storage material 10 filled in the heat storage I#9 is a heat storage material utilizing latent heat such as water, various paraffins, and calcium chloride mixed salts having a phase change temperature between 0° C. and 30° C. Further, in FIG. 1, solid line arrows indicate the flow direction of the refrigerant during cooling operation, broken line arrows indicate the flow direction of the refrigerant during heating operation, and chain line arrows indicate the flow direction of the refrigerant during defrosting operation.

次に、以上のように構成された実施例のヒートポンプ装
置の動作について説明する。
Next, the operation of the heat pump device of the embodiment configured as above will be explained.

冷房運転時には、第1.第2R閉弁19,20が開、第
3〜第5開閉弁21〜23,25が閉にされている。そ
して、圧縮機1から吐出された冷媒は四方弁2、室外熱
交換@5、第1減圧装置4を経て室内熱交換器3に送ら
れ、ここで冷房に供せられ、四方弁2を通って圧縮機1
に戻される。
During cooling operation, the first The second R closing valves 19, 20 are open, and the third to fifth opening/closing valves 21 to 23, 25 are closed. The refrigerant discharged from the compressor 1 is sent to the indoor heat exchanger 3 via the four-way valve 2, the outdoor heat exchange @5, and the first pressure reducing device 4, where it is used for cooling, and then passes through the four-way valve 2. Compressor 1
will be returned to.

暖房運転時には、第2.第3.第6開閉弁20゜21.
25が開、第1.第4.第5開閉弁19゜22.23が
閉にされる。そして、圧縮機1から吐出された高温、高
圧の冷媒ガスは四方fp2を通って室内熱交換器3に送
られ、・ここで放熱して暖房に供せられ、aiit、液
化される。この時の温度変化の一例について説明すると
、冷媒の暖房作用によって室内空気は20℃から40℃
程度に加熱されて暖房に供せられ、冷媒は空気への放熱
によって40℃前後の冷媒液となって室内熱交換W3を
出る。lIl房効果を発揮し終わって室内熱交換器3を
出た冷媒液は第3開閉弁21を通った後に分流され、一
部は蓄熱器9内の熱交換器11に送られ、主流は第3減
圧装置30に送られる。蓄熱器9内には、相変化温度が
0℃〜30℃の間にある蓄熱材10が充填されているた
め、熱交換911に送られた一部の冷媒液により蓄熱材
10が加熱されて固体から液体となって蓄熱される。熱
交換Wi11を出た一部の冷媒は、第2減圧装置12、
第1逆止弁24を通り、第1減圧装隨4の入口近くで冷
凍サイクルに導かれる。第3wt圧装置30に送られた
主流の冷媒液は、第3減圧装置30を通ることで、高圧
と低圧の中間の圧力まで減圧され、気wR混合の2相冷
媒となって気液分@@26に入る。この2相冷媒は気液
分子jIa26で液とガスに分離され、冷媒液のみが第
2逆止弁31を通り、第2減圧装置12を通った一部の
冷媒と合流されて第1減圧装置4に送られ、低温、低圧
の2相冷媒となった後、室外熱交換盤5に送られ、ここ
で吸熱することにより蒸発する。蒸発した冷媒ガスは、
第2開閉fP20、四方弁2を通って圧縮aI11に戻
る。そして、上述したサイクルを繰り返す。
During heating operation, the second Third. 6th on-off valve 20°21.
25 is open, 1st. 4th. The fifth on-off valve 19°22.23 is closed. The high-temperature, high-pressure refrigerant gas discharged from the compressor 1 is sent to the indoor heat exchanger 3 through the four-way fp2, where it radiates heat, is used for heating, and is liquefied. To explain an example of temperature change at this time, indoor air changes from 20℃ to 40℃ due to the heating effect of the refrigerant.
The refrigerant is heated to a certain degree and used for heating, and the refrigerant becomes a refrigerant liquid at around 40° C. by dissipating heat to the air and exits the indoor heat exchange W3. The refrigerant liquid that exits the indoor heat exchanger 3 after exerting its chamber effect is divided after passing through the third on-off valve 21, and a part is sent to the heat exchanger 11 in the heat storage device 9, and the main flow is sent to the heat exchanger 11 in the heat storage device 9. 3 is sent to the pressure reducing device 30. Since the heat storage material 10 having a phase change temperature between 0° C. and 30° C. is filled in the heat storage device 9, the heat storage material 10 is heated by a part of the refrigerant liquid sent to the heat exchanger 911. Heat is stored by changing from solid to liquid. A part of the refrigerant leaving the heat exchanger Wi11 is transferred to the second pressure reducing device 12,
It passes through the first check valve 24 and is led to the refrigeration cycle near the inlet of the first pressure reducing device 4. The mainstream refrigerant liquid sent to the third wt pressure device 30 passes through the third pressure reducing device 30 and is reduced in pressure to an intermediate pressure between high pressure and low pressure, and becomes a two-phase refrigerant with gas wR mixture. Enter @26. This two-phase refrigerant is separated into liquid and gas by the gas-liquid molecule jIa 26, and only the refrigerant liquid passes through the second check valve 31 and is combined with a part of the refrigerant that has passed through the second pressure reducing device 12 to be transferred to the first pressure reducing device. 4, where it becomes a low-temperature, low-pressure two-phase refrigerant, and then sent to the outdoor heat exchange board 5, where it absorbs heat and evaporates. The evaporated refrigerant gas is
It passes through the second opening/closing fP20 and the four-way valve 2 and returns to the compression aI11. The cycle described above is then repeated.

また、上記気液分離$26内で冷媒液と分離された冷媒
ガスは、第6開閉弁25を通り、インジェクション回i
i@27によって圧縮機1のインジェクションポート1
aに吸入される。このため、インジェクションポート1
8に吸入される冷媒流量6割合だけ、高圧側の冷媒流量
がインジェクションポートに冷媒ガスが吸入されない場
合よりも増加し、従って暖房能力および蓄熱能力を含む
高圧側の能力(凝縮能力)がインジェクションされない
場合に比べて増加し、暖房性能が向上する。
Further, the refrigerant gas separated from the refrigerant liquid in the gas-liquid separator 26 passes through the sixth on-off valve 25 and is then transferred to the injection circuit i.
Injection port 1 of compressor 1 by i@27
It is inhaled by a. For this reason, injection port 1
The refrigerant flow rate on the high-pressure side increases by 6% compared to the case where no refrigerant gas is sucked into the injection port, and therefore the high-pressure side capacity (condensing capacity) including heating capacity and heat storage capacity is not injected. compared to the previous case, and the heating performance improves.

しかし、インジェクションを有効に動作させるには、第
3wt圧装置30に入る冷媒液の過冷却度が問題になる
。過冷却度が大きいとインジエクシ、ンボー)1aに吸
入される冷媒の流量が少なくなり、インジェクションに
よる暖房性能が十分に発揮されない。
However, in order to operate the injection effectively, the degree of subcooling of the refrigerant liquid entering the third wt pressure device 30 becomes a problem. If the degree of supercooling is large, the flow rate of the refrigerant sucked into the injector 1a will be reduced, and the heating performance by injection will not be fully demonstrated.

また、[!!房運転から除霜運転に切り換えた後、ある
時間内は蓄熱器9内の蓄熱材10は吸熱されてかなり低
い温度になっており、熱交換器11に入る冷媒との温度
差が大きいので、室内熱交換器3を出た冷媒をすべて蓄
熱器9内の熱交換器11に流すと、ここでの熱交換量(
W熱量)がおおきくなりすぎる。このため熱交換器11
を出た冷媒液の過冷却度が大きくなり、この冷媒液でイ
ンジェクション動作させた場合にはインジェクションに
よる暖房能力の向上が望めなくなる。
Also,[! ! After switching from cooling operation to defrosting operation, the heat storage material 10 in the heat storage device 9 absorbs heat and has a considerably low temperature for a certain period of time, and there is a large temperature difference between it and the refrigerant entering the heat exchanger 11. When all the refrigerant that has exited the indoor heat exchanger 3 flows into the heat exchanger 11 in the heat storage device 9, the amount of heat exchanged here (
W heat amount) becomes too large. For this reason, the heat exchanger 11
The degree of supercooling of the refrigerant liquid that has exited the heating system increases, and if this refrigerant liquid is used for injection operation, it is no longer possible to improve the heating capacity by injection.

この実施例では、上述したことを考慮して第2゜第3減
圧装fi12,30”の絞し量を、第2減圧装置12の
方が第3減圧装¥130よりかなり大きくなるようにコ
ントロールすることで、室内熱交換器3を出た冷媒液は
、ご(一部だけが蓄熱器9内の熱交換器11に入って蓄
熱を行い、冷媒液の主流は第3減圧装M30を通って気
液分離器26に入り、圧縮機1にインジェクションされ
るようにすることで、室内熱交換器3を出た過冷却度の
小さい冷媒液でインジェクションを行うことができ、こ
のため有効にインジェクション機能を発揮させながら、
蓄熱を行うことができる。上記コン1−ロールによって
蓄熱には長時間を要するが、通常は除霜終了から次の除
霜運転の開始まで、暖房運転は1時間以上経過するので
、蓄熱材10への蓄熱に十分な時間があり、MJ?A不
足になる恐れはない。
In this embodiment, in consideration of the above, the throttling amount of the second and third pressure reducing devices fi12,30'' is controlled so that the second pressure reducing device 12 is considerably larger than the third pressure reducing device ¥130. By doing so, the refrigerant liquid that has exited the indoor heat exchanger 3 is transferred to the heat exchanger 11 in the heat storage device 9 to store heat, and the main flow of the refrigerant liquid passes through the third pressure reducing device M30. By entering the gas-liquid separator 26 and being injected into the compressor 1, the injection can be performed using the refrigerant liquid with a small degree of supercooling that has exited the indoor heat exchanger 3. Therefore, the injection can be carried out effectively. While demonstrating its functionality,
Heat storage can be performed. Although it takes a long time to store heat using the controller 1-roll, normally more than one hour elapses during heating operation from the end of defrosting to the start of the next defrosting operation, so there is sufficient time to store heat in the heat storage material 10. There is MJ? There is no risk of running out of A.

更に蓄熱は、高温、高圧の冷媒ガスが室内熱交換器3を
通って凝縮した後の冷媒液で行うため、蓄熱することで
暖房能力は低下しない。
Furthermore, heat storage is performed using the refrigerant liquid after the high-temperature, high-pressure refrigerant gas passes through the indoor heat exchanger 3 and is condensed, so the heating capacity does not decrease due to heat storage.

次に、除霜運転時には、第1.第4.第5開閉弁19,
22.23が開、第2.第3.第6開閉弁20,21.
25が閉にされる。そして、圧縮filから吐出された
高温、高圧の冷媒ガスは、四方弁2を通って室内熱交換
@3に送られ、ここで放熱して暖房が行われるが、暖房
効果を全て発揮せず、一部に冷媒ガスを残した気液混合
の2相冷媒の状態で、第1WJ閉弁19を通って第1減
圧装置4に送られる。ここで、気液混合の2相冷媒は低
圧と高圧の中間の圧力まで減圧され2例えば凝ms度が
10℃〜20℃程度の状態になって室外熱交換器5に送
られ、ここで放熱することで冷媒の全体が凝縮して冷媒
液となる。
Next, during defrosting operation, the first. 4th. Fifth on-off valve 19,
22.23 opened, 2nd. Third. Sixth on-off valve 20, 21.
25 is closed. The high-temperature, high-pressure refrigerant gas discharged from the compressed fil is sent to the indoor heat exchange@3 through the four-way valve 2, where heat is radiated and heating is performed, but the heating effect is not fully exerted. The refrigerant is sent to the first pressure reducing device 4 through the first WJ closing valve 19 in the state of a gas-liquid mixed two-phase refrigerant with some refrigerant gas remaining. Here, the gas-liquid mixed two-phase refrigerant is depressurized to a pressure between low pressure and high pressure, and is sent to the outdoor heat exchanger 5 with a condensation degree of, for example, about 10°C to 20°C, where it radiates heat. This causes the entire refrigerant to condense and become a refrigerant liquid.

上述した放熱によって室外熱交換i15に付着していた
霜が融かされて除霜が行われる。室外熱交換M5を出た
冷媒液は、第4rIR閉弁22を通って第2減圧装置1
2に送られ、低温、低圧の気液混合の2相冷媒となって
蓄熱器9内の熱交換器11に入る。ここで、2相冷媒は
蓄熱材10に蓄熱されている熱を吸熱して蒸発し、冷媒
ガスとなゆ第5開閉弁23を経て圧縮機1に戻る。上述
したサイクルの運転は除霜が完了するまで行われ、完了
後は再びm!jJ運転となる。
The frost adhering to the outdoor heat exchanger i15 is melted by the heat radiation described above, and defrosting is performed. The refrigerant liquid exiting the outdoor heat exchanger M5 passes through the fourth rIR closing valve 22 and enters the second pressure reducing device 1.
2, the refrigerant becomes a low-temperature, low-pressure gas-liquid mixed two-phase refrigerant and enters the heat exchanger 11 in the heat storage device 9. Here, the two-phase refrigerant absorbs the heat stored in the heat storage material 10, evaporates, and returns to the compressor 1 via the fifth on-off valve 23 as a refrigerant gas. The cycle described above continues until defrosting is completed, and then m! It becomes jJ driving.

上述した除霜運転は、0℃〜30℃の間に相変化温度を
もつ蓄熱材10を熱源として行われるため、外気を熱源
として暖房運転をしている場合に比べ、冷媒の蒸発温度
が高く維持され放熱能力が大きく増加する。このため、
暖房と除霜に冷媒の放熱能力を振り分けても外気熱源の
場合とほぼ同等の暖房能力が維持されると共に、除霜時
間も短縮される。
The above-mentioned defrosting operation is performed using the heat storage material 10 having a phase change temperature between 0°C and 30°C as a heat source, so the evaporation temperature of the refrigerant is higher than when heating is performed using outside air as a heat source. heat dissipation capacity is greatly increased. For this reason,
Even if the heat dissipation capacity of the refrigerant is divided between heating and defrosting, the heating capacity is maintained almost the same as in the case of an outside air heat source, and the defrosting time is also shortened.

この実施例では、除霜運転中に室外熱交換器5を流れる
冷媒の圧力を第1減圧装置4によって減圧して中間圧力
とし、除霜のための冷媒放熱温度を10℃〜20℃に調
整している。この調整は、第1減圧装置4を用いずに暖
房運転時と同程度の40℃〜50℃の冷媒を室外熱交゛
換器5に流すと、冷媒のもつ凝縮熱が除霜に使用される
以外に、外気への放熱となる放熱ロス分が増加するのを
防ぐためである。
In this embodiment, during defrosting operation, the pressure of the refrigerant flowing through the outdoor heat exchanger 5 is reduced by the first pressure reducing device 4 to an intermediate pressure, and the refrigerant radiation temperature for defrosting is adjusted to 10°C to 20°C. are doing. In this adjustment, if a refrigerant at a temperature of 40°C to 50°C, which is the same as that during heating operation, is flowed through the outdoor heat exchanger 5 without using the first pressure reducing device 4, the condensation heat of the refrigerant is used for defrosting. In addition to this, this is to prevent an increase in heat radiation loss, which is radiation to the outside air.

上述したように、この実施例では暖房運転時にはガスイ
ンジ工クレヨン回路を用い、また室内fi交換器を出た
後の冷媒によって蓄熱を行うようにしたので、暖房能力
を減じることなく十分に蓄熱でき、除霜運転時には蓄熱
材を熱源とする運転であるため、冷媒の蒸発温度を高く
維持でき、除霜と同時に通常の暖房運転時と同等の暖房
が行えるという効果がある。
As mentioned above, in this embodiment, a gas injector crayon circuit is used during heating operation, and heat is stored using the refrigerant after leaving the indoor FI exchanger, so that sufficient heat can be stored without reducing heating capacity. During defrosting operation, since the heat storage material is used as a heat source, the evaporation temperature of the refrigerant can be maintained high, and there is an effect that heating equivalent to that during normal heating operation can be performed at the same time as defrosting.

なお、上記実施例において、第1.第3開閉弁19.2
1および第2.第4開閉弁20.22はそれぞれ1つの
三方弁に代えることができ、また第5.第6rM閉弁2
3,25は逆止弁に代えることができ、第1.第2逆止
弁24.31は開閉弁に代えることができる。
In addition, in the above embodiment, the first. Third on-off valve 19.2
1 and 2. Each of the fourth on-off valves 20.22 can be replaced by one three-way valve, and the fifth. 6th rM valve closing 2
3 and 25 can be replaced with check valves, and 1. The second check valve 24.31 can be replaced with an on-off valve.

また、この発明において、除霜回路は、冷凍サイクルの
室外熱交換器と四方弁の間に設けた除霜運転時にのみ閉
じる弁と上記室外熱交換器の間で入口端を冷凍サイクル
に接続し、かつ第4減圧装置と蓄熱器内に設けた吸熱用
熱交換器とをこの順に接続し、出口端を上記除霜運転時
にのみ閉じる弁と上記四方弁の間に接続したものにする
など除霜運転時に室外熱交換器から出た冷媒を、暖房運
転時に蓄熱された蓄熱材で加熱して圧m機に戻すもので
あれば、適宜変更できる。
Further, in the present invention, the defrosting circuit has an inlet end connected to the refrigeration cycle between the outdoor heat exchanger and a valve that is provided between the outdoor heat exchanger of the refrigeration cycle and the four-way valve and is closed only during defrosting operation. , and the fourth pressure reducing device and the endothermic heat exchanger provided in the heat storage device are connected in this order, and the outlet end is connected between the valve that is closed only during the defrosting operation and the four-way valve. It can be changed as appropriate as long as the refrigerant discharged from the outdoor heat exchanger during frost operation is heated by the heat storage material stored during heating operation and returned to the compressor.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明によれば暖房運転時には
、第2.第3減圧装置の絞り量をコントロールすること
により、室内熱交換器から出て暖房蓄熱回路に入った冷
媒液の一部のみを蓄熱器内の熱交換器に通して蓄熱させ
、暖房′M熱回路に入った主流となる大部分の冷媒液を
第3減圧装置に通して気液分離器に導き、ここで分離し
た冷媒ガスをインジェクション回路によって圧縮機のイ
ンジェクションボー1・に供給し、冷媒ガスのインジェ
クションを有効に行わせ、しかも暖房能力を減少させず
に蓄熱材に蓄熱できて、暖房と蓄熱が十分にでき、除霜
運転時には、室内熱交換器から出た冷媒を第1ni圧装
置および室外熱交換器に通し、この熱交換器に付着した
霜を融かした後、除霜回路に導き除霜回路を通る冷媒を
上記蓄熱材に蓄熱された熱で加熱して圧縮機に戻すよう
にしたので、冷媒の蒸発温度を高く維持でき、効率のよ
い除霜ができ、除霜時間も短くなり、除霜と同時に通常
のrji房運転時と同等の能力で暖房が行えるという効
果がある。
As explained above, according to the present invention, during heating operation, the second. By controlling the throttling amount of the third pressure reducing device, only a part of the refrigerant liquid that came out of the indoor heat exchanger and entered the heating heat storage circuit is passed through the heat exchanger in the heat storage device to store heat, and the heating Most of the refrigerant liquid that has entered the circuit passes through the third pressure reducing device and is guided to the gas-liquid separator.The refrigerant gas separated here is supplied to the injection port 1 of the compressor through the injection circuit, and the refrigerant gas is In addition, heat can be stored in the heat storage material without reducing heating capacity, and sufficient heating and heat storage can be achieved. During defrosting operation, the refrigerant discharged from the indoor heat exchanger is transferred to the first ni-pressure device and The refrigerant is passed through an outdoor heat exchanger to melt the frost attached to the heat exchanger, and then guided to a defrosting circuit where the refrigerant passing through the defrosting circuit is heated by the heat stored in the heat storage material and returned to the compressor. As a result, the evaporation temperature of the refrigerant can be maintained high, efficient defrosting can be performed, and the defrosting time is shortened, which has the effect of defrosting and heating at the same capacity as when operating a normal RJI. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例によるヒートポンプ装置の
冷凍サイクルを示す冷媒回路構成図、第2図は従来例の
ヒートポンプ装置の冷凍サイクル゛を示す冷媒回路構成
図である。 1・・・圧縮機、la・・インジェクシ9ンボート、2
・・・四方弁、3・・・室内熱交換器、4・・・第1減
圧装置、5・・・室外熱交換器、9・・蓄熱器、10・
・・蓄熱材、11・・熱交換器、12・・・第2減圧装
置、18・暖房蓄熱回路、19〜23.25・・第1〜
第5゜第6開閉弁、24.31第1.第2逆止弁、26
・・気液分@@、27・・インジェクション回路、29
・・・除霜回路、30・・・第3減圧装置。 なお、図中同一符号は同−又は相当部分を示す。 手続補正書(自発) 20発明の名称 ヒートポンプ装置 3、補正をする者 代表者志岐守哉 5、補正の対象 (1)明細書の特許請求の範囲の欄 (2)明細書の発明の詳細な説明の欄 (3)図面 6、補正の内容 (1)明細書の特許請求の範囲を別紙の通り補正する。 (2)明細書第4頁第14行目、同4頁第19行目に「
第2三方弁7」と夫々あるを、「第1三方弁6」と各々
補正する。 (3)同第4頁第15行目、第5頁第2行目に「減圧装
置4」と夫々あるを、「第1減圧装置4」と各々補正す
る。 (4)同第7頁第4行目、第9頁第12行目に「底」と
夫々あるを、「肢体出口」と各々補正する。 (5)同第17頁第12行目〜第14行目に「また・・
・ことができ、」とあるを削除する。 (6)図面第2図を別紙の通り補正する。 7、添付書類 (1)補正後の特許請求の範囲の全文を記載した書面 
           1通(2)  補正図面   
           1通補正後の特許請求の範囲の 全文を記載した書面 2、特許請求の範囲 (1)  圧縮機と四方弁と室内熱交換器と第1減圧装
置と室内熱交換器とを順次接続した冷凍サイクルを有す
るヒートポンプ装置において、蒸発器に蓄熱材と共に内
蔵した熱交換器に第2減圧装置が接続され冷凍サイクル
の室内熱交換器と第1減圧装置の間に入口端および出口
端がそれぞれ弁を介して接続され暖房終了後の冷媒によ
って上記蓄熱材に蓄熱させる暖房蓄熱回路と、冷凍サイ
クルの室内熱交換器と四方弁の間に入口端が接続され上
記圧縮機の吸入側に出口端が接続され除霜運転時に室外
熱交換器から出た冷媒を上記蓄熱材に蓄熱された熱で加
熱して圧縮機に戻す除霧回路とを備え、上記暖房蓄熱回
路の入口端側に設けた弁と蓄熱器に内蔵した熱交換器の
間に第3減圧装置と気液分離器を有する管路の入口端を
接続し、上記気液分離器のJILnMmを暖房運転時に
のみ冷媒を流す弁を介し暖房蓄熱回路の入口端と出口端
の間で冷凍サイクルに接続すると共に、上記圧縮機はイ
ンジェクシ璽ンポートを有するものとし、このポートと
上記気液分11!1の気体出口を、これらを暖房運転時
にのみ連通させる弁が設けられたインジェクシアン回路
によって接続したことを特徴とするヒートポンプ装置。 (21II!房蓄熱回路は、入口端に暖房運転時にのみ
暖房蓄熱回路を開き冷凍サイクルの室内熱交換器と第1
減圧装置の間を閉じる弁を設け、出口端に逆止弁を設け
、除霜回路は入口端に除霜運転時のみ除霜回路を開き冷
凍サイクルの室外熱交換型の間を閉じる弁を設け、中間
部が暖房蓄熱回路と第2減圧装置および熱交換器を共用
し、暖房蓄熱回路の熱交換器と入口端の弁の間から分岐
し、出口端を除霜運転時にのみ開く弁を介して冷凍サイ
クルの四方弁と圧縮機の吸入口の間に接続した特許請求
の範囲第1項記載のヒートポンプ装置。
FIG. 1 is a refrigerant circuit configuration diagram showing a refrigeration cycle of a heat pump device according to an embodiment of the present invention, and FIG. 2 is a refrigerant circuit configuration diagram showing a refrigeration cycle of a conventional heat pump device. 1... Compressor, la... Injector 9 boat, 2
...Four-way valve, 3.Indoor heat exchanger, 4.First pressure reducing device, 5.Outdoor heat exchanger, 9.Regenerator, 10.
...Heat storage material, 11..Heat exchanger, 12..Second pressure reducing device, 18.Heating heat storage circuit, 19-23.25..First-
5th degree 6th on-off valve, 24.31 1st. Second check valve, 26
... Gas-liquid @@, 27... Injection circuit, 29
...Defrosting circuit, 30...Third pressure reducing device. Note that the same reference numerals in the figures indicate the same or equivalent parts. Procedural amendment (voluntary) 20 Name of the invention Heat pump device 3, Representative of the person making the amendment Moriya Shiki 5, Subject of amendment (1) Scope of claims in the specification (2) Detailed description of the invention in the specification Explanation column (3) Drawing 6, Contents of amendment (1) The claims of the specification are amended as shown in the attached sheet. (2) On page 4, line 14 of the specification, and on page 4, line 19, “
"Second three-way valve 7" is corrected to "first three-way valve 6." (3) In the 15th line of the 4th page and the 2nd line of the 5th page, the words "decompression device 4" are respectively corrected to "first decompression device 4". (4) The words "bottom" on page 7, line 4 and page 9, line 12, respectively, are corrected to read "limb exit." (5) On page 17, lines 12 to 14, “Again...
・Delete the text "Can be done." (6) Amend Figure 2 of the drawing as per the attached sheet. 7. Attached documents (1) Document stating the entire text of the amended scope of claims
1 copy (2) Amended drawings
Document 2 stating the full text of the claims after one amendment, Claims (1) Refrigeration in which a compressor, a four-way valve, an indoor heat exchanger, a first pressure reducing device, and an indoor heat exchanger are sequentially connected In a heat pump device having a cycle, a second pressure reducing device is connected to a heat exchanger built into the evaporator together with a heat storage material, and an inlet end and an outlet end each have a valve between the indoor heat exchanger of the refrigeration cycle and the first pressure reducing device. A heating heat storage circuit that is connected through the heating heat storage circuit to store heat in the heat storage material using the refrigerant after heating has finished, and an inlet end connected between the indoor heat exchanger and the four-way valve of the refrigeration cycle, and an outlet end connected to the suction side of the compressor. and a fog removal circuit which heats the refrigerant discharged from the outdoor heat exchanger during defrosting operation using the heat stored in the heat storage material and returns it to the compressor, and a valve provided at the inlet end side of the heating heat storage circuit; The inlet end of a pipe having a third pressure reducing device and a gas-liquid separator is connected between the heat exchanger built in the heat storage device, and the JILnMm of the gas-liquid separator is connected to the heating via a valve that allows refrigerant to flow only during heating operation. In addition to being connected to the refrigeration cycle between the inlet end and the outlet end of the heat storage circuit, the compressor has an injection port, and this port and the gas outlet of the gas-liquid component 11!1 are connected to each other during heating operation. A heat pump device characterized in that the heat pump device is connected by an injector circuit provided with a valve that allows communication between the heat pump and the heat pump. (21II! The chamber heat storage circuit opens the heating heat storage circuit only during heating operation at the inlet end and connects the indoor heat exchanger of the refrigeration cycle with the first
A valve is provided to close the space between the pressure reducing device, a check valve is provided at the outlet end, and a valve is provided at the inlet end of the defrost circuit that opens the defrost circuit only during defrosting operation and closes the space between the outdoor heat exchange type of the refrigeration cycle. , the middle part shares the heating heat storage circuit with the second pressure reducing device and the heat exchanger, the heat exchanger of the heating heat storage circuit and the valve at the inlet end are branched, and the outlet end is connected through a valve that opens only during defrosting operation. The heat pump device according to claim 1, wherein the heat pump device is connected between a four-way valve of a refrigeration cycle and a suction port of a compressor.

Claims (2)

【特許請求の範囲】[Claims] (1)圧縮機と四方弁と室外熱交換器と第1減圧装置と
室内熱交換器とを順次接続した冷凍サイクルを有するヒ
ートポンプ装置において、蒸発器に蓄熱材と共に内蔵し
た熱交換器に第2減圧装置が接続され冷凍サイクルの室
内熱交換器と第1減圧装置の間に入口端および出口端が
それぞれ弁を介して接続され暖房終了後の冷媒によって
上記蓄熱材に蓄熱させる暖房蓄熱回路と、冷凍サイクル
の室外熱交換器と四方弁の間に入口端が接続され上記圧
縮機の吸入側に出口端が接続され除霜運転時に室外熱交
換器から出た冷媒を上記蓄熱材に蓄熱された熱で加熱し
て圧縮機に戻す除霜回路とを備え、上記暖房蓄熱回路の
入口端側に設けた弁と蓄熱器に内蔵した熱交換器の間に
第3減圧装置と気液分離器を有する管路の入口端を接続
し、上記気液分離器の底を暖房運転時にのみ冷媒を流す
弁を介し暖房蓄熱回路の入口端と出口端の間で冷凍サイ
クルに接続すると共に、上記圧縮機はインジェクション
ポートを有するものとし、このポートと上記気液分離器
の気体出口を、これらを暖房運転時にのみ連通させる弁
が設けられたインジェクション回路によって接続したこ
とを特徴とするヒートポンプ装置。
(1) In a heat pump device having a refrigeration cycle in which a compressor, a four-way valve, an outdoor heat exchanger, a first pressure reducing device, and an indoor heat exchanger are sequentially connected, a second heat exchanger is installed in the evaporator together with a heat storage material. a heating heat storage circuit to which a pressure reducing device is connected, an inlet end and an outlet end of which are connected via valves between an indoor heat exchanger of a refrigeration cycle and a first pressure reducing device, and which causes heat to be stored in the heat storage material by refrigerant after completion of heating; The inlet end is connected between the outdoor heat exchanger and the four-way valve of the refrigeration cycle, and the outlet end is connected to the suction side of the compressor, and the refrigerant discharged from the outdoor heat exchanger during defrosting operation is stored in the heat storage material. and a defrosting circuit that heats with heat and returns it to the compressor, and a third pressure reducing device and a gas-liquid separator are installed between a valve provided on the inlet end side of the heating heat storage circuit and a heat exchanger built in the heat storage device. The bottom of the gas-liquid separator is connected to the refrigeration cycle between the inlet end and the outlet end of the heating heat storage circuit through a valve that allows refrigerant to flow only during heating operation, and the compressor 1. A heat pump device, characterized in that the device has an injection port, and the port and the gas outlet of the gas-liquid separator are connected by an injection circuit provided with a valve that allows communication between these ports only during heating operation.
(2)暖房蓄熱回路は、入口端に暖房運転時にのみ暖房
蓄熱回路を開き冷凍サイクルの室内熱交換器と第1減圧
装置の間を閉じる弁を設け、出口端に逆止弁を設け、除
霜回路は入口端に除霜運転時のみ除霜回路を開き冷凍サ
イクルの室外熱交換器の間を閉じる弁を設け、中間部が
暖房蓄熱回路と第2減圧装置および熱交換器を共用し、
暖房蓄熱回路の熱交換器と入口端の弁の間から分岐し、
出口端を除霜運転時にのみ開く弁を介して冷凍サイクル
の四方弁と圧縮機の吸入口の間に接続した特許請求の範
囲第1項記載のヒートポンプ装置。
(2) The heating heat storage circuit is equipped with a valve at the inlet end that opens the heating heat storage circuit only during heating operation and closes between the indoor heat exchanger of the refrigeration cycle and the first pressure reducing device, and a check valve at the outlet end. The defrost circuit is provided with a valve at the inlet end that opens the defrost circuit only during defrosting operation and closes between the outdoor heat exchangers of the refrigeration cycle, and the intermediate part shares the heating heat storage circuit, the second pressure reducing device, and the heat exchanger.
Branches from between the heat exchanger of the heating storage circuit and the valve at the inlet end,
The heat pump device according to claim 1, wherein the outlet end is connected between the four-way valve of the refrigeration cycle and the suction port of the compressor via a valve that opens only during defrosting operation.
JP28576687A 1987-11-12 1987-11-12 Heat pump device Pending JPH01127872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28576687A JPH01127872A (en) 1987-11-12 1987-11-12 Heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28576687A JPH01127872A (en) 1987-11-12 1987-11-12 Heat pump device

Publications (1)

Publication Number Publication Date
JPH01127872A true JPH01127872A (en) 1989-05-19

Family

ID=17695774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28576687A Pending JPH01127872A (en) 1987-11-12 1987-11-12 Heat pump device

Country Status (1)

Country Link
JP (1) JPH01127872A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6021940B2 (en) * 2012-11-29 2016-11-09 三菱電機株式会社 Air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6021940B2 (en) * 2012-11-29 2016-11-09 三菱電機株式会社 Air conditioner
JPWO2014083867A1 (en) * 2012-11-29 2017-01-05 三菱電機株式会社 Air conditioner

Similar Documents

Publication Publication Date Title
US7412838B2 (en) Heat pump using CO2 as refrigerant and method of operation thereof
JPH02238256A (en) Freezing device and actuating method thereof
CN107110546A (en) Conditioner
CN207214503U (en) Air conditioner system and air conditioner with same
CN207471689U (en) Air-conditioning system
JP5237157B2 (en) Air heat source turbo heat pump
JPH01127871A (en) Heat pump device
JP2667741B2 (en) Air conditioner
JPH01127872A (en) Heat pump device
CN207471736U (en) Air-conditioning system
JPH10205933A (en) Air conditioner
CN207584898U (en) Air-conditioning system
JP2004324947A (en) Air conditioning system
JPH0730978B2 (en) Heat pump device
JP3754272B2 (en) Air conditioner
JP2698179B2 (en) Air conditioning
JPH06147677A (en) Air conditioner
JPH09318178A (en) Air conditioner
JPH035680A (en) Air conditioner
JPH0297847A (en) Separate type air conditioner designed for multi chambers
JPH0573989B2 (en)
JPS6117873A (en) Air-conditioning hot-water supply device
JP2751695B2 (en) Heat storage type cooling device
JPS6196375A (en) Air-conditioning hot-water supply device
JPH04359764A (en) Refrigerant heating type multi freezing cycle