JPS6196375A - Air-conditioning hot-water supply device - Google Patents

Air-conditioning hot-water supply device

Info

Publication number
JPS6196375A
JPS6196375A JP21610184A JP21610184A JPS6196375A JP S6196375 A JPS6196375 A JP S6196375A JP 21610184 A JP21610184 A JP 21610184A JP 21610184 A JP21610184 A JP 21610184A JP S6196375 A JPS6196375 A JP S6196375A
Authority
JP
Japan
Prior art keywords
refrigerant
valve
heat exchanger
hot water
water supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21610184A
Other languages
Japanese (ja)
Inventor
久平 石羽根
弘 安田
政克 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP21610184A priority Critical patent/JPS6196375A/en
Publication of JPS6196375A publication Critical patent/JPS6196375A/en
Pending legal-status Critical Current

Links

Landscapes

  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Domestic Hot-Water Supply Systems And Details Of Heating Systems (AREA)
  • Nozzles (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、冷暖房給湯装置に係り、特に給湯、冷房、暖
房の各運転が可能で、給湯と冷房または給湯と暖房の同
時運転に好適なヒートポンプ式の冷暖房給湯装置に関す
るものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to an air-conditioning, heating, and water supply system, and particularly to a heat pump that is capable of each operation of hot water supply, cooling, and heating, and is suitable for simultaneous operation of hot water supply and cooling, or hot water supply and heating. This relates to a type of air-conditioning/heating/water heating system.

〔発明の背景〕[Background of the invention]

冷房、暖房、給湯の各運転、さらには給湯と冷房、給湯
と暖房の同時運転が可能な冷暖房給湯装置としては、例
えば実開昭49−94269号公報に記載されているよ
うな冷凍サイクルがある。
An example of an air-conditioning/heating/water supply device capable of performing cooling, heating, and hot water supply operations, as well as simultaneous operation of hot water supply, cooling, and hot water supply and heating, is a refrigeration cycle as described in Japanese Utility Model Publication No. 49-94269. .

当該公報によれば、切換弁と第1〜4開口端をそれぞれ
有し夏期の給湯および冷房時に第1開口端と第2開口端
あるいは第8開口端と第4開口端とをそれぞれ連通する
ように切換弁を移動し、冬期の給湯および暖房時に第1
開口端と第4開口端あるいは第2開口端と第3開口端と
をそれぞれ連通するよう切換弁を移動する四方弁を設け
、圧縮機の出口に四方弁の第1開口端と給湯用熱交換器
とを接成し、圧縮機の人口と四方弁の第2開口端との間
にアキコムレータとを接続し、四方弁の第8開口端と第
4開口端にそれぞれ室外コイルと室内コイルの一端を接
続し、給湯用熱交換器と室内コイルと室外コイルの他端
を連結する6管の途中にそれぞれ電磁弁およびキャピラ
リチューブをそれぞれ接続してなる給湯兼用ヒートポン
プ式冷暖房機の構成と作用が開示されている。
According to the publication, it has a switching valve and first to fourth opening ends, respectively, and communicates the first opening end and the second opening end, or the eighth opening end and the fourth opening end, respectively, during hot water supply and cooling in the summer. The switching valve was moved to
A four-way valve is provided that moves the switching valve so that the open end and the fourth open end or the second open end and the third open end are communicated with each other, and the outlet of the compressor is connected to the first open end of the four-way valve for heat exchange for hot water supply. An Akicomulator is connected between the compressor and the second opening end of the four-way valve, and one end of the outdoor coil and one end of the indoor coil are connected to the eighth opening end and the fourth opening end of the four-way valve, respectively. Discloses the structure and operation of a heat pump type air conditioner for hot water supply and heating, in which a solenoid valve and a capillary tube are respectively connected in the middle of six pipes that connect a heat exchanger for hot water supply, an indoor coil, and the other end of an outdoor coil. has been done.

え、さらに夏期の冷房のみのときは給湯用熱交換器の電
磁弁のみを閉にし、給湯と冷房を兼用するときには社外
コイル用電磁弁のみを閉とし、さらに冬期の暖房のみは
給湯用熱交換器の電磁弁のみ閉にし、給湯を行うときに
は室内コイル用電磁弁のみ閉にする操作で、きわめて簡
単に夏期と冬期の冷房と暖房ならびに給湯冷房および給
湯を一台の冷暖房機で行うことができるきわめて実用的
効果の大なるものである。
Furthermore, when only cooling is required in the summer, only the solenoid valve of the hot water heat exchanger is closed, when both hot water supply and cooling are used, only the solenoid valve for the external coil is closed, and furthermore, when only heating is required in the winter, the solenoid valve of the hot water heat exchanger is closed. By closing only the solenoid valve for the indoor coil and closing only the solenoid valve for the indoor coil when supplying hot water, you can extremely easily perform cooling and heating in the summer and winter, as well as hot water cooling and hot water supply, with a single air conditioner. This has extremely great practical effects.

しかし、各運転モードでの必要冷媒量は異なるものであ
り、この給湯兼用ヒートポンプ式冷暖房機のサイクルで
は、各運転モードで安定した性能を得るのは難しい。す
なわち、冷房、暖房、給湯および冷房給湯の各運転で不
使用となる熱交換器あるいはコイルに液冷媒がたまり、
サイクルとしては冷媒不足となる点については、配慮が
十分になされていなかった。
However, the amount of refrigerant required in each operation mode is different, and it is difficult to obtain stable performance in each operation mode in the cycle of this hot water supply heat pump type air conditioner/heater. In other words, liquid refrigerant accumulates in heat exchangers or coils that are not used during cooling, heating, hot water supply, and cooling hot water supply operations.
Not enough consideration was given to the fact that the cycle would run out of refrigerant.

〔発明の目的〕[Purpose of the invention]

本発明は、前述の従来技術の問題点を解決するためにな
されたもので、冷房、暖房、給湯の各運転および冷房と
給湯、暖房と給湯の同時運転、さらには除霜運転などの
各運転時に、不使用状態になる熱交換器内に液冷媒がた
まることを防止し、したがって各運転を効率よく行うこ
とのできるヒートポンプ式冷暖房給湯装置の提供を、そ
の目的としている。
The present invention has been made in order to solve the problems of the prior art described above, and includes various operations such as cooling, heating, and hot water supply, simultaneous cooling and hot water supply, heating and hot water supply, and defrosting operation. It is an object of the present invention to provide a heat pump type air-conditioning/heating/hot-water supply device that can prevent liquid refrigerant from accumulating in a heat exchanger that is sometimes in an unused state, and therefore can perform each operation efficiently.

〔発明の概要〕[Summary of the invention]

本発明に係る冷暖房給湯装置の構成は、圧縮機、給湯熱
交換器、冷暖房熱交換器、熱源側熱交換器、アキコムレ
ータ、少なくとも四方に冷媒流路を切替えうる第1の流
路切替弁、少なくとも三方に冷媒流路を切替えうる第2
の流路切替弁、第1締切弁、第2締切弁、第8締切弁、
第4締切弁、第1減圧手段、第2減圧手段、第8減圧手
段およびこれらを接続する冷媒配管を備えて冷凍サイク
ルを構成する冷媒給湯装置であって、前記第1の流路切
替弁の、常に高圧となる高圧ポートを前記圧縮機の冷媒
吐出管に、常に低圧となる低圧ポートを前記アキュムレ
ータを介して前記圧縮機の冷媒吸入管に、第1ポートを
前記第1締切弁を介して前記熱源側熱交換器の一端に、
また、第2ポートを前記第2締切弁を介して前記冷暖房
熱交換器の一端にそれぞれ配管接続し、前記第2の流路
切替弁の、常に高圧となる高圧ポートを前記圧縮機と前
記第1の流路切替弁とを結ぶ配管の途中に、常に低圧と
なる低圧ポートを前記第1の流路切替弁と前記アキュム
レータとを結ぶ配管の途中に、また、残る1つのポート
を前記給湯熱交換器の一端にそれぞれ配管接続するとと
もに、前記給湯熱交換器の他端を前記熱源側熱交換器の
他端に、前記第1減圧手段と、並列に配設された前記第
2減圧手段および前記第8締切弁とが七九それ直列に具
備された配管を介して接続し、かつ、これら前記の第1
減圧手段と第2減圧手段および第8締切弁とを結ぶ配管
の途中から前記冷暖房熱交換器の他端までを、並列に配
設された前記第8減圧手段督よび前記第4締切弁を具備
する配管を介して接続し、冷凍サイクルを構成したもの
である。
The configuration of the air conditioning/heating/water supply device according to the present invention includes a compressor, a hot water supply heat exchanger, an air conditioning/heating heat exchanger, a heat source side heat exchanger, an Akicomulator, a first flow path switching valve capable of switching a refrigerant flow path in at least four directions, and at least The second part allows the refrigerant flow path to be switched to three directions.
flow path switching valve, first shutoff valve, second shutoff valve, eighth shutoff valve,
A refrigerant hot water supply device comprising a refrigeration cycle including a fourth shutoff valve, a first pressure reducing means, a second pressure reducing means, an eighth pressure reducing means, and refrigerant piping connecting these, wherein the first flow path switching valve is , a high pressure port that is always at high pressure is connected to the refrigerant discharge pipe of the compressor, a low pressure port that is always at low pressure is connected to the refrigerant suction pipe of the compressor through the accumulator, and a first port is connected to the refrigerant suction pipe of the compressor through the first shutoff valve. At one end of the heat source side heat exchanger,
Further, a second port is connected via piping to one end of the heating/cooling heat exchanger through the second shutoff valve, and a high pressure port of the second flow path switching valve, which is always at high pressure, is connected to the compressor and the high pressure port of the second flow path switching valve. A low pressure port that is always at low pressure is placed in the middle of the piping connecting the first flow path switching valve and the accumulator, and the remaining one port is connected to the hot water supply heat port. The second pressure reducing means is connected to one end of the exchanger through piping, and the other end of the hot water heat exchanger is connected to the other end of the heat source side heat exchanger, and the second pressure reducing means is arranged in parallel with the first pressure reducing means. The eighth shutoff valve is connected to the seventh shutoff valve via piping provided in series with the seventh shutoff valve, and the first
The eighth pressure reducing means and the fourth shutoff valve are arranged in parallel from the middle of the piping connecting the pressure reducing means and the second pressure reducing means and the eighth shutoff valve to the other end of the air conditioning heat exchanger. The refrigeration cycle is constructed by connecting the refrigeration cycle through piping.

なお、本発明を開発した考え方を付記すると、次のとお
りである。
Additionally, the idea behind developing the present invention is as follows.

本発明の冷凍サイクルは、各熱交換器が各々の運転モー
ドで不使用状態となる場合、その熱交換器内が低圧とな
るように形成されている。すなわち、不使用熱交換器は
常に冷凍サイクルの低圧側と接続されるので、ここでは
冷媒が凝縮液化しない。また、液冷媒がたまっていた場
合には、冷媒は蒸発し圧縮機に吸入される。
The refrigeration cycle of the present invention is configured such that when each heat exchanger is not used in its respective operation mode, the pressure inside the heat exchanger is low. That is, since the unused heat exchanger is always connected to the low pressure side of the refrigeration cycle, the refrigerant is not condensed and liquefied here. Furthermore, if liquid refrigerant has accumulated, the refrigerant evaporates and is sucked into the compressor.

したがって、本発明によれば、不使用熱交換器内に冷媒
が凝縮してたまることによる作動冷媒不足は生じないの
で、各運転モードで十分に性能が得られる。
Therefore, according to the present invention, there is no shortage of working refrigerant due to condensation and accumulation of refrigerant in the unused heat exchanger, so sufficient performance can be obtained in each operation mode.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の各実施例を第1図お、よび第2図を参照
して説明する。
Embodiments of the present invention will be described below with reference to FIGS. 1 and 2.

まず第1図は、本発明の一実施例に係る冷暖房給湯装置
の冷凍サイクルの系統図である。
First, FIG. 1 is a system diagram of a refrigeration cycle of an air-conditioning, heating, and hot-water supply apparatus according to an embodiment of the present invention.

図において、1は圧縮機、2は給湯熱交換器、3は冷暖
房熱交換器、4V′i熱源側熱交換器、5Viアキユム
レータ、6は第1の流路切替弁に係る第1四方弁、7は
第2の流路切替弁に係る第2四方弁、8は第1減田手段
に係る電子式膨張弁、9は第2減圧手段に係るキャピラ
リチューブ、10は第8減圧手段に係るキャピラリチュ
ーブ、11は第1締切弁、12は第2締切弁、18は第
8締切弁、14は第4締切弁で、これら各機器と、これ
らを接続する冷媒配管とで冷凍サイクルが構成されてい
る。
In the figure, 1 is a compressor, 2 is a hot water heat exchanger, 3 is an air conditioning/heating heat exchanger, 4V′i heat source side heat exchanger, 5Vi accumulator, 6 is a first four-way valve related to the first flow path switching valve, 7 is a second four-way valve associated with the second flow path switching valve; 8 is an electronic expansion valve associated with the first field reduction means; 9 is a capillary tube associated with the second pressure reduction means; and 10 is a capillary associated with the eighth pressure reduction means. The tube, 11 is a first shutoff valve, 12 is a second shutoff valve, 18 is an eighth shutoff valve, and 14 is a fourth shutoff valve, and a refrigeration cycle is constituted by each of these devices and the refrigerant piping that connects them. There is.

冷媒配管のうち、15は、圧縮機1の冷媒吐出管、16
は、圧縮機1の冷媒吸入管を示す。
Among the refrigerant pipes, 15 is a refrigerant discharge pipe of the compressor 1, and 16 is a refrigerant discharge pipe of the compressor 1.
shows the refrigerant suction pipe of the compressor 1.

第1四方弁6の、常に高圧となる高圧ポート6aは圧縮
機1の冷媒吐出管15に接続され、常に低圧となる低圧
ポー)6bVi田縮機1の冷媒吸入管16に接続され、
第1ポート6Cは、第1締切弁11を具備する配管をも
って熱源側熱交換器9の一端に接続され、残るひとつの
第2ポート6dは、第2締切弁12を具備する配管をも
って冷暖房熱交換器8の一端に接続されている。
The high-pressure port 6a of the first four-way valve 6, which is always at high pressure, is connected to the refrigerant discharge pipe 15 of the compressor 1, and the low-pressure port 6b, which is always at low pressure, is connected to the refrigerant suction pipe 16 of the Vi field compressor 1.
The first port 6C is connected to one end of the heat source side heat exchanger 9 through a pipe provided with a first shutoff valve 11, and the remaining second port 6d is connected to one end of the heat source side heat exchanger 9 through a pipe provided with a second shutoff valve 12 for cooling/heating heat exchange. It is connected to one end of the device 8.

第2四方弁7の、常に高圧となる高圧ポート7aは、前
記圧縮@1の冷媒仕出口と前記第1四方弁6とを結ぶ配
管の途中tSaに配管接続され、常に低圧となる低圧ポ
ート7bは、前記第1四方弁6とアキコムレータ5とを
結ぶ配管の途中16aに配管接続され、第1ポー)70
は前記給湯熱交換器2に配管接続され、残るひとつの第
2ポート7dは閉塞されてりる。
A high-pressure port 7a of the second four-way valve 7, which is always at high pressure, is connected to a pipe tSa in the middle of the pipe connecting the refrigerant outlet of the compression@1 and the first four-way valve 6, and a low-pressure port 7b, which is always at low pressure. is connected to the middle of the pipe 16a connecting the first four-way valve 6 and the Akicomulator 5, and is connected to the first port 70.
is pipe-connected to the hot water heat exchanger 2, and the remaining second port 7d is closed.

給湯熱交換器2の他端は、電子式膨張弁8と、並列に配
設されたキャピラリチューブ9および第8締切弁18と
がそれぞれ直列に具備された配管をもって熱源側熱交換
器4の他端に接続されている。
The other end of the hot water heat exchanger 2 is connected to the heat source side heat exchanger 4 and other parts by piping each having an electronic expansion valve 8, a capillary tube 9 arranged in parallel, and an eighth shutoff valve 18 in series. connected to the end.

そして、これら電子式膨張弁8と、キャピラリチューブ
9および第8締切弁18とを結ぶ配管の途中から前記冷
暖房熱交換器8の他端までを、並列に配設されたキャピ
ラリチューブ10および第4締切弁14を具備する配管
をもって接続している。
A capillary tube 10 and a fourth shutoff valve 18 are arranged in parallel from the middle of the piping connecting these electronic expansion valves 8 to the capillary tube 9 and the eighth shutoff valve 18 to the other end of the air conditioning heat exchanger 8. They are connected via piping equipped with a shutoff valve 14.

このような構成の冷暖房給湯装置の各運転動作と効果に
ついて説明する。
Each operating operation and effect of the air-conditioning, heating, and hot-water supply apparatus having such a configuration will be explained.

(1) 給湯運転 給湯運転時には、第2締切弁12が閉状態、第1締切弁
11、第8締切弁18、第4締切弁14が開状態となシ
、第1四方弁6は、熱源側熱交換器4から冷媒吸入管1
6へ冷媒が流れる状態に、また、第2四方弁7は、冷媒
吐出管16から給湯熱交換器2へ冷媒が流れる状態にな
っている。
(1) Hot water supply operation During hot water supply operation, the second shutoff valve 12 is closed, the first shutoff valve 11, the eighth shutoff valve 18, and the fourth shutoff valve 14 are open, and the first four-way valve 6 is connected to the heat source. Refrigerant suction pipe 1 from side heat exchanger 4
The second four-way valve 7 is in a state in which refrigerant flows from the refrigerant discharge pipe 16 to the hot water heat exchanger 2.

圧縮機1から吐出される高温高圧の冷媒蒸気は、第2締
切弁12が閉状態となっているため、第2四方弁7の高
圧ポー)7a、第1ポート7Cを経て給湯熱交換器2へ
流入する。ここで、冷媒蒸気は給温水を加熱し外部に臨
水を供給し、冷媒自らは凝縮液化する。凝縮液化した冷
媒は、電子式膨張弁8により減圧され、第8締切弁18
を通ったのち熱源側熱交換器4へ流入し、空気などから
吸熱し、冷媒自らは蒸発して低圧の蒸気となり、第1四
方弁6の第1ポート5c、低圧ポート61:lを経て冷
媒吸入管16を流れ、アキュムレータ5を通り圧縮機1
に吸入され、以下同じサイクルを繰返す。
Since the second shutoff valve 12 is in the closed state, the high temperature and high pressure refrigerant vapor discharged from the compressor 1 passes through the high pressure port 7a of the second four-way valve 7 and the first port 7C to the hot water heat exchanger 2. flows into. Here, the refrigerant vapor heats the hot water supply and supplies water to the outside, and the refrigerant itself is condensed and liquefied. The condensed and liquefied refrigerant is depressurized by the electronic expansion valve 8 and then passed through the eighth shutoff valve 18.
After flowing through the heat source side heat exchanger 4, the refrigerant absorbs heat from the air, etc., and the refrigerant itself evaporates to become low-pressure vapor.The refrigerant passes through the first port 5c of the first four-way valve 6 and the low-pressure port 61:l. It flows through the suction pipe 16 and passes through the accumulator 5 to the compressor 1.
and then the same cycle is repeated.

冷暖房熱交換器8は不使用の状態にあるが、第2締切弁
12が閉状態になっているため、圧縮機1の冷媒吐出管
15、すなわち高圧側とは連通せず、低圧側に通じて低
圧となる。したがって、冷暖房熱交換器8に冷媒が凝縮
液化して溜ることはない。
Although the air conditioning heat exchanger 8 is not in use, since the second shutoff valve 12 is closed, it does not communicate with the refrigerant discharge pipe 15 of the compressor 1, that is, the high pressure side, but communicates with the low pressure side. The pressure becomes low. Therefore, the refrigerant does not condense and liquefy and accumulate in the heating and cooling heat exchanger 8.

(2) 冷房運転 夏期、冷房運転時には、電子式膨張弁8、第8締切弁1
8が閉状態、第1締切弁11、第2締切弁12、第、4
締切弁14が開状態となる。
(2) Cooling operation In summer, during cooling operation, electronic expansion valve 8 and eighth shutoff valve 1
8 is in the closed state, the first shutoff valve 11, the second shutoff valve 12, the fourth shutoff valve
The shutoff valve 14 is in an open state.

第1四方弁6は、圧縮機1の冷媒吐出管16から熱源側
熱交換器4へ冷媒カモ流れ、冷暖房熱交換器8から圧縮
機1の冷媒吸入管16へ冷媒が流れる状態になり、また
、第2四方弁7は、給湯熱交換器2が低圧側に通じる状
態になる。
The first four-way valve 6 is in a state where the refrigerant flows from the refrigerant discharge pipe 16 of the compressor 1 to the heat source side heat exchanger 4, and the refrigerant flows from the air conditioning heat exchanger 8 to the refrigerant suction pipe 16 of the compressor 1. , the second four-way valve 7 is in a state where the hot water supply heat exchanger 2 communicates with the low pressure side.

圧縮機1から吐出される高温高圧の冷媒蒸気は、冷媒吐
出管16、第1四方弁6の高圧ポート6a、第1ポート
6C1第1締切弁11を通り熱源側熱交換器4へ流入す
る。ここで、冷媒蒸気は空気などに冷却されて凝縮液化
する。凝縮液化した冷媒は、第2減圧手段に係るキャピ
ラリチューブ9により減圧され、第4締切弁14を遡っ
たのち冷暖房熱交換器8へ流入し、ここで室内空気から
熱を奪って冷房効果をあげ、冷媒自らは蒸発する。蒸発
した低圧の冷媒蒸気は、第2締切弁12を通り、第1四
方弁6の第2ポート6(L、低圧ポート6bを経て冷媒
吸入管16を流れ、アキエムレータ5を通り圧縮機1に
吸入され、以下同じサイクルが繰返される。
High-temperature, high-pressure refrigerant vapor discharged from the compressor 1 flows into the heat source side heat exchanger 4 through the refrigerant discharge pipe 16, the high-pressure port 6a of the first four-way valve 6, the first port 6C1, and the first shut-off valve 11. Here, the refrigerant vapor is cooled by air or the like and condensed into liquid. The condensed and liquefied refrigerant is depressurized by the capillary tube 9 associated with the second decompression means, flows back through the fourth shutoff valve 14, and then flows into the air conditioning heat exchanger 8, where it takes heat from the indoor air to increase the cooling effect. , the refrigerant itself evaporates. The evaporated low-pressure refrigerant vapor passes through the second shut-off valve 12, passes through the second port 6 (L, low-pressure port 6b) of the first four-way valve 6, flows through the refrigerant suction pipe 16, passes through the Akie emulator 5, and is sucked into the compressor 1. The same cycle is then repeated.

給湯熱交換器2は、不使用の状態にあるが、第2四方弁
7を介して圧縮機1の冷媒吸入管16側、すなわち低圧
側へ通じているために、ここでは冷媒が凝縮液化して溜
ることはない。
Although the hot water heat exchanger 2 is not in use, it is connected to the refrigerant suction pipe 16 side of the compressor 1, that is, the low pressure side, through the second four-way valve 7, so that the refrigerant is condensed and liquefied here. It never accumulates.

(8) 暖房運転 冬期、暖房運転時には、電子式膨張弁8、第4締切弁1
4が閉状態、第1締切弁11、第2締切弁12、第8締
切弁18が開状態となる。
(8) Heating operation In winter, during heating operation, electronic expansion valve 8 and fourth shutoff valve 1
4 is in a closed state, and the first cutoff valve 11, second cutoff valve 12, and eighth cutoff valve 18 are in an open state.

第1四方弁6は、圧縮機1の冷媒吐出管15から冷暖房
熱交換器3へ冷媒が流れ、熱源側熱交換器4から王a機
lの冷媒吸入管16へ冷媒が流れる状態になり、また、
第2四方弁7は、冷房運転時と同様、給湯熱交換器2が
低圧側に通じる状態になる。
The first four-way valve 6 is in a state where the refrigerant flows from the refrigerant discharge pipe 15 of the compressor 1 to the air conditioning heat exchanger 3, and from the heat source side heat exchanger 4 to the refrigerant suction pipe 16 of the engine A, Also,
The second four-way valve 7 is in a state where the hot water heat exchanger 2 communicates with the low pressure side, as in the cooling operation.

圧縮機1から吐出される高温高圧の冷媒蒸気は、冷媒吐
出管16、第1四方弁6の高圧ポート6a、第2ポート
6(L、第2締切弁12を通り冷暖房熱交換器8へ流入
する。ここで、冷媒蒸気は室内空気に放熱して暖房効果
をあげ、冷媒自らは凝縮液化する。凝縮液化した冷媒は
、第8減圧手段に係るキャピラリチューブ10により減
圧され、第3締切弁13を通ったのち熱源側熱交換器4
へ流入し、ここで冷媒は外気から熱を奪って蒸発する。
High-temperature, high-pressure refrigerant vapor discharged from the compressor 1 flows into the air-conditioning heat exchanger 8 through the refrigerant discharge pipe 16, the high-pressure port 6a of the first four-way valve 6, the second port 6 (L, and the second shut-off valve 12). Here, the refrigerant vapor radiates heat to the indoor air to increase the heating effect, and the refrigerant itself condenses and liquefies.The condensed and liquefied refrigerant is depressurized by the capillary tube 10 associated with the eighth pressure reducing means, and then passed through the third shutoff valve 13. After passing through the heat source side heat exchanger 4
The refrigerant takes heat from the outside air and evaporates.

蒸発した低圧の冷媒蒸気は、第1締切弁11を通り、第
1四方弁6の第1ポート6C1低圧ポート61)を経て
冷媒吸入管16を流れ、アキュムレータ5を通り圧縮機
1に吸入され、以下同じサイクルが繰返される。
The evaporated low-pressure refrigerant vapor passes through the first shut-off valve 11, passes through the first port 6C1 (low-pressure port 61) of the first four-way valve 6, flows through the refrigerant suction pipe 16, passes through the accumulator 5, and is sucked into the compressor 1. The same cycle is repeated thereafter.

このように暖房運転では、冷媒の流れが冷房運転時の冷
媒の流れと逆になり、冷暖房熱交換器8での放熱により
暖房が行われる。
In this way, during heating operation, the flow of refrigerant is opposite to the flow of refrigerant during cooling operation, and heating is performed by heat radiation in the heating and cooling heat exchanger 8.

給湯熱交換器1t、不使用の状態にあるが、冷房運転時
と同様、低圧側へ通じているために、ここでは冷媒が凝
縮液化して溜ることはない。
Although the hot water heat exchanger 1t is not in use, it is connected to the low pressure side as in the cooling operation, so the refrigerant does not condense and liquefy and accumulate here.

(4) 給湯冷房運転 夏期、給湯、冷房を同時に行う場合には、第1締切弁1
1が閉状態、第2締切弁12、第8締切弁18、第4締
切弁14が開状態となる。
(4) Hot water supply cooling operation In the summer, when hot water supply and cooling are performed at the same time, the first shutoff valve 1
1 is in the closed state, and the second cutoff valve 12, the eighth cutoff valve 18, and the fourth cutoff valve 14 are in the open state.

第1四方弁6は、冷暖房熱交換器8から圧縮機lの冷媒
吸入管16へ冷媒が流れる状態になり、また、第2四方
弁7Vi、圧縮機1の冷媒吐出管15から給湯熱交換器
2へ冷媒が流れる状態になっている。
The first four-way valve 6 allows the refrigerant to flow from the air-conditioning heat exchanger 8 to the refrigerant suction pipe 16 of the compressor l, and the second four-way valve 7Vi allows the refrigerant to flow from the refrigerant discharge pipe 15 of the compressor 1 to the hot water heat exchanger. Refrigerant is now flowing to 2.

圧縮機1から吐出される高温高圧の冷媒蒸気は、冷媒吐
出管15、第2四方弁7の高圧ポート7a、第1ポート
7Cを経て給湯熱交1!!器2へ流入する。ここで、冷
媒蒸気は給温水に放熱して7を部に温水を供給し、冷媒
自らは凝縮液化する。凝縮液化し九冷媒は、電子式膨張
弁8により減圧され、第4締切弁を通ったのち冷暖房熱
交換器8へ流入し、ここで冷媒は室内空気から熱を奪っ
て冷房効果をあげ、自らは蒸発する。蒸発した低圧の冷
媒蒸気は、第2締切弁12を通シ、第1四方弁6の第2
ポート6a、低圧ポート61:lを経て冷媒吸入fle
を流れ、アキコムレータ6を通り圧縮機1に吸入され、
以下同じサイクルが繰返される。
The high-temperature, high-pressure refrigerant vapor discharged from the compressor 1 passes through the refrigerant discharge pipe 15, the high-pressure port 7a of the second four-way valve 7, and the first port 7C to the hot water supply heat exchanger 1! ! Flows into vessel 2. Here, the refrigerant vapor radiates heat to the supplied hot water to supply hot water to the section 7, and the refrigerant itself is condensed and liquefied. The condensed and liquefied refrigerant is depressurized by the electronic expansion valve 8, passes through the fourth shut-off valve, and then flows into the air-conditioning heat exchanger 8, where the refrigerant takes heat from the indoor air, increases the cooling effect, and cools itself. evaporates. The evaporated low-pressure refrigerant vapor passes through the second shutoff valve 12 and the second shutoff valve 6 of the first four-way valve 6.
Refrigerant suction fl via port 6a and low pressure port 61:l
flows through the Akicomulator 6 and is sucked into the compressor 1,
The same cycle is repeated thereafter.

この運転で不使用の状態にある熱源側熱交換器4は、冷
媒出入口の一端が電子式膨張弁8で減圧された後の配管
に接続されているので、熱源側熱交換器4に冷媒が凝縮
して溜ることはない。
The heat source side heat exchanger 4, which is not in use during this operation, has one end of its refrigerant inlet and outlet connected to the piping after the pressure has been reduced by the electronic expansion valve 8, so that the refrigerant does not flow into the heat source side heat exchanger 4. It does not condense and accumulate.

(5) 給湯暖房運転 冬期、給湯、暖房を同時に行う場合には、第4締切弁1
4が閉状態、第1締切弁11、第2締切弁12、第8締
切弁18がそれぞれ開状態となる第1四方弁6は、圧縮
機1の冷媒吐出管15から冷暖房熱交換器8へ、熱源側
熱交換器4から圧縮機1の冷媒吸入管16へ、それぞれ
冷媒が流れる状態になり、また、第2四方弁13′は、
圧縮機1の冷媒吐出管16から給湯熱交換器2へ冷媒が
流れる状態になっている。
(5) Hot water supply heating operation In winter, when hot water supply and heating are performed at the same time, the fourth shutoff valve 1
The first four-way valve 6, in which the first shutoff valve 11, the second shutoff valve 12, and the eighth shutoff valve 18 are in the open state, connects the refrigerant discharge pipe 15 of the compressor 1 to the air conditioning heat exchanger 8. , the refrigerant flows from the heat source side heat exchanger 4 to the refrigerant suction pipe 16 of the compressor 1, and the second four-way valve 13'
The refrigerant is now flowing from the refrigerant discharge pipe 16 of the compressor 1 to the hot water heat exchanger 2.

圧縮機1から吐出される高温昼田の冷媒蒸気は冷媒吐出
[15から一部は第1四方弁6の高圧ポート61L%第
2ポート6(1%第2締切弁12を経て冷暖房熱交換器
8へ、一部は第2四方弁7の高圧ポート7&、第1ポー
ト7Cを経て給湯熱交換器2へ流入する。
The high-temperature Hiita refrigerant vapor discharged from the compressor 1 is partially transferred from the refrigerant discharge [15 to the high-pressure port 61L% of the first four-way valve 6] to the second port 6 (1%) to the air-conditioning heat exchanger 8 via the second shut-off valve 12. A part of the water flows into the hot water heat exchanger 2 via the high pressure port 7& of the second four-way valve 7 and the first port 7C.

冷媒蒸気は、冷暖房熱交換器8では室内空気に放熱して
暖房効果をあげ、給湯熱交換器2では給湯水に放熱して
給湯効果t6げ、それぞれ冷媒自らは凝縮液化する。
The refrigerant vapor radiates heat to indoor air in the air-conditioning heat exchanger 8 to produce a heating effect, and the hot water heat exchanger 2 radiates heat to hot water to produce a hot water supply effect t6, and the refrigerant itself condenses and liquefies.

給湯熱交換器2で凝縮液化した冷媒は電子式膨張弁8で
減圧され、冷暖房熱交換器3で凝縮液化した冷媒は第8
減田手段に係るキャピラリチューブ10で減圧されて合
流し、第8締切弁18を通ったのち、熱源側熱交換器4
へ流入し、ここで、空気などから熱を奪って自らは蒸発
する。M元した低温の冷媒蒸気は、第1締切弁11を通
り、第1四方弁6の第1ポート60%低圧ポート6bを
経て冷媒吸入管16を流れ、アキ5ムレータ5を通υ王
縮機1に吸入され、以下同じサイクルが繰返される。 
       。
The refrigerant condensed and liquefied in the hot water heat exchanger 2 is depressurized by the electronic expansion valve 8, and the refrigerant condensed and liquefied in the air conditioning heat exchanger 3 is transferred to the eighth
After being depressurized by the capillary tube 10 related to the field reduction means and merging, passing through the eighth shutoff valve 18, the heat source side heat exchanger 4
Here, it absorbs heat from the air and evaporates. The low-temperature refrigerant vapor passed through the first shut-off valve 11, passed through the first port 60% low pressure port 6b of the first four-way valve 6, and then flowed through the refrigerant suction pipe 16 and passed through the accumulator 5 to the υ king compression machine. 1, and the same cycle is repeated.
.

この運転では、不使用状態になる熱交換器は、2:い二 (6)除霜運転 給湯、暖房、給湯暖房の運転で、外気温度が低下すると
熱源側熱交換器4(熱源が空気)に着霜する場合がある
。着霜すると能力が低下するので、適当な時間間隔で除
霜する必要がある。
In this operation, the heat exchanger that becomes unused is the heat exchanger 4 (heat source is air) when the outside air temperature drops during the defrosting operation, hot water heating, and hot water heating operation. Frost may form on the surface. Frost will reduce the capacity, so it is necessary to defrost at appropriate intervals.

除霜運転の場合には、第1締切弁11、第4締切弁14
および電子式膨張弁8が開状態に、第2締切弁12、第
8締切弁18か閉状態になる。
In the case of defrosting operation, the first shutoff valve 11 and the fourth shutoff valve 14
Then, the electronic expansion valve 8 is opened, and the second shutoff valve 12 and the eighth shutoff valve 18 are closed.

第1四方弁6ti、圧縮機1の冷媒吐出管15から熱源
側熱交換器4へ、冷暖房熱交換器8から圧縮機1の冷媒
吸入管16へ、それぞれ冷媒が流れる状態になシ、また
第2四方弁?Vi、給湯熱交換器2から圧縮機1の冷媒
吸入管16へ冷媒が冗れる状態になる。
The first four-way valve 6ti, the state where the refrigerant is not flowing from the refrigerant discharge pipe 15 of the compressor 1 to the heat source side heat exchanger 4, and from the air conditioning heat exchanger 8 to the refrigerant suction pipe 16 of the compressor 1, and the 2 four-way valve? Vi, the refrigerant from the hot water supply heat exchanger 2 to the refrigerant suction pipe 16 of the compressor 1 becomes redundant.

圧縮機1から吐出される高温高圧の冷媒蒸気は、冷媒吐
出管15、第1四方弁6の高圧ポート6a1第1ポート
6C1第1締切弁11t−経て熱源側熱交換器4へ流入
する。ここで、高温高圧の冷媒蒸気は霜を融かして除霜
効果をあげ、冷媒自らは凝縮液化する。
The high temperature and high pressure refrigerant vapor discharged from the compressor 1 flows into the heat source side heat exchanger 4 through the refrigerant discharge pipe 15, the high pressure port 6a1 of the first four-way valve 6, the first port 6C1, and the first shutoff valve 11t. Here, the high-temperature, high-pressure refrigerant vapor melts frost and has a defrosting effect, and the refrigerant itself condenses and liquefies.

液化した冷媒は、キャピラリチューブ9により減圧され
て、給湯熱交換器2へ流入し、ここで給湯水から熱を奪
って冷媒自らは蒸発する。蒸発した低圧の冷媒蒸気は、
第2四方弁7の第1ポート70%低王ポート71)を経
て冷媒吸入管16を流れ、アキュムレータ5を通り圧縮
機1に吸入され、以下同じサイクルが繰返される。
The liquefied refrigerant is depressurized by the capillary tube 9 and flows into the hot water heat exchanger 2, where it absorbs heat from the hot water and evaporates itself. The evaporated low-pressure refrigerant vapor is
The refrigerant flows through the refrigerant suction pipe 16 through the first port (70% low king port 71) of the second four-way valve 7, passes through the accumulator 5, is sucked into the compressor 1, and the same cycle is repeated thereafter.

このとき不使用状態になる冷暖房熱交換器8は第2締切
弁12が閉状態になっているため高圧側とは連通せず、
第4締切弁を介して、キャ ′ラリチューブ9で減圧さ
れた低圧側に通じている。したがって、冷暖房熱交換器
8に冷媒が凝縮液化して溜ることはない。
At this time, the heating and cooling heat exchanger 8, which is in an unused state, does not communicate with the high pressure side because the second shutoff valve 12 is in a closed state.
It communicates with the low pressure side, which is depressurized by the capacitor tube 9, via the fourth shutoff valve. Therefore, the refrigerant does not condense and liquefy and accumulate in the heating and cooling heat exchanger 8.

前記の除霜運転では、除霜熱源用熱交換器として給湯熱
交換器2を用いているが、除霜熱源用熱交換器として冷
暖房熱交換器8′ft用いることもできる。
In the defrosting operation described above, the hot water heat exchanger 2 is used as the defrosting heat source heat exchanger, but the air conditioning/heating heat exchanger 8'ft may also be used as the defrosting heat source heat exchanger.

この場合には、第2締切弁12、第8締切弁181を開
状態に、電子式膨張弁8および第4締切弁14を閉状態
にする。
In this case, the second shutoff valve 12 and the eighth shutoff valve 181 are opened, and the electronic expansion valve 8 and the fourth shutoff valve 14 are closed.

先に説明したように熱源側熱交換器4で除霜効果をあげ
、凝縮液化した冷媒は、キャピラリチューブ9により減
圧されて、冷暖房熱交換器8に流入し、ここで室内空気
から熱を奪い、冷媒自らは蒸発する。蒸発した低圧の冷
媒蒸気は、第2締切弁12を通シ、第1四方弁6の第2
ポート6d。
As explained earlier, the defrosting effect is achieved in the heat source side heat exchanger 4, and the condensed and liquefied refrigerant is depressurized by the capillary tube 9 and flows into the air conditioning heat exchanger 8, where it removes heat from the indoor air. , the refrigerant itself evaporates. The evaporated low-pressure refrigerant vapor passes through the second shutoff valve 12 and the second shutoff valve 6 of the first four-way valve 6.
Port 6d.

低圧ポー)61)を経て冷媒吸入管16を流れ、アキ二
ムレータ5を゛通り圧縮機1に吸入される。
The refrigerant flows through the refrigerant suction pipe 16 through the low-pressure port 61), passes through the accumulator 5, and is sucked into the compressor 1.

このとき不使用状態になる給湯用熱交換器2は、第2四
方弁7を介して低圧側に通じており、冷媒が凝縮液化し
て溜ることはない。
The hot water supply heat exchanger 2, which is not in use at this time, communicates with the low pressure side via the second four-way valve 7, so that the refrigerant does not condense and liquefy and accumulate.

以上のように、第1図の実施例の冷暖房給湯装置は、給
湯、冷房、暖房、給湯冷房、給湯暖房、除霜の各運転が
可能である。
As described above, the air-conditioning/heating/water heating apparatus of the embodiment shown in FIG. 1 is capable of each operation of hot water supply, cooling, heating, hot water supply/cooling, hot water supply/heating, and defrosting.

これら各運転で、不使用状態になる熱交換器がある場合
には、その熱交換器は低圧側へ通じるように冷凍サイク
ルが構成されており、各運転で、不使用状態の各熱交換
器に、冷媒が凝縮液化して溜ることがない。すなわち、
不使用状態の熱交換器内の冷媒は、低圧側へ通じること
によりガス状態になり、その量は液状態の場合とくらべ
て非常に少ない。
In each of these operations, if there is a heat exchanger that is not in use, the refrigeration cycle is configured so that that heat exchanger is connected to the low pressure side, and in each operation, each heat exchanger that is not in use is In addition, the refrigerant does not condense and liquefy and accumulate. That is,
The refrigerant in the heat exchanger when not in use becomes gaseous by passing to the low-pressure side, and the amount thereof is much smaller than that in the liquid state.

したがって、各運転で1作動冷媒量の不足をきたすこと
はなくなシ、各運転における性能低下を防止することが
できる。
Therefore, there is no shortage of refrigerant per operation in each operation, and performance deterioration in each operation can be prevented.

次に本発明の他の実施例を第2図を参照して説明する。Next, another embodiment of the present invention will be described with reference to FIG.

第2図は、本発明の他の実施例に係る冷暖房給湯装置の
冷凍サイクルの系統図であり、図中、第1図と同一符号
のものは前述の実施例と同等部分を示す。
FIG. 2 is a system diagram of a refrigeration cycle of an air-conditioning, heating, and hot-water supply system according to another embodiment of the present invention. In the figure, the same reference numerals as in FIG. 1 indicate parts equivalent to those in the above-described embodiment.

第2図において17Fi、先の第1図の例における第8
締切弁18に替わる逆上弁、18は、先の第1図の例に
おける第4締切弁14に替わる逆止弁で、これら逆上弁
17.18の取付方向は第2図に示すとおりである。
17Fi in Figure 2, 8Fi in the example of Figure 1 above.
The reverse valve 18, which replaces the shut-off valve 18, is a check valve which replaces the fourth shut-off valve 14 in the example shown in FIG. be.

第2図に示す冷凍サイクルは、基本的には先に第1図に
示した冷凍す≧クルと変わらないので、その詳細な説明
は省略する。
The refrigeration cycle shown in FIG. 2 is basically the same as the refrigeration cycle shown in FIG. 1 above, so a detailed explanation thereof will be omitted.

ここに、第2図では17.18の両者を逆止弁としてい
るが5いずれか一方を逆止弁とし、他は締切弁とするこ
とも可能である。
In FIG. 2, both 17 and 18 are shown as check valves, but it is also possible to use either one of 5 as a check valve and the others as shutoff valves.

なお、紡記の各実施例において、冷房運転時には、第8
減王手段に係るキャピラリチューブ10を用いてもよい
。この場合、第8締切弁18を開状態、第4締切弁14
f閉状態とする。
In addition, in each spinning example, during cooling operation, the eighth
A capillary tube 10 related to king reduction means may also be used. In this case, the eighth shutoff valve 18 is in the open state, and the fourth shutoff valve 14 is in the open state.
f Closed state.

また、暖房運転時には、第2減田手段に係るキャピラリ
チューブ9を用いてもよい。この場合、第8締切弁18
を閉状態、第4締切弁14を開状態とする。これらの各
実施例によれば、先の第1図の実施例と同等の効果が期
待できる。
Further, during the heating operation, the capillary tube 9 related to the second field reduction means may be used. In this case, the eighth shutoff valve 18
is in a closed state, and the fourth shutoff valve 14 is in an open state. According to each of these embodiments, effects equivalent to those of the embodiment shown in FIG. 1 can be expected.

さらに、第2四方弁°7に替わる第2の流路切替弁とし
て、冷媒吐出管15と給湯熱交換器2、冷媒吸入管16
と給湯熱交換器2とをそれぞれ流通可能で、これらの流
通状態の切替えが可能な三方弁を使用してもよいことは
いうまでもない。
Furthermore, as a second flow path switching valve replacing the second four-way valve °7, a refrigerant discharge pipe 15, a hot water supply heat exchanger 2, a refrigerant suction pipe 16
It goes without saying that a three-way valve may be used which allows the water to flow through the hot water and the hot water heat exchanger 2, and which can switch between these flow states.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、冷房、暖房、給湯
の各運転および冷房と給湯、暖房と給湯の同時運転、さ
らには除霜運転などの各運転時に、不使用状態になる熱
交換器内に液冷媒が溜ることを防止し、したがって各運
転を効ぶよく行うことの可能なヒートポンプ式冷暖房給
湯装置を提供することができる。
As described above, according to the present invention, the heat exchanger becomes unused during each operation of cooling, heating, hot water supply, simultaneous operation of cooling and hot water supply, heating and hot water supply, and even defrosting operation. It is possible to provide a heat pump type air-conditioning/heating/hot-water supply device that prevents liquid refrigerant from accumulating in the container and therefore allows each operation to be performed efficiently.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例に係る冷暖房給湯装置の冷
凍サイクルの系統図、第2図は、本発明の他の実施例に
係る冷暖房給湯装置の冷凍サイクルの系統図である。 1・・・圧縮機 2・・・給湯熱交換器 8・・・冷暖
房熱交換器 4・・・熱源側熱交換器 5・・・アキュ
ムレータ 6・・・第1四方弁 6a・・・高圧ポート
 6b・・・低圧ポート 6C・・・第1ポート 6(
L・・・第2ポート 7・・・第2四方弁 7a・・・
高圧ポート 7b・・・低圧ポート 8・・・電子式膨
張弁 9.10・・・中ヤピラリチューブ 11・・・
第1締切弁 12・・・第2締切弁 18・・・第8締
切弁 14・・・第4締切弁16・・・冷媒吐出管 1
6・・・冷媒吸入管 17.18・・・逆止弁
FIG. 1 is a system diagram of a refrigeration cycle of an air-conditioning, heating, and hot-water supply apparatus according to an embodiment of the present invention, and FIG. 2 is a system diagram of a refrigeration cycle of an air-conditioning, heating, and water-heating system according to another embodiment of the present invention. 1... Compressor 2... Hot water heat exchanger 8... Air conditioning heat exchanger 4... Heat source side heat exchanger 5... Accumulator 6... First four-way valve 6a... High pressure port 6b...Low pressure port 6C...1st port 6(
L...Second port 7...Second four-way valve 7a...
High pressure port 7b...Low pressure port 8...Electronic expansion valve 9.10...Middle tip tube 11...
First shut-off valve 12... Second shut-off valve 18... Eighth shut-off valve 14... Fourth shut-off valve 16... Refrigerant discharge pipe 1
6... Refrigerant suction pipe 17.18... Check valve

Claims (1)

【特許請求の範囲】 1、圧縮機、給湯熱交換器、冷暖房熱交換器、熱源側熱
交換器、アキュムレータ、少なくとも四方に冷媒流路を
切替えうる第1の流路切替弁、少なくとも三方に冷媒流
路を切替えうる第2の流路切替弁、第1締切弁、第2締
切弁、第8締切弁、第4締切弁、第1減圧手段、第2減
圧手段、第3減圧手段およびこれらを接続する冷媒配管
を備えて冷凍サイクルを構成する冷媒給湯装置であって
、前記第1の流路切替弁の、常に高圧となる高圧ポート
を前記圧縮機の冷媒吐出管に、常に低圧となる低圧ポー
トを前記アキュムレータを介して前記圧縮機の冷媒吸入
管に、第1ポート前記第1締切弁を介して前記熱源側熱
交換器の一端に、また、第2ポートを前記第2締切弁を
介して前記冷暖房熱交換器の一端にそれぞれ配管接続し
、前記第2の流路切替弁の、常に高圧となる高圧ポート
を前記圧縮機と前記第1の流路切替弁とを結び配管の途
中に、常に低圧となる低圧ポートを前記第1の流路切替
弁と前記アキュムレータとを結ぶ配管の途中に、また、
残る1つのパートを前記給湯熱交換器の一端にそれぞれ
配管接続するとともに、前記給湯熱交換器の他端を前記
熱源側熱交換器の他端に、前記第1減圧手段と、並列に
配設された前記第2減圧手段および前記第3締切弁とが
それぞれ直列に具備された配管を介して接続し、かつ、
これら前記の第1減圧手段と第2減圧手段および第3締
切弁とを結ぶ配管の途中から前記冷暖房熱交換器の他端
までを、並列に配設された前記第3減圧手段および前記
第4締切弁を具備する配管を介して接続し、冷凍サイク
ルを構成したことを特徴とする冷暖房給湯装置。 2、特許請求の範囲第1項記載のものにおいて、第3締
切弁、第4締切弁の両者またはいずれかを逆止弁とした
ものである冷暖房給湯装置。
[Claims] 1. A compressor, a hot water supply heat exchanger, an air conditioning heat exchanger, a heat source side heat exchanger, an accumulator, a first flow path switching valve capable of switching a refrigerant flow path in at least four directions, and a refrigerant flow path in at least three directions. A second flow path switching valve capable of switching the flow path, a first shutoff valve, a second shutoff valve, an eighth shutoff valve, a fourth shutoff valve, a first pressure reducing means, a second pressure reducing means, a third pressure reducing means, and these The refrigerant hot water supply device constitutes a refrigeration cycle with refrigerant piping connected to the refrigerant water supply device, wherein the high pressure port of the first flow path switching valve, which is always at high pressure, is connected to the refrigerant discharge pipe of the compressor, and the low pressure, which is always at low pressure, is connected to the refrigerant discharge pipe of the compressor. A port is connected to the refrigerant suction pipe of the compressor through the accumulator, a first port is connected to one end of the heat source side heat exchanger through the first shutoff valve, and a second port is connected to the refrigerant suction pipe of the compressor through the second shutoff valve. The high pressure port of the second flow path switching valve, which is always at high pressure, is connected to the compressor and the first flow path switching valve in the middle of the piping. , a low pressure port that is always at low pressure is placed in the middle of the piping connecting the first flow path switching valve and the accumulator;
The remaining one part is connected to one end of the hot water heat exchanger by piping, and the other end of the hot water heat exchanger is arranged in parallel with the first pressure reducing means at the other end of the heat source side heat exchanger. The second pressure reducing means and the third shutoff valve are connected via piping provided in series, and
The third pressure reduction means and the fourth 1. An air-conditioning, heating, and water-heating device characterized in that it is connected via piping equipped with a shut-off valve to form a refrigeration cycle. 2. The air-conditioning/heating and hot water supply apparatus according to claim 1, wherein both or either of the third shut-off valve and the fourth shut-off valve is a check valve.
JP21610184A 1984-10-17 1984-10-17 Air-conditioning hot-water supply device Pending JPS6196375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21610184A JPS6196375A (en) 1984-10-17 1984-10-17 Air-conditioning hot-water supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21610184A JPS6196375A (en) 1984-10-17 1984-10-17 Air-conditioning hot-water supply device

Publications (1)

Publication Number Publication Date
JPS6196375A true JPS6196375A (en) 1986-05-15

Family

ID=16683259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21610184A Pending JPS6196375A (en) 1984-10-17 1984-10-17 Air-conditioning hot-water supply device

Country Status (1)

Country Link
JP (1) JPS6196375A (en)

Similar Documents

Publication Publication Date Title
CN211739592U (en) Air conditioning system capable of continuously heating
US4057977A (en) Reverse cycle heat pump circuit
US3065610A (en) Charge stabilizer for heat pump
CN215892840U (en) Energy-saving dehumidifying refrigeration heat exchange device
JPH10205933A (en) Air conditioner
CN208881526U (en) A kind of indirect type heat pump system, air-conditioning and automobile
JPS6196375A (en) Air-conditioning hot-water supply device
JPS6152564A (en) Air-conditioning hot-water supply device
JPS6117873A (en) Air-conditioning hot-water supply device
CN208881525U (en) A kind of direct-type heat pump system, air-conditioning and automobile
JPS6243249Y2 (en)
JPH0820139B2 (en) Heat storage type heat pump device
JPS59112161A (en) Refrigerator
JPH0212541Y2 (en)
JPS6328385Y2 (en)
JP3213992B2 (en) Air conditioner
JP2001033126A (en) Air conditioner
CN114353202A (en) Energy-saving low dew point dehumidification system
JPS618567A (en) Heat pump
JPS61184366A (en) Heat pump type hot-water supply device
JPH10141815A (en) Air conditioner
JPS637811Y2 (en)
JPH0579731A (en) Air conditioner
JPH0730978B2 (en) Heat pump device
JP2000121108A (en) Air-conditioner