JPH01127807A - Solid fuel combustion equipment - Google Patents
Solid fuel combustion equipmentInfo
- Publication number
- JPH01127807A JPH01127807A JP28689987A JP28689987A JPH01127807A JP H01127807 A JPH01127807 A JP H01127807A JP 28689987 A JP28689987 A JP 28689987A JP 28689987 A JP28689987 A JP 28689987A JP H01127807 A JPH01127807 A JP H01127807A
- Authority
- JP
- Japan
- Prior art keywords
- furnace
- exhaust gas
- burner
- coal
- flame
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 24
- 239000004449 solid propellant Substances 0.000 title claims description 6
- 239000003245 coal Substances 0.000 claims abstract description 39
- 239000000446 fuel Substances 0.000 claims abstract description 15
- 238000002347 injection Methods 0.000 claims description 4
- 239000007924 injection Substances 0.000 claims description 4
- 239000007789 gas Substances 0.000 abstract description 55
- 239000002245 particle Substances 0.000 abstract description 19
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 8
- 229910052760 oxygen Inorganic materials 0.000 abstract description 8
- 239000001301 oxygen Substances 0.000 abstract description 8
- 230000000694 effects Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 230000007423 decrease Effects 0.000 description 4
- 238000010304 firing Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000009841 combustion method Methods 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 239000003610 charcoal Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
Landscapes
- Combustion Of Fluid Fuel (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は固体燃料燃焼装置に係り、特に排ガス中の未燃
分を低減するに好適な高燃料比炭を燃焼させるボイラ装
置に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a solid fuel combustion device, and particularly to a boiler device for burning high fuel ratio coal suitable for reducing unburned content in exhaust gas.
固体燃料でも揮発分の少ない、いわゆる高燃料比(固定
炭素/揮発分)炭の燃焼方法として、火炉に対してバー
ナを下向きに設置する、ウィングファーネスとよばれる
火炉形状、さらにはアーチファイヤリングと称する燃焼
方法が多く採用され ゛ている。As a combustion method for charcoal with a so-called high fuel ratio (fixed carbon/volatile content), which has a low volatile content even though it is a solid fuel, there is a furnace shape called a wing furnace, in which the burner is installed downward in the furnace, and an arch firing. There are many combustion methods that are used.
この火炉1の形状を第4図に示すが、第3図に示した従
来型の火炉形状と比較してみると、同じ火炉容積の場合
、火炉奥行が若干深くなっている。The shape of this furnace 1 is shown in FIG. 4, and when compared with the conventional furnace shape shown in FIG. 3, the depth of the furnace is slightly deeper for the same furnace volume.
第3図および第4図中、矢印τはバーナ2からの石炭粒
子の軌跡であり、火炉出口IAまでの滞留時間を示す。In FIGS. 3 and 4, the arrow τ is the locus of coal particles from the burner 2, and indicates the residence time to the furnace outlet IA.
なお、12は煙道である。第3図と第4図を比較すると
、τ。1〉τ。であり、明らかに第4図のアーチファイ
ヤリングのほうが炉内粒子滞留時間の面で有利でありる
。何となれば炉内粒子滞留時間の増加は未燃分の低減に
つながるからである。In addition, 12 is a flue. Comparing Figures 3 and 4, τ. 1〉τ. Therefore, the arch firing ring shown in FIG. 4 is clearly more advantageous in terms of particle residence time in the furnace. This is because an increase in the residence time of particles in the furnace leads to a reduction in unburned particles.
しかし、単にバーナ2を下向きにするだけでは、煙道1
2に対しで、石炭粒子かで1で示すごとく煙道12ヘシ
ヨートパスする現象が生じる。これを第4図に示すが、
τ1〈τ0°となり、バーナ2を下向きに構成したこと
によるメリットはほとんどなくなる。However, simply turning burner 2 downward will cause the flue 1
2, a phenomenon occurs in which coal particles pass through the flue 12 as shown in 1. This is shown in Figure 4,
τ1<τ0°, and the advantage of configuring the burner 2 downward is almost eliminated.
石炭粒子のショートパスを防止する対策として、第5図
に示すように、バーナ2と煙道12との間にアフターエ
ア15を投入する方法が考えられる。As a measure to prevent a short pass of coal particles, a method of introducing after air 15 between the burner 2 and the flue 12, as shown in FIG. 5, can be considered.
これはバーナ2からの石炭粒子が直接煙道12ヘシヨー
トパスすることを防止するエアカーテンに相当するもの
である。This corresponds to an air curtain that prevents coal particles from the burner 2 from passing directly into the flue 12.
しかし、この方法では、煙道12に近い場所で高濃度の
酸素(アフターエア15)を吹込むために、この酸化剤
である空気も直接煙道12ヘシヨートパスする現象を生
じた。However, in this method, since highly concentrated oxygen (after air 15) is blown in near the flue 12, a phenomenon occurs in which the air, which is an oxidizing agent, also directly passes through the flue 12.
このアフターエアを投入する方法によると、石炭粒子が
ショートパスする量は少なくなるが、火炉出口部での酸
素分圧が増加するために、炉内での発熱が低下し、火炉
出口部の温度が増加する等の問題点があった。さらにこ
の方法では対流伝熱部分においても化学反応が進行する
が、熱交換器で急速に冷却されるために、未燃分の低下
は望めない。According to this method of injecting after air, the amount of coal particles short-passing is reduced, but because the oxygen partial pressure at the furnace outlet increases, the heat generation in the furnace decreases, and the temperature at the furnace outlet decreases. There were problems such as an increase in Furthermore, in this method, chemical reactions also proceed in the convection heat transfer section, but since the heat exchanger rapidly cools down, a reduction in unburned content cannot be expected.
本発明の目的は、火炉出口部分において酸素濃度を下げ
るとともに、バーナからの石炭粒子が煙道に向かってシ
ョートパスすることを防止した固体燃料燃焼装置を提供
することにある。An object of the present invention is to provide a solid fuel combustion device that reduces the oxygen concentration at the furnace outlet and prevents coal particles from the burner from making a short pass toward the flue.
本発明は、高燃料比炭を主燃料とするバーナを火炉に対
して下方に向かって配置した燃焼装置において、前記バ
ーナと火炉出口との間に排ガスを供給する手段を設けた
ことを特徴とする。The present invention is a combustion apparatus in which a burner whose main fuel is high fuel ratio coal is arranged downward with respect to the furnace, characterized in that a means for supplying exhaust gas is provided between the burner and the furnace outlet. do.
バーナと火炉出口との間に排ガスを投入qてエアカーテ
ンを形成した場合、排ガスは酸素濃度が10%以下であ
り、石炭燃料に対してほとんど不活性であるため、煙道
にショートパスするようなことがあっても、火炉内部で
の発熱率が低下することはなくなる。したがって、バー
ナからの石炭粒子が煙道に対してショートパスしないよ
うに排ガスによってシールし、バーナ火炎を炉底に向は
火炉容積に対して、火炎を充分有効利用することができ
る。When exhaust gas is injected between the burner and the furnace outlet to form an air curtain, the exhaust gas has an oxygen concentration of less than 10% and is almost inert to coal fuel, so it tends to pass through the flue as a short path. Even if something happens, the heat generation rate inside the furnace will not decrease. Therefore, it is possible to seal the coal particles from the burner with the exhaust gas so that they do not make a short path to the flue, and to direct the burner flame toward the bottom of the furnace, making it possible to fully utilize the flame effectively with respect to the furnace volume.
第1図は、本発明の一実施例を示すボイラ装置の概略系
統図である。石炭燃料はコールバンカ8に貯蔵され、定
量的にミル7へ供給され、ここで粉砕された微粉炭は微
粉炭輸送管9を通ってバーナ2へ送られる。一方、燃焼
用空気は、押込通風機4で加圧され、熱交換器6で排ガ
スによって予熱された後、燃焼用空気配管10を通って
バーナ2へ燃焼用空気として送られる。微粉炭燃料と燃
焼用空気はバーナ2で混合され、バーナ2から火炉lの
下方に向かって投入される。FIG. 1 is a schematic system diagram of a boiler apparatus showing one embodiment of the present invention. Coal fuel is stored in a coal bunker 8 and quantitatively supplied to the mill 7, where the pulverized coal is sent to the burner 2 through a pulverized coal transport pipe 9. On the other hand, the combustion air is pressurized by the forced draft fan 4, preheated by the exhaust gas in the heat exchanger 6, and then sent to the burner 2 as combustion air through the combustion air piping 10. Pulverized coal fuel and combustion air are mixed in a burner 2, and are introduced from the burner 2 toward the bottom of the furnace 1.
一方、バーナ2から投入された微粉炭と燃焼用空気は炉
内で反応し火炎11を形成する。火炎11は、−度炉底
にまで到達した後、折り返して煙道12へ排出される。On the other hand, pulverized coal introduced from burner 2 and combustion air react in the furnace to form flame 11. After reaching the bottom of the -degree furnace, the flame 11 turns around and is discharged into the flue 12.
燃焼用排ガスは、排ガス循環ファン5によって煙道12
から抜出され、火炉ホッパ14部にある再循環ガス投入
口13から火炉内部へ送られる系統16と、火炉最上部
で、バーナ2と煙道12との中間に位置する排ガス投入
口3へ送られる系統17に分けられる。The combustion exhaust gas is passed through the flue 12 by the exhaust gas circulation fan 5.
Exhaust gas is extracted from the furnace and sent to the inside of the furnace from the recirculation gas inlet 13 located in the furnace hopper 14, and to the exhaust gas inlet 3 located between the burner 2 and the flue 12 at the top of the furnace. It is divided into 17 systems.
本発明はバーナ2と煙道12との中間から排ガスを火炉
へ投入するものであるが、この場合、排ガスの投入方向
はバーナ2の方向に対して平行か、バーナ2の方向に向
かうものとする。In the present invention, exhaust gas is introduced into the furnace from an intermediate point between the burner 2 and the flue 12, but in this case, the direction of input of the exhaust gas may be parallel to the direction of the burner 2 or directed toward the burner 2. do.
次に排ガス投入口3の配置例を第2図に示すが、バーナ
2群に対して、図示するように平行に配置してスリット
状とするか、またはバーナ2に対応させてバーナ本数以
上の数の排ガス投入口3をバーナ2と煙道12との間に
設けることが好ましい。Next, an example of the arrangement of the exhaust gas inlet 3 is shown in Fig. 2.The exhaust gas inlet 3 may be arranged parallel to the burner 2 group as shown in the figure to form a slit, or it may be arranged in a slit shape corresponding to the burner 2 so that it has more than the number of burners. Preferably, several exhaust gas inlets 3 are provided between the burner 2 and the flue 12.
第6図は、バーナ2と煙道12の中間に位置する排ガス
投入口3から炉内へ排ガスまたは空気を投入した場合の
、排ガス中の酸素濃度と火炉出口部における燃焼ガス温
度との関係を示したものである。Figure 6 shows the relationship between the oxygen concentration in the exhaust gas and the combustion gas temperature at the furnace outlet when exhaust gas or air is introduced into the furnace from the exhaust gas inlet 3 located between the burner 2 and the flue 12. This is what is shown.
排ガスの酸素濃度を21%、すなわち空気から酸素濃度
を3%にまで下げていくと(炉内における燃焼用空気は
一定)、それに応じて火炉出口ガス温度が低下すること
がわかる。これは、排ガス投入口3からの排ガスによっ
て、石炭粒子のショートパス量が減少し、火炉内部にお
ける発熱量と熱吸収量が増加したことを意味する。It can be seen that when the oxygen concentration of the exhaust gas is lowered to 21%, that is, the oxygen concentration from air to 3% (combustion air in the furnace is constant), the furnace outlet gas temperature decreases accordingly. This means that the amount of short paths of coal particles due to the exhaust gas from the exhaust gas inlet 3 is reduced, and the amount of heat generated and the amount of heat absorbed inside the furnace are increased.
一方、第7図は、排ガス吹込量と火炉有効利用率との関
係を示す。ここで火炉有効利用率とは、火炉容積に対す
る火炎(再反応性ガスで発熱しているもの)の容積゛比
率で定義される。第7図から、排ガス吹込量を増加させ
ると、火炉有効利用率が増加することがわかる。On the other hand, FIG. 7 shows the relationship between the exhaust gas injection amount and the furnace effective utilization rate. Here, the effective utilization rate of the furnace is defined as the ratio of the volume of the flame (generating heat due to re-reactive gas) to the volume of the furnace. From FIG. 7, it can be seen that the effective utilization rate of the furnace increases as the exhaust gas injection amount increases.
第8図は、火炉出口からの排ガス吹込量と灰中未燃分と
の関係を示す。第8図中A炭としたのは、燃料比(石炭
中固定炭素/揮発分)が2以上の石炭、石炭は燃料比が
1前後の石炭であり、若干、石炭のほうが灰中未燃分は
少ないが、いずれの石炭を燃焼させても、排ガス吹込量
(投入量)に対して、灰中未燃分を最少にする最適値が
存在する。FIG. 8 shows the relationship between the amount of exhaust gas blown from the furnace outlet and the unburned content in the ash. Coal A in Figure 8 is coal with a fuel ratio (fixed carbon in coal/volatile content) of 2 or more, coal with a fuel ratio of around 1, and coal has a slightly higher unburned content in ash. However, no matter which type of coal is burned, there is an optimum value for the exhaust gas injection amount (input amount) that minimizes the unburned content in the ash.
排ガス吹込量が0の場合と排ガスを吹込んだ場合とでは
、明らかに排ガスを投入したほうが灰中未燃分が低減す
る効果があることがわかる。しかし排ガスの投入量が多
すぎると、逆に灰中未燃分が増加する傾向がある(特に
A炭)。これは排ガス投入によるシール効果および混合
効果により、炉内に対するガス量が増加することによっ
て、炉内での石炭粒子の滞留時間が低下し、未燃分の増
加が著しくなるためと思われる。It can be seen that between the case where the amount of exhaust gas blown is 0 and the case where exhaust gas is blown in, it is clear that injecting exhaust gas is more effective in reducing the unburned content in the ash. However, if the amount of exhaust gas input is too large, there is a tendency for the unburned content in the ash to increase (especially for A coal). This is thought to be because the amount of gas in the furnace increases due to the sealing effect and mixing effect of the exhaust gas input, which reduces the residence time of coal particles in the furnace, resulting in a significant increase in unburned content.
本発明の他の実施例を第9図に示す。本実施例は、従来
型式のエアカーテン方式に加えて、排ガス投入口3をア
フターエア投入口15と煙道12との間にスクリーン状
に投入するようにしたものである。アフターエア投入口
15からのエアカーテンは2段燃焼効果、すなわちバー
ナ2のバーナポートからの燃焼用空気量を低下させ、石
炭粒子の速度と燃焼用空気との混合をおくらせることに
より、火炎の安定化と低NOx化を図るものである。高
燃料比炭の場合は、バーナ2の保炎の安定化が主目的と
なる。この実施例の効果として、火炎の安定化と低未燃
分化、さらには低NOx化も図れることが挙げられる。Another embodiment of the invention is shown in FIG. In this embodiment, in addition to the conventional air curtain system, the exhaust gas inlet 3 is injected between the after-air inlet 15 and the flue 12 in the form of a screen. The air curtain from the after-air inlet 15 has a two-stage combustion effect, that is, it reduces the amount of combustion air from the burner port of the burner 2 and slows down the velocity of coal particles and mixing with the combustion air, thereby improving the flame. The purpose is to stabilize and reduce NOx. In the case of high fuel ratio coal, the main purpose is to stabilize the flame holding of the burner 2. The effects of this embodiment include stabilizing the flame, reducing unburnt combustion, and further reducing NOx.
さらに第1θ図は、火炉に対してバーナ2の角度をやや
下向きに設定した場合の炉内ガス流れを示す。この場合
、炉内ガスの主流はバーナ2が配置された側壁側に沿っ
て上昇するが、このような流れの場合、多量の石炭粒子
群が煙道12にショートパスするために、排ガス投入口
3からの排ガスによるシール効果が一段と効果的になる
。また、第11図は、片面燃焼の場合であるが、この場
合も同様な効果が期待できる。。Furthermore, FIG. 1θ shows the gas flow in the furnace when the angle of the burner 2 is set slightly downward with respect to the furnace. In this case, the main flow of the gas in the furnace rises along the side wall where the burner 2 is arranged, but in such a flow, a large number of coal particles make a short pass to the flue 12, so the exhaust gas inlet The sealing effect by the exhaust gas from 3 becomes even more effective. Furthermore, although FIG. 11 shows the case of single-sided combustion, similar effects can be expected in this case as well. .
本発明によれば、微粉炭が、煙道ヘショートバスするこ
とが防止でき、また火炉内での滞留時間が増加するため
に、高燃料比炭のように、比較的燃焼速度の低い石炭を
高効率で燃焼させることができる。According to the present invention, it is possible to prevent pulverized coal from short-circuiting into the flue, and the residence time in the furnace is increased, so coal with a relatively low combustion rate, such as high fuel ratio coal, can be It can be burned with high efficiency.
第1図は、本発明9一実施例を示すボイラ装置の概略系
統図、第2図は、本発明の一実施例を示すボイラ装置の
バーナと排ガス投入口の配置状態を示す斜視図、第3図
は、従来型対向燃焼炉における、バーナからの粒子軌跡
を示す火炉側面図、第4図は、従来型アーチファイヤリ
ング方式の火炉における、主バーナからの粒子軌跡を示
す側面図、第5図は、アーチファイヤリング方式の火炉
に対して、シールエアを投入した場合の概念図、第6図
は、シールエアに、排ガスを循環した場合の火炉出口ガ
ス温度と、吹込ガスの02分圧との −関係を示す図
、第7図は、排ガス吹込量と火炉有効利用率との関係を
示す図、第8図は、排ガス吹込量と灰中未燃分との関係
を示す図、第9図、第10図、第11図は、本発明のそ
の他の実施例を示すボイラ装置の概念図である。
1・・・火炉、2・・・バーナ、3・・・排ガス投入口
、6・・・熱交換器、7・・・ミル、8・・・コールバ
ンカ、9・・・微粉炭輸送管、10・・・燃焼用空気配
管、11・・・火炎、12・・・煙道、13・・・GR
投入口、14・・・ホッパ、15・・・アフターエア。
代理人 弁理士 川 北 武 長
第5図
第6図
吹込みガスの02分圧(%〕
第7図
第8図
排ガス吹込量FIG. 1 is a schematic system diagram of a boiler device showing an embodiment of the present invention, and FIG. Fig. 3 is a side view of the furnace showing particle trajectories from the burners in a conventional opposed combustion furnace; Fig. 4 is a side view showing particle trajectories from the main burner in a conventional arch-firing type furnace; The figure is a conceptual diagram when seal air is introduced into an arch-firing type furnace. Figure 6 shows the furnace outlet gas temperature and the 02 partial pressure of the blown gas when exhaust gas is circulated in the seal air. - A diagram showing the relationship, Figure 7 is a diagram showing the relationship between the amount of exhaust gas injected and the effective utilization rate of the furnace, Figure 8 is a diagram showing the relationship between the amount of exhaust gas injected and the unburned content in the ash, Figure 9 , FIG. 10, and FIG. 11 are conceptual diagrams of a boiler device showing other embodiments of the present invention. DESCRIPTION OF SYMBOLS 1... Furnace, 2... Burner, 3... Exhaust gas inlet, 6... Heat exchanger, 7... Mill, 8... Coal bunker, 9... Pulverized coal transport pipe, 10 ... Combustion air piping, 11... Flame, 12... Flue, 13... GR
Input port, 14...hopper, 15...after air. Agent Patent Attorney Takenaga Kawakita Fig. 5 Fig. 6 Partial pressure of blown gas (%) Fig. 7 Fig. 8 Amount of exhaust gas blown
Claims (2)
下方に向かって配置した燃焼装置において、前記バーナ
と火炉出口との間に排ガスを供給する手段を設けたこと
を特徴とする固体燃料燃焼装置。(1) A combustion device in which a burner whose main fuel is high fuel ratio coal is arranged downward with respect to the furnace, characterized in that a means for supplying exhaust gas is provided between the burner and the furnace outlet. Solid fuel combustion equipment.
ルを火炉幅方向にスリット状または複数配置したことを
特徴とする固体燃料燃焼装置。(2) A solid fuel combustion device according to claim 1, characterized in that the exhaust gas injection nozzle is arranged in a slit shape or in a plurality in the width direction of the furnace.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62286899A JP2648600B2 (en) | 1987-11-13 | 1987-11-13 | Solid fuel combustion method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62286899A JP2648600B2 (en) | 1987-11-13 | 1987-11-13 | Solid fuel combustion method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01127807A true JPH01127807A (en) | 1989-05-19 |
JP2648600B2 JP2648600B2 (en) | 1997-09-03 |
Family
ID=17710440
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62286899A Expired - Fee Related JP2648600B2 (en) | 1987-11-13 | 1987-11-13 | Solid fuel combustion method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2648600B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009145013A (en) * | 2007-12-17 | 2009-07-02 | Mitsubishi Heavy Ind Ltd | Marine boiler structure |
CN107543151A (en) * | 2017-09-12 | 2018-01-05 | 哈尔滨工业大学 | A kind of W flame boiler for the flue gas recirculation system that can improve coal dust after-flame |
CN107606605A (en) * | 2017-09-12 | 2018-01-19 | 哈尔滨工业大学 | A kind of W flame boiler using flue gas recycled |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5232977U (en) * | 1975-08-29 | 1977-03-08 | ||
JPS5244804A (en) * | 1975-10-07 | 1977-04-08 | Osaka Yougiyou Kk | Antispalling refractory brick for rotary kiln lining |
JPS5642714A (en) * | 1979-09-10 | 1981-04-21 | Nakajima Kk | Fixing equipment for wire |
-
1987
- 1987-11-13 JP JP62286899A patent/JP2648600B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5232977U (en) * | 1975-08-29 | 1977-03-08 | ||
JPS5244804A (en) * | 1975-10-07 | 1977-04-08 | Osaka Yougiyou Kk | Antispalling refractory brick for rotary kiln lining |
JPS5642714A (en) * | 1979-09-10 | 1981-04-21 | Nakajima Kk | Fixing equipment for wire |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009145013A (en) * | 2007-12-17 | 2009-07-02 | Mitsubishi Heavy Ind Ltd | Marine boiler structure |
CN107543151A (en) * | 2017-09-12 | 2018-01-05 | 哈尔滨工业大学 | A kind of W flame boiler for the flue gas recirculation system that can improve coal dust after-flame |
CN107606605A (en) * | 2017-09-12 | 2018-01-19 | 哈尔滨工业大学 | A kind of W flame boiler using flue gas recycled |
CN107606605B (en) * | 2017-09-12 | 2019-04-09 | 哈尔滨工业大学 | A kind of W flame boiler using flue gas recycled |
CN107543151B (en) * | 2017-09-12 | 2019-06-11 | 哈尔滨工业大学 | A kind of W flame boiler for the flue gas recirculation system can be improved coal dust after-flame |
Also Published As
Publication number | Publication date |
---|---|
JP2648600B2 (en) | 1997-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CZ130296A3 (en) | Process and apparatus for burning powder fuel | |
US6244200B1 (en) | Low NOx pulverized solid fuel combustion process and apparatus | |
MX2007010342A (en) | Combustion method and system. | |
US3699903A (en) | Method for improving fuel combustion in a furnace and for reducing pollutant emissions therefrom | |
CN110425520B (en) | Flameless combustion system for semi-coke type flame-retardant fuel | |
CA2509631C (en) | Process and apparatus for oxygen enrichment in fuel conveying gases | |
US20140202365A1 (en) | Combustion apparatus with direct firing system | |
CN109442391A (en) | It is a kind of to be simple and efficient low-nitrogen discharged grate firing boiler | |
US5660125A (en) | Circulating fluid bed steam generator NOx control | |
JPH01127807A (en) | Solid fuel combustion equipment | |
JPS60126508A (en) | Finely powdered coal burning device | |
CN108679600A (en) | Air classification combines out of stock method with SNCR | |
JP2870675B2 (en) | How to operate the pyrolytic combustion zone | |
CN210602852U (en) | Low-nitrogen combustion equipment for aluminum kiln | |
JPS62169907A (en) | Pulverized coal combustion boiler | |
JP3217470B2 (en) | Boiler equipment | |
JPH08121711A (en) | Pulverized coal combsition method and pulverized coal combustion device and pulverized coal burner | |
JPH09126412A (en) | Low nox boiler | |
JPH0263124B2 (en) | ||
JPH07301403A (en) | Combustion device of boiler furnace | |
JPS58145810A (en) | Combustion of coal | |
EP3256780A1 (en) | Method for reducing nitrogen oxide emissions in a bubbling fluidized bed boiler and bubbling fluidized bed boiler | |
CN108518672A (en) | A kind of low nitrogen burning circulating fluidized bed boiler | |
JPS63290306A (en) | Combustion control method for pulverized coal combustion apparatus | |
JPS58164912A (en) | Boiler device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |