JPH01127689A - Method for concentrating aqueous solution of alkali hydroxide - Google Patents

Method for concentrating aqueous solution of alkali hydroxide

Info

Publication number
JPH01127689A
JPH01127689A JP28595187A JP28595187A JPH01127689A JP H01127689 A JPH01127689 A JP H01127689A JP 28595187 A JP28595187 A JP 28595187A JP 28595187 A JP28595187 A JP 28595187A JP H01127689 A JPH01127689 A JP H01127689A
Authority
JP
Japan
Prior art keywords
anode
cathode
hydrogen
chamber
electrolyte chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28595187A
Other languages
Japanese (ja)
Inventor
Yuko Fujita
藤田 雄耕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP28595187A priority Critical patent/JPH01127689A/en
Publication of JPH01127689A publication Critical patent/JPH01127689A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To produce aq. NaOH soln. having high concn. in a cathode chamber with a small amt. of electric energy, by supplying aq. NaOH soln. having low concn. to the anode and cathode chamber of the diaphragm cell having the anode made of hydrogen occlusion alloy and the cathode made of Ni, by applying an electric current and by circulating the hydrogen generated on the cathode to the anode chamber. CONSTITUTION:In the electrolytic cell separated into the anodic electrolyte chamber 4 and cathodic electrolyte chamber 5 with a cation-exchange member 3 consisting of sodium perfluorosulfonate, the anode 1 made of hydrogen occlusion alloy is arranged as an anode 1 on the one side of the anodic electrolytic chamber 4 and a hydrogen gas chamber 9 is formed at the rear. As the cathode, sintered alloy of carbonyl Ni powder is used and the upper part of the cathode chamber 5 is connected to the hydrogen gas chamber 9 on the rear of the anode with a pipe having a circulating pump 8. An aq. NaOH having about 30% concn. is supplied to both the chambers 4 and 5, and DC is applied to both the poles. The hydrogen generated on the cathode is sent to the hydrogen gas chamber 9 and adsorbed in the anode, and Na ion infiltrates to the cathode chamber 5 through the diaphragm 3. The aq. NaOH soln. having high concn. of about 50% is taken out from an exhaust port 11 and aq. NaOH soln. having low concn. of about 20% is taken out from an exhaust port 10.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は水酸化アルカリ水溶液の濃縮方法、さらに詳し
くは塩化アルカリの電解によって生成する相対的に低濃
度の水酸化アルカリ水溶液の濃縮方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for concentrating an aqueous alkali hydroxide solution, and more particularly to a method for concentrating a relatively low concentration aqueous alkali hydroxide solution produced by electrolysis of alkali chloride. .

従来の技術 塩化アルカリの電解槽は一般に陰極と陽極とイオン交換
層もしくはアスベスト隔膜と陰極電解液室と陽極電解液
室とから構成され、塩化アルカリとして、例えば塩化ナ
トリウムを用いた場合には次のような電極反応が起る。
Conventional technology An electrolytic cell for alkali chloride generally consists of a cathode, an anode, an ion exchange layer or asbestos diaphragm, a cathode electrolyte chamber, and an anolyte electrolyte chamber. When sodium chloride, for example, is used as the alkali chloride, the following Such an electrode reaction occurs.

陰極: 2H20+2e →)b + 208−   
   (1)陽[1: 2CI−→C12+2e   
    (2)全反応: 2H20+ 2NaC1−+
  t12+ 2NaO1−1)Clz   (3)こ
の反応によって陰極で生成する水酸化ナトリウムの水溶
液は、製品として考える場合、50%程度の11度を有
することが必要であるが、実際には30〜35%に抑え
られているのが実情である。これは、例えばイオン交換
膜法の塩化ナトリウムの電解槽では、陰極電解液室の水
酸化プトリウムの濃度を高くすると陽極電解液室側に水
酸化イオン(OH−)が漏洩し、このため、FX114
の触媒として一般に用いられている酸化ルテニウムの溶
解や陽極でp塩素発生反応以外の酸素の発生といった不
都合な現象が起るばかりか、N流動率の低下やイオン交
換11(7)IR降下といった不都合も起るからである
Cathode: 2H20+2e →)b + 208-
(1) Positive [1: 2CI-→C12+2e
(2) Total reaction: 2H20+ 2NaC1-+
t12+ 2NaO1-1)Clz (3) The aqueous solution of sodium hydroxide produced at the cathode by this reaction needs to have a temperature of 11 degrees, which is about 50%, when considered as a product, but in reality it has a temperature of 30 to 35%. The reality is that it is suppressed. This is because, for example, in a sodium chloride electrolytic cell using the ion exchange membrane method, when the concentration of putrium hydroxide in the cathode electrolyte chamber is increased, hydroxide ions (OH-) leak to the anode electrolyte chamber side.
Not only do disadvantageous phenomena occur such as the dissolution of ruthenium oxide, which is commonly used as a catalyst for ion exchange, and the generation of oxygen other than the p-chlorine generation reaction at the anode, but also disadvantageous phenomena such as a decrease in N flow rate and a drop in ion exchange 11(7) IR. This is because it also happens.

従来、水酸化ナトリウムの水溶液を濃縮するには、熱に
よって水分を蒸発させる方法が採用されているが、その
際の熱エネルギーを電力原単位として換算すると、水酸
化ナトリウム1 ton当り約750 whと、かなり
大きくなる。
Conventionally, the method of concentrating an aqueous solution of sodium hydroxide has been to evaporate water using heat, but when converting the thermal energy in this case into a unit of electric power, it is approximately 750 wh per 1 ton of sodium hydroxide. , becomes quite large.

一方、最近、新しい水酸化ナトリウムの濃縮方法として
陽イオン交換膜を隔膜とする水素−空気燃料電池を利用
する方法が提案されている。(E。
On the other hand, recently, a method using a hydrogen-air fuel cell using a cation exchange membrane as a diaphragm has been proposed as a new method for concentrating sodium hydroxide. (E.

J 、 T aylO「等 American Ele
ctrOCheliCalsociety、 Spri
ng Meeting、 May  1O−15(19
この方法は塩化ナトリウムの電解で生成する30%の水
酸化ナトリウム水溶液を燃料電池の陽イオン交換膜と正
極(空気極)との間に形成される正極電解液室および陽
イオン交換膜と負極(水素極)との間に形成される負極
電解液室に供給すると共に、塩化ナトリウムの1解で陰
極から生成する水素を燃料電池の負極(水素極)に供給
し、燃料電池を作動させると、正極電解液室の水酸化ナ
トリウム水溶液のm度が高くなる(50%)という原理
に基ずくものである。なお、この方法では負極電解液室
の水酸化ナトリウム水溶液の濃度は低下(約21%)す
るが、この低81度の水酸化ナトリウム水溶液は再び塩
化ナトリウムの電解槽の陰極電解1室に戻される。また
、この燃料電池の作動によって得られる電力は塩化ナト
リウムの電解に利用される。
American Ele
ctrOCheliCalsociety, Spri
ng Meeting, May 1O-15 (19
This method uses a 30% aqueous sodium hydroxide solution produced by electrolysis of sodium chloride to the positive electrolyte chamber formed between the cation exchange membrane and the positive electrode (air electrode) of the fuel cell, and the cation exchange membrane and negative electrode ( When the fuel cell is operated by supplying hydrogen generated from the cathode with one solution of sodium chloride to the negative electrode electrolyte chamber formed between the negative electrode (hydrogen electrode) and the hydrogen electrode (hydrogen electrode), This is based on the principle that the m degree of the sodium hydroxide aqueous solution in the positive electrode electrolyte chamber increases (50%). Note that in this method, the concentration of the sodium hydroxide aqueous solution in the negative electrode electrolyte chamber decreases (about 21%), but this low 81 degree sodium hydroxide aqueous solution is returned to the cathode electrolysis chamber 1 of the sodium chloride electrolytic cell. . Moreover, the electric power obtained by operating this fuel cell is used for electrolyzing sodium chloride.

通例の塩化ナトリウムの電解時の電力原単位は水酸化ナ
トリウム1 ton当り電解電力に2200 kwh。
The electricity consumption rate during the usual electrolysis of sodium chloride is 2200 kWh per ton of sodium hydroxide.

蒸発による濃縮に750 kwh、合計2950 kw
hとされているのに対し、この燃料電池を併用したシス
テムの場合、1950 kwhと大幅に低減され、層れ
た提案であると云うことができる。
750 kw for concentration by evaporation, total 2950 kw
h, but in the case of a system that uses this fuel cell in combination, it is significantly reduced to 1950 kwh, and can be said to be a layered proposal.

発明が解決すべき問題点 熱エネルギーによって水酸化アルカリ水溶液をm縮する
方法は、その熱エネルギーが大きいが故に問題がある。
Problems to be Solved by the Invention The method of condensing an aqueous alkali hydroxide solution using thermal energy has problems because the thermal energy is large.

また、上述の燃料電池併用法は塩化アルカリの電解によ
って生成する水素を消費してしまう、換言すると水素を
電気エネルギーに変換しているにすぎないという点に問
題がある。また、空気中には0.03%pi喰の二酸化
炭素が含有されているが、この二酸化炭素が製品である
水酸化ナトリウムの水WJ液液中混入すると、炭酸アル
カリが生成し、製品の純度が低下するという問題しある
。この点については、予め二酸化炭素を除去した空気を
燃料電池に供給すればよいね番ノであるが、そのための
経費がかなり大きいという難点がある。
Furthermore, the above-mentioned fuel cell combination method has a problem in that hydrogen produced by electrolysis of alkali chloride is consumed; in other words, hydrogen is merely converted into electrical energy. In addition, air contains 0.03% pi of carbon dioxide, but when this carbon dioxide mixes into the water WJ liquid of sodium hydroxide, which is the product, alkali carbonate is produced, which reduces the purity of the product. There is a problem that the amount of energy decreases. Regarding this point, it would be possible to supply air from which carbon dioxide has been removed beforehand to the fuel cell, but there is a drawback that the cost for this is quite large.

また、燃料電池を運転するには複雑な制御系が必要であ
るし、さらには、燃料電池で作られる電力を塩化アルカ
リの電解に利用するには、新たに電源制御15AW1が
必要になる。従って、燃料電池および電源制御2Ilv
t置の最初の設備投資が大きくなることも、工業的観点
からみると、一つの障害になる。
Further, a complicated control system is required to operate the fuel cell, and furthermore, a new power supply control 15AW1 is required to use the electric power generated by the fuel cell for electrolysis of alkali chloride. Therefore, fuel cells and power control 2Ilv
The large initial investment in equipment is also an obstacle from an industrial perspective.

問題点を解決するための手段 本発明は上述の如き問題点を解決するため、水素吸蔵合
金を主体とする陽極と水素発生極としての陰極と陽イオ
ン交換膜と陽極電解液室と陰極電解液室とを備える電気
化学装置を用意し、陽極電解液室および陰極電解液室の
双方に、濃縮を行なおうとする相対的に低11度の水酸
化アルカリ水溶液を供給し、陽・陰両極間に直流電流を
通rRすることにより、陽極において水素の電解酸化反
応を起させ、陰極において水素の発生反応を起させ、さ
らに陰極から発生する水素を陽極に再循環せしめると共
に吸蔵せしめる間に、陰極電解液室中の水酸化アルカリ
水溶液のIIを相対的に?3濃麿にせしめることを特徴
とするものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides an anode mainly made of a hydrogen storage alloy, a cathode as a hydrogen generating electrode, a cation exchange membrane, an anode electrolyte chamber, and a cathode electrolyte. An electrochemical device equipped with a chamber is prepared, and an alkali hydroxide aqueous solution at a relatively low temperature of 11 degrees to be concentrated is supplied to both the anode electrolyte chamber and the cathode electrolyte chamber. By passing a DC current through R, an electrolytic oxidation reaction of hydrogen is caused at the anode, a hydrogen generation reaction is caused at the cathode, and the hydrogen generated from the cathode is recycled to the anode and stored. II of the aqueous alkali hydroxide solution in the electrolyte chamber? It is characterized by the fact that it is made to be made into a three-layered rice cake.

作  用 陽極として水素の電解酸化を起させる水素吸蔵合金を主
体とする1楊を、陰極として水素発生極を配し、前記画
電極の間に陽イオン交換膜を配し、陽イオン交換膜と陽
極との間に形成される陽極電解液室および陽イオン交換
膜と陰極との間に形成される陰極電解液室に30〜35
%の水酸化ナトリウムもしくは水酸化カリウムの水溶液
を供給すると共に、外部電源から陽・陰極間に直流電流
を通電すると次のような電極反応が起る。
A working anode mainly made of a hydrogen storage alloy that causes electrolytic oxidation of hydrogen is arranged, a hydrogen generating electrode is arranged as a cathode, and a cation exchange membrane is arranged between the picture electrodes. 30 to 35 in the anode electrolyte chamber formed between the anode and the catholyte electrolyte chamber formed between the cation exchange membrane and the cathode.
When an aqueous solution of sodium hydroxide or potassium hydroxide is supplied and a direct current is passed between the anode and cathode from an external power source, the following electrode reaction occurs.

陽極: H2+ 20H−−+ 2820+28   
  (4)陰極: 2H20+28−) 82 + 2
0日−(5)即ち、陽極では水素吸蔵合金中の水素が電
解酸化され、陰極でガス状の水素が発生する。従って、
全反応としては水素が陽極側から陰極側に移行す゛ る
だけで、見掛上は何も起らず、理論電解電圧はOVであ
る。ただし、実際には各74極の過電圧と陽イオン交換
膜および溶液部の抵抗によるIR降下があるので、0.
3〜0.4Vの電圧は必要となる。
Anode: H2+ 20H--+ 2820+28
(4) Cathode: 2H20+28-) 82 + 2
Day 0 - (5) That is, hydrogen in the hydrogen storage alloy is electrolytically oxidized at the anode, and gaseous hydrogen is generated at the cathode. Therefore,
As for the entire reaction, only hydrogen migrates from the anode side to the cathode side, and apparently nothing happens, and the theoretical electrolysis voltage is OV. However, in reality, there is an IR drop due to the overvoltage of each of the 74 electrodes and the resistance of the cation exchange membrane and solution part, so 0.
A voltage of 3-0.4V is required.

一方、陽イオン交換膜は、アルカリ金属イオンは通す(
陽極側から陰極側に)が、水酸イオンは通さないので、
(5)式の反応により陰極電解液室で水酸化アルカリが
どんどん生成し、その濃度が高くなる。換言すると、水
酸化アルカリのaliiが起る。これに対して陽極電解
液室では(71)式の反応により、水が生成するので、
水酸化アルカリの濃度が低下する。この低濃度になった
水酸化アルカリ水溶液は再び塩化アルカリ電解槽の陰極
電解液室に戻せばよい。
On the other hand, cation exchange membranes allow alkali metal ions to pass through (
(from the anode side to the cathode side), but hydroxide ions do not pass through, so
Due to the reaction of formula (5), alkali hydroxide is rapidly produced in the catholyte chamber, and its concentration increases. In other words, alii of alkali hydroxide occurs. On the other hand, in the anode electrolyte chamber, water is generated by the reaction of equation (71), so
The concentration of alkali hydroxide decreases. This aqueous alkali hydroxide solution that has become low in concentration may be returned to the cathode electrolyte chamber of the alkaline chloride electrolytic cell.

一方、陰極から発生するガス状の水素は電気化学装置の
外に一旦取り出し、陽極に再循環させ、陽極の水素吸蔵
合金に吸蔵せしめることによって、水素系は一種の密閉
系となる。また、このように、水素を水素吸蔵合金に再
循環せしめるためには、陽極を一種のガス拡散電極とし
て、その電極の背面にガス室を形成する必要がある。そ
のためには、水素板J1′f4極を製造する方法として
、水素吸蔵合金粉末単独か、ニッケル粉末などの水素吸
蔵性のない金属粉末との混合粉末にフッ素樹脂などの旧
水性を有する結着剤を加え、加圧成型するのがよい。水
素吸蔵合金としては希土類元素とニッケル。
On the other hand, gaseous hydrogen generated from the cathode is once taken out of the electrochemical device, recirculated to the anode, and stored in the hydrogen storage alloy of the anode, making the hydrogen system a kind of closed system. Furthermore, in order to recirculate hydrogen to the hydrogen storage alloy in this way, it is necessary to use the anode as a kind of gas diffusion electrode and to form a gas chamber on the back side of the electrode. To this end, the method for manufacturing the hydrogen plate J1'f 4 poles is to use a hydrogen-absorbing alloy powder alone or a mixed powder with a metal powder that does not have hydrogen-absorbing properties such as nickel powder, and a binder with old water properties such as fluororesin. It is best to add and pressure mold. Rare earth elements and nickel are hydrogen storage alloys.

コバルト、アルミニウム、その他の金属との多元系合金
が優れているが、必ずしもこれらに限定されない。
Multi-element alloys with cobalt, aluminum, and other metals are preferred, but are not necessarily limited to these.

陽イオン交換膜としてはパーフルオロカーボンを骨格と
し、スルフォン酸基、カルボンM基、もしくはこれら双
方のイオン交換基を有するものが適当である。
As the cation exchange membrane, one having a perfluorocarbon skeleton and having a sulfonic acid group, a carbon M group, or both of these ion exchange groups is suitable.

実  施  例 図は本発明の一実施例による電気化学的水酸化ナトリウ
ム濃縮装置の断面構造を示したものである。
Embodiment The figure shows a cross-sectional structure of an electrochemical sodium hydroxide concentrator according to an embodiment of the present invention.

電気化学的水酸化ナトリウム水溶液濃縮装置はLa N
l□、5cOユΔ1゜1.からなる組成の水素吸蔵合金
粉末100部に対し、カルボニルニッケル粉末10部お
よびポリテトラフルオロエチレン30部を混合して加圧
成型し、水素気流中280℃で熱処理して1!7られる
陽極1と、カルボニルニッケル粉末を水素気流中850
℃で焼結して19られる陰極2と、パーフルオロカーボ
ンスルフオン酸ソーダからなる陽イオン交換膜3と、こ
の陽イオン交換11A3によって隔離された陽極電解液
室4と陰極電解液室5とから構成されている。
Electrochemical sodium hydroxide aqueous solution concentrator is LaN
l□, 5cOyuΔ1゜1. 100 parts of hydrogen-absorbing alloy powder having a composition of , carbonyl nickel powder in a hydrogen stream at 850 °C
It is composed of a cathode 2 sintered at 19 °C, a cation exchange membrane 3 made of sodium perfluorocarbon sulfonate, and an anode electrolyte chamber 4 and a cathode electrolyte chamber 5 separated by the cation exchange 11A3. has been done.

濃縮を行なおうとする30%の水酸化ナトリウム水溶液
は水酸化ナトリウム水溶液供給口6から陽極電解液室4
および陰極電解液室5の双方に供給される。次に、陽極
1と陰極2との間に20A/dntの電流密度で直流電
流を通電すると、電圧は0.4Vになる。また、この通
電の間に陰極2から発生する水素を水素導出ロアから取
り出し、循環ポンプ8により陽極1の背面に形成された
水素ガス室9に供給する。
The 30% sodium hydroxide aqueous solution to be concentrated is supplied from the sodium hydroxide aqueous solution supply port 6 to the anode electrolyte chamber 4.
and the catholyte chamber 5. Next, when a direct current is passed between the anode 1 and the cathode 2 at a current density of 20 A/dnt, the voltage becomes 0.4V. Further, during this energization, hydrogen generated from the cathode 2 is taken out from the hydrogen derivation lower and supplied to a hydrogen gas chamber 9 formed on the back surface of the anode 1 by a circulation pump 8.

かくして、陽極電解液導出口10から導出される水酸化
ナトリウム水溶液の濃度は20%になり、陰極電解液導
出口11から取り出される水酸化ナトリウム水溶液のI
laは50%になった。
Thus, the concentration of the sodium hydroxide aqueous solution drawn out from the anolyte electrolyte outlet 10 becomes 20%, and the concentration of the sodium hydroxide aqueous solution drawn out from the catholyte electrolyte outlet 11 becomes 20%.
la has become 50%.

発明の効果 本発明の方法によって30%の水酸化ナトリウム水溶液
を50%に濃縮する際の水酸化ナトリウム1ton当り
の電力原単位は107 kwhとなり、熱エネルギーで
濃縮する場合の電力原単位750 kwhの実に14%
となる。
Effects of the Invention When concentrating a 30% sodium hydroxide aqueous solution to 50% by the method of the present invention, the electric power consumption per ton of sodium hydroxide is 107 kwh, and the electric power consumption when concentrating with thermal energy is 750 kwh. Actually 14%
becomes.

このように本発明は極めて少ないエネルギーで水酸化ア
ルカリ水溶液を濃縮する方法を提供するものであり、そ
の工業的111i!liは大きい。
As described above, the present invention provides a method for concentrating an aqueous alkali hydroxide solution with extremely little energy, and is an industrial method for concentrating an aqueous alkali hydroxide solution. li is big.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例にかかる電気化学的水酸化ナトリ
ウム濃縮装冒の概略断面図である。 1・・・・・・陽極      2・・・・・・陰掻3
・・・・・・陽イオン交換膜
The figure is a schematic cross-sectional view of an electrochemical sodium hydroxide concentration device according to an embodiment of the present invention. 1...Anode 2...Pin scratch 3
...Cation exchange membrane

Claims (1)

【特許請求の範囲】[Claims] 水素吸蔵合金を主体とする陽極と水素発生極としての陰
極と陽イオン交換膜と陽極電解液室と陰極電解液室とを
備える電気化学装置において、陽極電解液室と陰極電解
液室に相対的に低濃度の水酸化アルカリ水溶液を供給し
、陽・陰両極間に直流電流を通電することにより、陽極
において水素の電解酸化反応を起させ、陰極において水
素の発生反応を起させ、さらに陰極から発生する水素を
陽極に再循環せしめると共に吸蔵せしめる間に、陰極電
解液室中の水酸化アルカリ水溶液の濃度を相対的に高濃
度にせしめることを特徴とする水酸化アルカリ水溶液の
濃縮方法。
In an electrochemical device comprising an anode mainly made of a hydrogen storage alloy, a cathode as a hydrogen generating electrode, a cation exchange membrane, an anode electrolyte chamber, and a cathode electrolyte chamber, By supplying a low-concentration alkaline hydroxide aqueous solution to the anode and passing a direct current between the anode and cathode, an electrolytic oxidation reaction of hydrogen occurs at the anode, a hydrogen generation reaction occurs at the cathode, and hydrogen is further removed from the cathode. A method for concentrating an aqueous alkali hydroxide solution, which comprises increasing the concentration of the aqueous alkali hydroxide solution in a cathode electrolyte chamber to a relatively high concentration while recirculating and occluding generated hydrogen to an anode.
JP28595187A 1987-11-12 1987-11-12 Method for concentrating aqueous solution of alkali hydroxide Pending JPH01127689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28595187A JPH01127689A (en) 1987-11-12 1987-11-12 Method for concentrating aqueous solution of alkali hydroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28595187A JPH01127689A (en) 1987-11-12 1987-11-12 Method for concentrating aqueous solution of alkali hydroxide

Publications (1)

Publication Number Publication Date
JPH01127689A true JPH01127689A (en) 1989-05-19

Family

ID=17698076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28595187A Pending JPH01127689A (en) 1987-11-12 1987-11-12 Method for concentrating aqueous solution of alkali hydroxide

Country Status (1)

Country Link
JP (1) JPH01127689A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100513182B1 (en) * 2001-04-18 2005-09-08 쯔루미소다 가부시끼가이샤 Apparatus for refining alkali solution and method for the same
US7399729B2 (en) 2003-12-22 2008-07-15 General Electric Company Catalyst system for the reduction of NOx

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100513182B1 (en) * 2001-04-18 2005-09-08 쯔루미소다 가부시끼가이샤 Apparatus for refining alkali solution and method for the same
US7399729B2 (en) 2003-12-22 2008-07-15 General Electric Company Catalyst system for the reduction of NOx

Similar Documents

Publication Publication Date Title
JP2648313B2 (en) Electrolysis method
US4561945A (en) Electrolysis of alkali metal salts with hydrogen depolarized anodes
US4528083A (en) Device for evolution of oxygen with ternary electrocatalysts containing valve metals
KR101721860B1 (en) Method for the cogeneration of electrical and hydrogen power
US20090000956A1 (en) Production of Low Temperature Electrolytic Hydrogen
WO1998040535A1 (en) Electrolytic ozone-generating apparatus and the process for manufacturing the same
CN110791773A (en) Method and device for producing hydrogen by electrolyzing water
US5607562A (en) Electrolytic ozone generator
JPH11229167A (en) Electrolytic hydrogen generating device
US5296110A (en) Apparatus and method for separating oxygen from air
CN114402095B (en) Cross-flow water electrolysis
JPH01127689A (en) Method for concentrating aqueous solution of alkali hydroxide
JPS62182292A (en) Diaphragm electrolysis of hci
JPH0938653A (en) Production of electrolyzed ionic water and device therefor
JPH01127688A (en) Method for concentrating aqueous solution of alkali hydroxide
US20090263690A1 (en) Apparatus for generating hydrogen and fuel cell power generation system having the same
JPH10140383A (en) Electrode feeder, its production and electrolytic cell for producing hydrogen peroxide
JPH01127690A (en) Method for concentrating aqueous solution of alkali hydroxide
JPH01234585A (en) Method and device for electrolysis using gas diffusion electrode
JP3921300B2 (en) Hydrogen generator
JPH10251884A (en) Hydrogen and oxygen generator and electrolytic cell used therefor
CN219117570U (en) Water electrolysis device and water welding machine
CN219547111U (en) Hydrogen peroxide generating device with modified cation exchange membrane
JPH10110286A (en) Electrolytic cell for alkali metal chloride aqueous solution using gas diffusion electrode
JP3304481B2 (en) Electrolyzer for hydrogen peroxide production and method for electrolytic production of hydrogen peroxide