JPH01127688A - Method for concentrating aqueous solution of alkali hydroxide - Google Patents

Method for concentrating aqueous solution of alkali hydroxide

Info

Publication number
JPH01127688A
JPH01127688A JP28595087A JP28595087A JPH01127688A JP H01127688 A JPH01127688 A JP H01127688A JP 28595087 A JP28595087 A JP 28595087A JP 28595087 A JP28595087 A JP 28595087A JP H01127688 A JPH01127688 A JP H01127688A
Authority
JP
Japan
Prior art keywords
hydrogen
cathode
anode
electrolyte chamber
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28595087A
Other languages
Japanese (ja)
Inventor
Yuko Fujita
藤田 雄耕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP28595087A priority Critical patent/JPH01127688A/en
Publication of JPH01127688A publication Critical patent/JPH01127688A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce aq. NaOH soln. having high concn. in a cathode chamber with a small amt. of electric energy, by introducing aq. NaOH soln. having low concn. to the anode and cathode chamber of the diaphragm cell having the anode adsorbing hydrogen, made of hydrogen occlusion alloy and the cathode not adsorbing hydrogen, made of the hydrogen occlusion alloy, and by applying an electric current. CONSTITUTION:In the electrolytic cell separated into the anodic electrolyte chamber 4 and cathodic electrolyte chamber 5 with a cation-exchange membrane 3 consisting of sodium perfluorocarbonsulfonate, the anode 1 sufficiently occluding hydrogen, made of the hydrogen occlusion alloy is arranged in the anodic electrolyte chamber 4 and the cathode 2 made of hydrogen occlusion alloy not occluding hydrogen, in the cathodic electrolyte chamber 5. The aq. NaOH soln. having low concn. of 20% is supplied to both the chambers 4 and 5 from an inlet port 6 and DC is sent to both the electric poles 1 and 2. The Na ion in the anolyte is passed to the catholyte through the cation-exchange membrane 3, the hydrogen generated on the cathode 2 is occluded in the cathode 2, and on the anode the occluded hydrogen is oxidized to water by anodic oxidation. The aq. 20% NaOH soln. flows out from an exhaust port 7 of the anode chamber 4, and concd. NaOH soln. having 50% concn. is produced with the small amt. of electric energy and flows out from an exhaust port 8 of the cathode chamber 5.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は水酸化アルカリ水溶液のam方法、さらに詳し
くは塩化アルカリの電解によって生成する相対的に低1
濃度の水酸化アルカリ水溶液の濃縮方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a relatively low-I
The present invention relates to a method for concentrating a concentrated aqueous alkali hydroxide solution.

従来の技術 塩化アルカリの電解槽は一般に陰極と陽極とイオン交換
膜もしくはアスベスト隔膜と陰極電解液室と陽極電解液
室とから構成され、塩化アルカリとして、例えば塩化ナ
トリウムを用いた場合には次のような電極反応が起る。
Conventional technology An electrolytic cell for alkali chloride generally consists of a cathode, an anode, an ion exchange membrane or an asbestos diaphragm, a cathode electrolyte chamber, and an anolyte electrolyte chamber. When sodium chloride, for example, is used as the alkali chloride, the following Such an electrode reaction occurs.

陰極: 2H2o+2e −4H2+ 201」−(1
)陽極+ 2CI−→CI2 +2e        
   (2)全反応: 2H20+ 2鴎CI  →t
」2+ 2N]0H−)C+2   (3)この反応に
よって陰極で生成する水酸化すi・リウムの水溶液は、
製品として考える場合、50%程度のm濃度を有するこ
とが必要であるが、実際には30〜35%に抑えられて
いるのが実情である。これは、例えばイオン交換膜法の
塩化ナトリウムの電解槽では、陰TILTS解液室の水
酸化ナトリウムの濃度を高くすると陽極電解液室側に水
酸化イオン(OH−)が漏洩し、このため、陽極の触媒
として一般に用いられている酸化ルテニウムの溶解や陽
極での塩素発生反応以外の酸素の発生、或いは電流効率
の低下やイオン交換膜のIR降下といった不都合な現象
が起るからである。
Cathode: 2H2o+2e -4H2+ 201''-(1
) Anode + 2CI-→CI2 +2e
(2) Total reaction: 2H20+ 2gu CI →t
"2+ 2N]0H-)C+2 (3) The aqueous solution of lithium hydroxide produced at the cathode by this reaction is
When considered as a product, it is necessary to have an m concentration of about 50%, but in reality it is suppressed to 30 to 35%. This is because, for example, in a sodium chloride electrolytic cell using the ion exchange membrane method, when the concentration of sodium hydroxide in the anode TILTS solution chamber is increased, hydroxide ions (OH-) leak into the anode electrolyte chamber, and as a result, This is because disadvantageous phenomena such as dissolution of ruthenium oxide, which is generally used as an anode catalyst, generation of oxygen other than the chlorine generation reaction at the anode, reduction in current efficiency, and IR drop of the ion exchange membrane may occur.

従来、水酸化ナトリウムの水溶液を濃縮するには、熱に
よって水分を蒸発させる方法が採用されているが、その
際の熱エネルギーを電力原単位として換棹すると、水酸
化ナトリウム1 ton当り約750 whと、かなり
大きくなる。
Conventionally, the method of concentrating an aqueous solution of sodium hydroxide is to evaporate water using heat, but if the thermal energy at that time is converted into a unit of electric power, it is approximately 750 wh per 1 ton of sodium hydroxide. And it becomes quite large.

一方、最近、新しい水酸化ナトリウムの濃縮方法として
陽イオン交換膜を隔膜とする水素−空気燃料電池を利用
する方法が提案されている。([。
On the other hand, recently, a method using a hydrogen-air fuel cell using a cation exchange membrane as a diaphragm has been proposed as a new method for concentrating sodium hydroxide. ([.

J 、 Taylor ’8  American E
 lectrochcmicalSociety、 5
prina Meetina、 May  1O−15
(19この方法は塩化ナトリウムの電解で生成する30
%の水酸化ナトリウム水溶液を燃料電池の陽イオン交換
膜と正極(空気極)との間に形成される正極電解液室お
よび陽イオン交換膜と負極〈水素極)との間に形成され
る負極電解″l’ffiに供給すると共に、塩化ナトリ
ウムの電解で陰極から生成する水素を燃料電池の負極(
水素極)に供給し、燃料電池を作動させると、正極電解
液室の水酸化ナトリウム水溶液の濃度が高くなる(50
%)という原理に基ずくものである。なお、この方法で
は負極電解液室の水酸化ナトリウム水溶液の濃度は低下
(約21%)するが、この低濃度の水酸化ナトリウム水
溶液は再び塩化ナトリウムの電解槽の陰極電解液室に戻
される。また、この燃料電池の作動によって得られる電
力は塩化ナトリウムの電解に利用される。
J, Taylor '8 American E
Electrochcmical Society, 5
prina Meetina, May 1O-15
(19 This method produces 30% by electrolysis of sodium chloride.
% sodium hydroxide aqueous solution to the positive electrode electrolyte chamber formed between the cation exchange membrane and the positive electrode (air electrode) of the fuel cell, and the negative electrode formed between the cation exchange membrane and the negative electrode (hydrogen electrode). In addition to supplying hydrogen to the electrolyzer l'ffi, hydrogen generated from the cathode by electrolysis of sodium chloride is supplied to the anode of the fuel cell (
When the fuel cell is operated, the concentration of the sodium hydroxide aqueous solution in the positive electrode electrolyte chamber increases (50
%). Note that in this method, the concentration of the sodium hydroxide aqueous solution in the negative electrode electrolyte chamber is reduced (about 21%), but this low concentration sodium hydroxide aqueous solution is returned to the cathode electrolyte chamber of the sodium chloride electrolyte cell. Moreover, the electric power obtained by operating this fuel cell is used for electrolyzing sodium chloride.

通例の塩化ナトリウムの電解時の電力原単位は水酸化ナ
トリウム1 ton当り電解電力に2200 kwh。
The electricity consumption rate during the usual electrolysis of sodium chloride is 2200 kWh per ton of sodium hydroxide.

蒸発による濃縮に750 kwh、合計2950 kw
hとされているのに対し、この燃料電池を併用したシス
テムの場合、1950 kwhと大幅に低減され、なか
なか優れた提案であると云うことができる。
750 kw for concentration by evaporation, total 2950 kw
h, but in the case of a system that uses this fuel cell in combination, it is significantly reduced to 1950 kwh, and can be said to be a very excellent proposal.

発明が解決すべき問題点 熱エネルギーによって水酸化アルカリ水溶液を濃縮する
方法は、その熱エネルギーが大きいが故に問題がある。
Problems to be Solved by the Invention The method of concentrating an aqueous alkali hydroxide solution using thermal energy has problems because the thermal energy is large.

また、上述の燃料電池併用法は塩化アルカリの電解によ
って生成する水素を消費してしまう一換言すると水素を
電気エネルギーに変換しているにすぎないという点に問
題がある。また、空気中には0.03%Vl麿の二酸化
炭素が含有されているが、この二酸化炭素が製品である
水酸化すトリウムの水溶液中に混入すると、炭酸アルカ
リが生成し、製品の純度が低下するという問題もある。
Further, the above-mentioned fuel cell combination method has a problem in that hydrogen produced by electrolysis of alkali chloride is consumed, or in other words, hydrogen is merely converted into electrical energy. In addition, air contains 0.03% Vl carbon dioxide, but when this carbon dioxide mixes into the aqueous solution of thorium hydroxide, which is the product, alkali carbonate is produced, reducing the purity of the product. There is also the problem of decline.

この点については、予め二酸化炭素を除去した空気を燃
料電池に供給すればよいわけであるが、そのための経費
がかなり大さいという難点がある。
Regarding this point, it is possible to supply air from which carbon dioxide has been removed in advance to the fuel cell, but there is a drawback that the cost for this is quite large.

また、燃料電池を運転するには複雑な制御系が必要であ
り、さらには、燃料電池から作られる電力を塩化アルカ
リの電解に利用するには、新たに電源υ制御装置が必要
になる。従って、燃料電池j3よび?!源制御装置の最
初の設備投資が大きくなることも、工業的観点からみる
と、一つの障害になる。
In addition, a complex control system is required to operate a fuel cell, and furthermore, a new power source υ control device is required to use the electric power generated from the fuel cell for electrolysis of alkali chloride. Therefore, fuel cell j3 and? ! The large initial capital investment for power source control equipment is also an obstacle from an industrial perspective.

問題点を解決するための手段 本発明は上述の如き問題点を解決するため、相対的に多
量の水素を吸蔵せしめた水素吸蔵合金を主体とする陽極
と相対的に少量の水素を吸蔵せしめるか或いは全く水素
を吸蔵せしめない水素吸蔵合金を主体とする陰極と陽イ
オン交換膜と陽極電解液室と陰極電解液室とを備える電
気化学装置を用意し、陽極電解液室および陰極電解液室
の双方に濃縮を行なおうとする相対的に低濃度の水酸化
アルカリ水溶液を供給し、陽・陰画極間に直流電流を通
電することにより、陽極において水素の電解酸化反応を
起させ、陰極において水素の吸蔵反応を起させると共に
、陰極電解液室中の水酸化アルカリ水溶液のII汝を相
対的に高濃度にせしめることを特徴とするものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides an anode mainly made of a hydrogen storage alloy that stores a relatively large amount of hydrogen, and an anode that stores a relatively small amount of hydrogen. Alternatively, an electrochemical device including a cathode mainly made of a hydrogen storage alloy that does not absorb hydrogen at all, a cation exchange membrane, an anode electrolyte chamber, and a cathode electrolyte chamber is prepared, and the anode electrolyte chamber and the cathode electrolyte chamber are By supplying a relatively low-concentration alkali hydroxide aqueous solution that is intended to be concentrated to both, and passing a direct current between the positive and negative electrodes, an electrolytic oxidation reaction of hydrogen occurs at the anode, and hydrogen oxidation occurs at the cathode. This method is characterized by causing an occlusion reaction of and increasing the concentration of the alkali hydroxide aqueous solution in the catholyte chamber to a relatively high concentration.

作  用 陽極として水素の電解醸化を起させる水素吸蔵合金を主
体とする電極を配し、陰極として水素を含まない水素吸
蔵合金電極を配し、画電極の間に陽イオン交換膜を配し
、陽イオン交換膜と陽極との間に形成される陽極電解液
室および陽イオン交模膜と陰極との間に形成される陰極
電解液室に30〜35%の水酸化ナトリウムもしくは水
酸化カリウムの水溶液を供給すると共に、外部電源から
陽・陰極間に直流電流を通電すると次のような電極反応
が起る。
An electrode mainly made of a hydrogen storage alloy that causes electrolytic fermentation of hydrogen is used as the working anode, a hydrogen storage alloy electrode that does not contain hydrogen is used as the cathode, and a cation exchange membrane is placed between the picture electrodes. , 30 to 35% sodium hydroxide or potassium hydroxide is added to the anode electrolyte chamber formed between the cation exchange membrane and the anode and the cathode electrolyte chamber formed between the cation exchange membrane and the cathode. When an aqueous solution of is supplied and a direct current is passed between the anode and cathode from an external power source, the following electrode reaction occurs.

陽  極 :  Hz  +  20H−→ 2H2(
)ト2e            (4)陰極:2H2
0+2e→H2÷20H−(5)即ち、陽極では水素吸
蔵合金中の水素が電解酸化され、陰極では発生した水素
が水素吸蔵合金に吸蔵される。従って、全反応としては
、ただ水素が陽極側から陰極側に移行するだけで、見掛
上は何も起らず、理論電解電圧は0■である。ただし、
実際には各電極の過電圧と陽イオン交換膜および溶液部
の抵抗によるI R%1下があるので、0.3〜0.4
Vの電圧は必要である。
Anode: Hz + 20H-→ 2H2(
) 2e (4) Cathode: 2H2
0+2e→H2÷20H-(5) That is, hydrogen in the hydrogen storage alloy is electrolytically oxidized at the anode, and the generated hydrogen is stored in the hydrogen storage alloy at the cathode. Therefore, in the overall reaction, hydrogen simply moves from the anode side to the cathode side, and nothing apparently occurs, and the theoretical electrolysis voltage is 0. however,
In reality, there is an I R%1 lower due to the overvoltage of each electrode and the resistance of the cation exchange membrane and solution part, so it is 0.3 to 0.4
A voltage of V is required.

一方、陽イオン交換膜は、アルカリ金属イオンは通すく
陽極側から陰極側に)が、水酸イオンは通さないので、
(5)式の反応により陰極電解液室で水酸化アルカリが
どんどん生成し、その濃度が高くなる。換言すると、水
酸化アルカリの濃縮が起る。これに対して陽極電解液室
では(4)式の反応により水が生成するので、水酸化ア
ルカリの濃度が低下してくる。この低濃度になった水酸
化アルカリ水溶液は再び塩化アルカリ電解槽の陰極電解
液室に戻せばよい。
On the other hand, cation exchange membranes allow alkali metal ions (from the anode side to the cathode side) to pass through, but do not allow hydroxide ions to pass through.
Due to the reaction of formula (5), alkali hydroxide is rapidly produced in the catholyte chamber, and its concentration increases. In other words, concentration of alkali hydroxide occurs. On the other hand, in the anode electrolyte chamber, water is produced by the reaction of formula (4), so the concentration of alkali hydroxide decreases. This aqueous alkali hydroxide solution that has become low in concentration may be returned to the cathode electrolyte chamber of the alkaline chloride electrolytic cell.

いずれにしても、この方式は比較的わずかな電力で、水
素を消費することなく水酸化アルカリ水溶液の濃縮を可
能ならしめるものである。
In any case, this method makes it possible to concentrate an aqueous alkali hydroxide solution using relatively little electric power and without consuming hydrogen.

一方、陽極中の水素がある一定限度まで消費されれば極
性を逆にすればよい。
On the other hand, if the hydrogen in the anode is consumed to a certain limit, the polarity may be reversed.

水素吸蔵電極は水素吸蔵合金粉末単独か、通常の合金粉
末との混合粉末を結着剤としてのフッ素樹脂で決着して
製造するか、水素吸蔵合金粉末単独か通常の金属粉末(
例えばニッケル)との混合粉末を焼結して製造すればよ
い。水素吸蔵合金としては希土類元素とニッケル、コバ
ルト、アルミニウムその他の金属との3元系あるいは4
元系の合金が優れているが、必ずしもこれらに限定され
るものではない。
Hydrogen storage electrodes are manufactured by using hydrogen storage alloy powder alone or a mixed powder with ordinary alloy powder bound with fluororesin as a binder, or hydrogen storage alloy powder alone or ordinary metal powder (
For example, it may be manufactured by sintering a mixed powder with nickel. Hydrogen storage alloys include ternary or quaternary systems of rare earth elements and nickel, cobalt, aluminum, and other metals.
Although base alloys are preferred, they are not necessarily limited to these.

陽イオン交換膜としてはパーフルオロカーボンを骨格と
し、スルフォンam、カルボンWi基もしくはこれら双
方のイオン交換基を有するものが適当である。
Suitable cation exchange membranes are those having a perfluorocarbon skeleton and having sulfone am, carbon Wi groups, or both of these ion exchange groups.

実  施  例 図は本発明の一実施例かかる電気化学的水酸化ナトリウ
ム水溶液濃縮装置の断面構造を示したものである。
Embodiment The figure shows the cross-sectional structure of an electrochemical sodium hydroxide aqueous solution concentrator according to an embodiment of the present invention.

電気化学的水酸化ナトリウム水溶液濃縮装置はLa N
I2.5 Co□A1゜、5からなる組成の水素吸蔵合
金粉末とニッケル粉末との混合粉末を焼結したものに水
素を吸蔵せしめた陽極1と、陽極と同一の焼結体に水素
を吸iQI!L、めない陰極2と、パーフルオロカーボ
ンスルフォン酸ソーダからなる陽イオン交換1I13と
、この陽イオン交換膜3によって隔離された陽極電解液
室4と陰極電解液室5とから構成されている。
Electrochemical sodium hydroxide aqueous solution concentrator is LaN
I2.5 An anode 1 in which hydrogen is absorbed into a sintered mixture of a hydrogen-absorbing alloy powder having a composition of Co□A1゜, 5 and a nickel powder, and a sintered body that is the same as the anode and in which hydrogen is absorbed. iQI! It consists of a cathode 2, a cation exchanger 1I13 made of sodium perfluorocarbon sulfonate, and an anolyte chamber 4 and a catholyte chamber 5 separated by the cation exchange membrane 3.

a縮を行なおうとする30%の水酸化ナトリウム水溶液
は水酸化ナトリウム水溶液供給口6から陽極電解液室4
および陰極電解液v5の双方に供給される。次に、陽・
陰画極間に20A /詞の電流密度になるように直流電
流を通電すると電圧は0.4Vになった。また、陽極電
解液導出ロアから取り出される水酸化ナトリウム水溶液
の濃度は20%になり、陰極電解液導出口8から取り出
される水酸化ナトリウム水溶液のInは50%になった
The 30% aqueous sodium hydroxide solution to be subjected to acondensation is supplied from the aqueous sodium hydroxide solution supply port 6 to the anode electrolyte chamber 4.
and catholyte v5. Next, positive
When a direct current was passed between the negative electrodes at a current density of 20 A, the voltage became 0.4 V. Further, the concentration of the sodium hydroxide aqueous solution taken out from the anode electrolyte outlet lower was 20%, and the In of the sodium hydroxide aqueous solution taken out from the cathode electrolyte outlet 8 was 50%.

発明の効果 本発明の方法によって30%の水酸化ナトリウム水溶液
を50%に濃縮する際の水酸化ナトリウム1ton当り
の電力原単位は107kWhとなり、熱エネルギーで濃
縮した場合の電力原単位750 kwhの実に14%と
なる。
Effects of the Invention When concentrating a 30% sodium hydroxide aqueous solution to 50% by the method of the present invention, the power consumption per ton of sodium hydroxide is 107 kWh, which is equivalent to the power consumption of 750 kWh when concentrated using thermal energy. It becomes 14%.

このように、本発明方法によればi!!料電池のように
水素を発生せず、また、水酸化アルカリ水溶液の出入口
以外は密閉系になるという意味で、装置は簡単な構造に
なり、さらには熱エネルギーを利用する場合より、はる
かに少ないエネルギーも水酸化アルカリの水溶液を濃縮
することができ、その工業的価値は大きい。
In this way, according to the method of the present invention, i! ! The device has a simple structure, as it does not generate hydrogen like a rechargeable battery, and it is a closed system except for the inlet and outlet of the alkaline hydroxide aqueous solution, and it uses far less energy than when using thermal energy. Energy can also be used to concentrate aqueous solutions of alkali hydroxide, which has great industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例にかかる電気化学的水醸化ナトリ
ウム濃縮装置の概略断面図である。 1・・・・・・陽極     2・・・・・・陰極3・
・・・・・陽イオン交換膜
The figure is a schematic sectional view of an electrochemical water-brewing sodium concentration device according to an embodiment of the present invention. 1... Anode 2... Cathode 3.
...Cation exchange membrane

Claims (1)

【特許請求の範囲】[Claims] 相対的に多量の水素を吸蔵せる水素貯蔵合金を主体とす
る陽極と相対的に少量の水素を吸蔵せしめるかあるいは
全く水素を吸蔵せしめない水素吸蔵合金を主体とする陰
極と陽極電解液室と陰極電解液室と陽イオン交換膜とを
備える電気化学装置において、陽極電解液室および陰極
電解液室に相対的に低濃度の水酸化アルカリ水溶液を供
給し、陽・陰両極間に直流電流を通電することにより、
陽極において水素の電解酸化反応を起させ、陰極におい
て水素の吸蔵反応を起させると共に、陰極電解液室中の
水酸化アルカリ水溶液の濃度を相対的に高濃度にせしめ
ることを特徴とする水酸化アルカリ水溶液の濃縮方法。
An anode mainly made of a hydrogen storage alloy that can store a relatively large amount of hydrogen, a cathode mainly made of a hydrogen storage alloy that can store a relatively small amount of hydrogen, or no hydrogen at all, an anode electrolyte chamber, and a cathode. In an electrochemical device equipped with an electrolyte chamber and a cation exchange membrane, a relatively low concentration alkaline hydroxide aqueous solution is supplied to the anode electrolyte chamber and the cathode electrolyte chamber, and a direct current is passed between the anode and cathode electrodes. By doing so,
An alkali hydroxide characterized by causing an electrolytic oxidation reaction of hydrogen at an anode, causing a hydrogen storage reaction at a cathode, and increasing the concentration of an aqueous alkali hydroxide solution in a cathode electrolyte chamber to a relatively high concentration. Method for concentrating aqueous solutions.
JP28595087A 1987-11-12 1987-11-12 Method for concentrating aqueous solution of alkali hydroxide Pending JPH01127688A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28595087A JPH01127688A (en) 1987-11-12 1987-11-12 Method for concentrating aqueous solution of alkali hydroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28595087A JPH01127688A (en) 1987-11-12 1987-11-12 Method for concentrating aqueous solution of alkali hydroxide

Publications (1)

Publication Number Publication Date
JPH01127688A true JPH01127688A (en) 1989-05-19

Family

ID=17698064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28595087A Pending JPH01127688A (en) 1987-11-12 1987-11-12 Method for concentrating aqueous solution of alkali hydroxide

Country Status (1)

Country Link
JP (1) JPH01127688A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6804035B2 (en) 2001-03-23 2004-10-12 Mitsubishi Denki Kabushiki Kaisha Laser machining apparatus
KR100513182B1 (en) * 2001-04-18 2005-09-08 쯔루미소다 가부시끼가이샤 Apparatus for refining alkali solution and method for the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6804035B2 (en) 2001-03-23 2004-10-12 Mitsubishi Denki Kabushiki Kaisha Laser machining apparatus
KR100513182B1 (en) * 2001-04-18 2005-09-08 쯔루미소다 가부시끼가이샤 Apparatus for refining alkali solution and method for the same

Similar Documents

Publication Publication Date Title
JP2648313B2 (en) Electrolysis method
US4311569A (en) Device for evolution of oxygen with ternary electrocatalysts containing valve metals
JP2525553B2 (en) Electrodialysis tank and electrodialysis method
US4528083A (en) Device for evolution of oxygen with ternary electrocatalysts containing valve metals
KR101721860B1 (en) Method for the cogeneration of electrical and hydrogen power
CN110616438B (en) Device and method for electrochemically preparing high-purity battery-grade lithium hydroxide
US11560638B2 (en) Electrochemical method of ammonia generation
US4455203A (en) Process for the electrolytic production of hydrogen peroxide
CN109321936A (en) A kind of device and method based on flow redox medium substep water electrolysis hydrogen production
JP2000104189A (en) Production of hydrogen peroxide and electrolytic cell for production
KR20100123797A (en) Electrolytic synthesis of hydrogen peroxide directly from water and application thereof
JPH03111587A (en) Electrolytic bath for reduction of carbon dioxide
KR20220104199A (en) Water electrolysis method and apparatus
US5607562A (en) Electrolytic ozone generator
CN110791773A (en) Method and device for producing hydrogen by electrolyzing water
US5296110A (en) Apparatus and method for separating oxygen from air
GB2030178A (en) Process for preparing alkali metal and ammonium peroxydisulphates
JP3561130B2 (en) Electrolyzer for hydrogen peroxide production
WO2001004383A1 (en) Method for electrolysis of alkali chloride
JPH01127688A (en) Method for concentrating aqueous solution of alkali hydroxide
JPS62182292A (en) Diaphragm electrolysis of hci
CN114402095B (en) Cross-flow water electrolysis
JPH01127689A (en) Method for concentrating aqueous solution of alkali hydroxide
CN113026044A (en) Three-chamber two-power-supply full-decomposition water electrolysis device and method
JPH0938653A (en) Production of electrolyzed ionic water and device therefor