JPH01127614A - Method for heating molten metal - Google Patents
Method for heating molten metalInfo
- Publication number
- JPH01127614A JPH01127614A JP28410987A JP28410987A JPH01127614A JP H01127614 A JPH01127614 A JP H01127614A JP 28410987 A JP28410987 A JP 28410987A JP 28410987 A JP28410987 A JP 28410987A JP H01127614 A JPH01127614 A JP H01127614A
- Authority
- JP
- Japan
- Prior art keywords
- slag
- oxygen
- coke
- blowing
- tuyere
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 29
- 239000002184 metal Substances 0.000 title claims abstract description 29
- 238000000034 method Methods 0.000 title claims abstract description 18
- 238000010438 heat treatment Methods 0.000 title claims description 10
- 239000002893 slag Substances 0.000 claims abstract description 43
- 239000000571 coke Substances 0.000 claims abstract description 34
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 25
- 239000001301 oxygen Substances 0.000 claims abstract description 25
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 25
- 238000006243 chemical reaction Methods 0.000 claims description 24
- 238000007667 floating Methods 0.000 claims description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 abstract description 54
- 238000007664 blowing Methods 0.000 abstract description 50
- 229910052742 iron Inorganic materials 0.000 abstract description 27
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 abstract description 23
- 229910052804 chromium Inorganic materials 0.000 abstract description 23
- 239000011651 chromium Substances 0.000 abstract description 23
- 239000002994 raw material Substances 0.000 abstract description 4
- 210000001015 abdomen Anatomy 0.000 abstract description 3
- 239000000112 cooling gas Substances 0.000 abstract description 2
- 230000002250 progressing effect Effects 0.000 abstract 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 21
- 239000007789 gas Substances 0.000 description 20
- 229910001882 dioxygen Inorganic materials 0.000 description 18
- 238000006722 reduction reaction Methods 0.000 description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 9
- 239000000843 powder Substances 0.000 description 9
- 238000003756 stirring Methods 0.000 description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- 229910052799 carbon Inorganic materials 0.000 description 7
- 229910001873 dinitrogen Inorganic materials 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 239000011261 inert gas Substances 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 238000011084 recovery Methods 0.000 description 4
- 238000002485 combustion reaction Methods 0.000 description 3
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 238000003723 Smelting Methods 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 2
- 229910000423 chromium oxide Inorganic materials 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000011017 operating method Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 239000011449 brick Substances 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 239000003923 scrap metal Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Manufacture Of Iron (AREA)
- Carbon Steel Or Casting Steel Manufacturing (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
この発明は、金属溶湯の加熱方法に関し、とくに該溶湯
中の炭素およびスラグ中に添加した塊状コークスの酸化
反応熱を有効に利用することによって、金属溶湯の効果
的な加熱を図ろうとするものである。Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for heating molten metal, in particular, by effectively utilizing the heat of oxidation reaction of carbon in the molten metal and lump coke added to slag. , which attempts to effectively heat molten metal.
(従来の技術)
製鋼炉たとえば転炉において屑鉄を大量に溶解したり、
あるいは鉄鉱石、マンガン鉱石およびクロム鉱石の如き
鉱石原料を転炉内に添加し、該鉱石の還元によって鉱石
原料中の金属を回収する場合には、大量のエネルギーを
必要とする。かかるエネルギー源としては、炭素含有物
質とくに石炭やコークスを使用し、その酸化反応熱によ
って不足熱を補う方法が一般的である。例えば特公昭5
6−8085号公報には、屑鉄装入量を高める方法とし
て、純酸素底吹転炉でかつ浴面よりも高い位置に酸素上
吹装置を備えた転炉を用い、エネルギー源として特に粉
コークスを炭化水素で保護される底吹羽口から溶鉄中に
導入する方法が開示されている。この方法では、コーク
スが粉状であることおよび浴面下から導入されることか
らコークス中の炭素分の大部分が比較的瞬時に溶鉄中へ
溶解し、C= C−11000(cal/g−mol
) −(1)なる吸熱反応が生じ、これに
加えスラグ中に懸濁される粉コークスの割合も小さいた
めに該底吹羽口から供給される酸素ガスと溶鉄中の炭素
との反応
C+−T O□= CO+32740 (cal/
g−mol) (2)によって生成するCOガス
による溶鉄とスラグの強撹拌により、該懸濁粉コークス
の一部も溶鉄中へ溶解される。(Prior art) A large amount of scrap iron is melted in a steelmaking furnace, such as a converter,
Alternatively, when ore raw materials such as iron ore, manganese ore, and chromium ore are added into a converter and the metals in the ore raw materials are recovered by reducing the ore, a large amount of energy is required. As such an energy source, it is common to use a carbon-containing substance, especially coal or coke, and use the heat of the oxidation reaction to compensate for the lack of heat. For example, Tokuko Sho 5
Publication No. 6-8085 describes a method for increasing the amount of scrap iron charged by using a pure oxygen bottom blowing converter equipped with an oxygen top blower at a position higher than the bath surface, and using especially coke breeze as an energy source. is introduced into molten iron through a bottom blowing tuyere protected by hydrocarbons. In this method, since the coke is in powder form and is introduced from below the bath surface, most of the carbon in the coke dissolves into the molten iron relatively instantaneously, resulting in C = C-11000 (cal/g- mol
) - (1) The endothermic reaction occurs, and in addition to this, since the proportion of coke breeze suspended in the slag is small, the reaction C+-T between the oxygen gas supplied from the bottom blowing tuyere and the carbon in the molten iron occurs. O□=CO+32740 (cal/
g-mol) By the strong stirring of the molten iron and slag by the CO gas generated by (2), a part of the suspended coke powder is also dissolved into the molten iron.
また、前記(2)式の反応で生成したCOガスは、浴面
上に設置された上吹酸素装置から供給される酸素ガスと
浴面上方で
CO+ Ox =coz+61750 (cal/g
−mol) (3)なる発熱反応が進行する。さら
に該懸濁コークスの残分は、浴上方から吹き込まれる酸
素ガスとの直接反応
C+Oz =CO! +94052 (cal/g−m
ol) −(4)に費やされる。ここで、上記(
3) 、 (4)式の反応により発生するCO□Oxの
多くは、浴上方から浴への上吹酸素気流に同伴されて鉄
浴に衝突し、CO1+C→2CO−29010(cal
/g−n+ol) (5)なる吸熱反応を引きお
こす。Furthermore, the CO gas generated by the reaction of equation (2) above the bath surface is combined with the oxygen gas supplied from the top-blown oxygen device installed above the bath surface at a rate of CO+ Ox = coz+61750 (cal/g
-mol) (3) An exothermic reaction proceeds. Furthermore, the residue of the suspended coke undergoes a direct reaction with oxygen gas blown from above the bath, C+Oz =CO! +94052 (cal/g-m
ol) −(4). Here, above (
3), Most of the CO□Ox generated by the reaction of equations (4) is entrained in the top-blown oxygen stream from above the bath and collides with the iron bath, changing CO1+C→2CO-29010 (cal
/g−n+ol) (5) This causes an endothermic reaction.
屑鉄を加熱・溶解するためエネルギーは(1)〜(5)
式の反応の総和で与えられるわけであるが、ここでの問
題点は、発熱量が高くしがも着熱量も多い(4)式の反
応が占める割合が、スラグ中の懸濁粉コークスが少量で
あるために全体としては小さく、加えて(3) 、 (
4)式の反応で生成するCO□Oxが上吹き酸素気流の
流れが上から下であるために(5)式の吸熱反応を引き
起こす可能性が大きいため、粉コークスの持つエネルギ
ーを有効に溶鉄の加熱に活用できないことである。The energy needed to heat and melt scrap metal is (1) to (5)
It is given by the sum of the reactions in equation (4), but the problem here is that the proportion of the reaction in equation (4), which has a high calorific value but also a large amount of heat transfer, is due to the suspended coke powder in the slag. Because it is a small amount, it is small overall, and in addition (3), (
Since the CO□Ox generated in the reaction of formula 4) has a high possibility of causing the endothermic reaction of formula (5) because the top-blown oxygen flow is from top to bottom, the energy of coke breeze is effectively used to react with molten iron. This means that it cannot be used for heating.
また鉄と鋼71(1985) 5928には、クロム鉱
石の溶融還元を行うに当り、上底吹転炉を用いて、窒素
ガスを炉底羽口あるいは炉腹に取り付けた横吹羽口を介
して溶融金属中あるいはスラグ中に導入すると共に、ス
ラグ上に浮遊させた塊コークスを上吹ランスから供給さ
れる酸素ガスによって酸化し、この酸化反応熱をクロム
酸化物の還元の際生ずる吸熱に充当する方法が開示され
ている。Tetsu-to-Hagane 71 (1985) 5928 also states that when smelting and reducing chromium ore, a top-bottom blowing converter is used to supply nitrogen gas through the bottom tuyere or the side-blowing tuyere attached to the belly of the furnace. The lump coke that is introduced into the molten metal or slag and suspended on the slag is oxidized by oxygen gas supplied from the top blowing lance, and the heat of this oxidation reaction is used for the endothermic heat generated during the reduction of chromium oxide. A method is disclosed.
この方法において金属溶湯の加熱は、スラグ上の塊コー
クスにソフトブローされた上吹酸素が衝突し、ここでの
酸化反応熱により加熱された塊コークスとスラグが横吹
きまたは底吹きの窒素ガスによりスラグ中に混合され、
さらには溶融金属との接触により行われる。In this method, the molten metal is heated by the soft-blown top-blown oxygen colliding with the lump coke on the slag, and the lump coke and slag heated by the heat of the oxidation reaction being heated by side-blown or bottom-blown nitrogen gas. mixed in slag,
Furthermore, it is carried out by contact with molten metal.
ここにクロム鉱石の溶融還元を能率的に行うためには、
上記の熱供給能力を高めることに加え、還元反応速度を
高める必要があり、その具体的な手段としては、溶融金
属の温度と〔%C〕をそれぞれ1600°C以上、3%
以上と高く維持した上でスラグとメタルを撹拌・混合さ
せることが有効であることは周知の事項である。In order to efficiently melt and reduce chromium ore,
In addition to increasing the heat supply capacity mentioned above, it is necessary to increase the reduction reaction rate, and specific measures include increasing the temperature and [%C] of the molten metal to 1600°C or higher and 3%
It is well known that it is effective to stir and mix slag and metal while maintaining the above-mentioned temperature.
ここでの問題点は、クロム鉱石の還元を効率的に行うた
めに横吹あるいは底吹羽口から供給されるガスが窒素ガ
ス(横吹羽口から酸素ガスを吹き込むこともある)であ
ることである。すなわちより強力なスラグとメタルの撹
拌・混合を行い、クロム鉱石中の酸化クロムの還元回収
率さらには還元速度を向上させるためにはガス量の増加
が望まれるわけであるが、窒素ガス量を増加することは
窒素ガスによるスラグとメタルの冷却により熱的さらに
は還元に不利に作用し、その結果クロム鉱石の還元速度
の大幅な向上は期待できないのである。The problem here is that in order to efficiently reduce the chromium ore, the gas supplied from the side-blowing or bottom-blowing tuyere is nitrogen gas (oxygen gas may also be blown from the side-blowing tuyere). . In other words, it is desirable to increase the amount of gas in order to perform more powerful stirring and mixing of slag and metal and improve the reduction recovery rate and reduction rate of chromium oxide in chromium ore, but it is desirable to increase the amount of nitrogen gas. This increase has a thermal and disadvantageous effect on reduction due to cooling of the slag and metal by nitrogen gas, and as a result, a significant improvement in the reduction rate of chromium ore cannot be expected.
この点発明者らは先に、特開昭61−84311号公報
において以下に述べるような溶鉄の加熱方法を提案した
。In this regard, the inventors previously proposed a method for heating molten iron as described below in Japanese Unexamined Patent Publication No. 84311/1983.
すなわち転炉炉底にへ設した羽口から供給される酸素ガ
スが溶鉄中を浮上する際に旦との反応により生成したC
Oガスによってフォーミング(泡立ち)したスラグに対
して、鋼浴と接触しないように2次燃焼(COガスをC
O□Oxまで酸化)用酸素羽口からスラグ中に酸素を吹
込むことにより、溶鉄中で発生したCOをCO□まで酸
化し、その反応熱をスラグに蓄える。この蓄熱分は底吹
羽口から供給される酸素ガスによるスラグ・メタルの強
撹拌の下に溶鉄側へ伝えられる。この方法では、大量の
熱がスラグを媒体として溶鉄へ移行するので、発生した
CO2が前記(5)式に従って再びCOになるような吸
熱反応を生ぜず、効率よく溶鉄加熱ができるようになっ
た。In other words, when the oxygen gas supplied from the tuyere installed at the bottom of the converter furnace floats through the molten iron, it reacts with the carbon gas generated by the reaction.
The slag formed by O gas is subjected to secondary combustion (CO gas is
By blowing oxygen into the slag from the oxygen tuyere (oxidized to O□Ox), the CO generated in the molten iron is oxidized to CO□, and the reaction heat is stored in the slag. This stored heat is transferred to the molten iron side while the slag and metal are strongly stirred by oxygen gas supplied from the bottom blowing tuyere. In this method, a large amount of heat is transferred to the molten iron using the slag as a medium, so the generated CO2 does not undergo an endothermic reaction in which it becomes CO again according to equation (5), and the molten iron can be heated efficiently. .
(発明が解決しようとする問題点)
この発明は、上記の加熱方法の改良に係り、スラグ中に
塊状のコークスを添加し、この添加したコークスの持つ
エネルギーを効率良く活用することによって溶融金属を
有利に加熱し、ひいては転炉内における屑鉄の大量使用
及び特に鉱石原料の高効率下での溶融還元を達成する技
術を提案することを目的とする。(Problems to be Solved by the Invention) This invention relates to an improvement of the above-mentioned heating method, by adding lump coke to the slag and efficiently utilizing the energy of the added coke to heat molten metal. It is an object of the present invention to propose a technique for advantageously heating and thus achieving a high-volume use of scrap iron in a converter and, in particular, a high-efficiency smelting reduction of ore raw materials.
(問題点を解決するための手段)
すなわちこの発明は、反応容器内に収納された浮遊スラ
グをそなえる金属溶湯に対し、該反応容器の上方および
下方から酸素を上、底吹きすると共に、浮遊スラグに塊
コークスを添加し、該反応容器の炉腹に設けた羽口から
該スラグ中に直接、酸素を供給することからなる金属溶
湯の加熱方法である。(Means for Solving the Problems) That is, the present invention blows oxygen from above and below from the top and bottom of the reaction vessel to the molten metal containing floating slag stored in the reaction vessel, and at the same time blows the floating slag This method of heating molten metal consists of adding lump coke to the slag and supplying oxygen directly into the slag from a tuyere provided in the belly of the reaction vessel.
この発明において反応容器としては、純酸素底吹き転炉
または純酸素を底吹きできる上底吹転炉がとりわけ有利
に適合する。In this invention, a pure oxygen bottom-blown converter or a top-bottom blowing converter capable of bottom-blowing pure oxygen is particularly advantageously suitable as the reaction vessel.
反応容器として上記の如き転炉を使用することは、横吹
き羽口から供給される酸素によって加熱されたコークス
とスラグの熱を溶融金属に強力な底吹きガス撹拌により
伝えるという意味で、さらには底吹きガスが酸素である
ため溶融金属中の炭素分との反応により生成するCOガ
スが横吹羽口から供給される酸素ガスとのさらなる反応
による発熱を利用できるという意味で有効である。The use of a converter as described above as a reaction vessel means that the heat of the coke and slag heated by the oxygen supplied from the side-blown tuyere is transferred to the molten metal by powerful bottom-blown gas stirring; Since the bottom blowing gas is oxygen, it is effective in the sense that the heat generated by the further reaction of the CO gas produced by the reaction with the carbon content in the molten metal with the oxygen gas supplied from the side blowing tuyeres can be utilized.
なお、不活性ガスを底吹きする方法では、浴を強力に撹
拌するに足りる量を吹込むと、不活性ガスの費用がかさ
むのみならず不活性ガスによる冷却効果で熱的な損失が
生じる。すなわち酸素を吹き込む方法と同等の撹拌効果
を得るには、次式に示すとおり酸素の2倍め体積の不活
性ガスを吹き込まなければならない。In addition, in the method of bottom-blowing inert gas, if an amount sufficient to strongly stir the bath is blown in, not only does the cost of the inert gas increase, but also thermal loss occurs due to the cooling effect of the inert gas. That is, in order to obtain a stirring effect equivalent to the method of blowing oxygen, it is necessary to blow in an inert gas twice the volume of oxygen as shown in the following equation.
o!+2C−→2C0
2N2→2Nt
さらに浴内でCOガスが発生することもないので、横吹
羽口による2次燃焼効果も劣ることとなる。o! +2C-→2C0 2N2→2Nt Furthermore, since CO gas is not generated in the bath, the secondary combustion effect due to the horizontal blowing tuyeres is also inferior.
さらに、底吹きガスの流量に関しては、溶鋼1トン当り
0.5 Nm”/sin以上の流量とすると、浴の撹拌
効果に優れることは無論、横吹羽口からの酸素ガスによ
る優れた2次燃焼効果の得られることが明らかとなった
。Furthermore, if the flow rate of the bottom blowing gas is set to 0.5 Nm"/sin or more per ton of molten steel, it will not only improve the stirring effect of the bath, but also achieve excellent secondary combustion due to the oxygen gas from the side blowing tuyeres. It has become clear that this method is effective.
(実施例)
実施例1
第1図に示した炉容5トンの上底吹転炉を用いて行った
この発明の実施例を以下に示す。図中番号1は転炉炉体
、2は底吹羽口、3は溶鉄、4はスラグ、5は塊コーク
ス、6は上吹ランス、7はクロム鉱石、コークス等の副
原料を投入するために炉上シュータ−であり、8はスラ
グ中の塊コークス5と底吹羽口2から供給される酸素ガ
スによって生成するCOガスとをスラグ中で燃焼させる
ための酸素ガス導入用羽口である。(Example) Example 1 An example of the present invention, which was carried out using a top-bottom blowing converter having a furnace capacity of 5 tons as shown in FIG. 1, is shown below. In the figure, number 1 is the converter body, 2 is the bottom blowing tuyere, 3 is molten iron, 4 is slag, 5 is lump coke, 6 is top blowing lance, and 7 is for charging auxiliary materials such as chromium ore and coke. 8 is an over-furnace shooter, and 8 is a tuyere for introducing oxygen gas to combust the lump coke 5 in the slag and CO gas generated by the oxygen gas supplied from the bottom blowing tuyere 2 in the slag. .
ここにスラグ4中へ浸漬されている横吹羽口8は、溶鉄
装入時や溶鋼出鋼時に炉体1を傾動しても溶融金属面下
に浸漬しない位置にて、2本1組で対向する炉壁に設置
し、酸素気流の中心軸が転炉炉体1の空間で衝突するよ
うに方向を決定する。The horizontal blowing tuyeres 8 immersed in the slag 4 are arranged in sets of two facing each other at a position where they will not be immersed below the surface of the molten metal even if the furnace body 1 is tilted during charging of molten iron or tapping of molten steel. The direction is determined so that the central axes of the oxygen streams collide in the space of the converter body 1.
この設置要領を採用しないとスラグ4中のコークスの燃
焼が十分に行われず、また横吹羽口8がスラグ中に浸漬
されないとスラグの加熱と撹拌が不十分で溶融金属の加
熱能力が低下するばかりでなく、酸素気流が対向する炉
壁に直接衝突して炉壁耐火物を著しく溶損するおそれが
大きい。If this installation procedure is not adopted, the coke in the slag 4 will not be sufficiently burned, and if the side blowing tuyere 8 is not immersed in the slag, the heating and stirring of the slag will be insufficient, resulting in a decrease in the heating ability of the molten metal. Instead, there is a high risk that the oxygen gas flow will directly collide with the opposing furnace wall and cause significant erosion of the furnace wall refractories.
一方、横吹羽口8の設置高さは、転炉が直立状態でかつ
吹諌進行中、上吹ランス6の下端より下方でしかも鉄浴
表面より上方になければならない。On the other hand, the installation height of the side blowing tuyere 8 must be below the lower end of the top blowing lance 6 and above the surface of the iron bath when the converter is in an upright state and blowing is in progress.
しかし、転炉炉体1の形状や耐火レンガの内容積、ラン
ス高さの下限等によっても変化するので、−般的には決
定できず各転炉毎に決定するを要する。However, since it varies depending on the shape of the converter body 1, the internal volume of the refractory bricks, the lower limit of the lance height, etc., it cannot be determined in general and must be determined for each converter.
また、横吹羽口8はいわゆる2重管羽口としその内管9
より酸素または酸素含有ガスを、内管と外管との隙間1
0から羽口保護用の冷却ガスを各々噴出するようにする
ことが望ましい。In addition, the horizontal blowing tuyere 8 is a so-called double pipe tuyere and its inner pipe 9
Oxygen or oxygen-containing gas is passed through the gap 1 between the inner tube and outer tube.
It is desirable that the cooling gas for protecting the tuyeres be ejected from zero.
さて、以下の手順で操業を行った。Now, the operation was performed according to the following steps.
まず、転炉1内をコークス炉ガスにて十分に予熱した後
、5tの溶銑を装入した。溶銑温度は1264°Cであ
った。次に炉を直立させてから、4本の炉底羽口と4本
の横吹き羽口の内管からの各々5.0 Nm’/l1i
nの酸素ガスを、また外管からは羽口保護用のプロパン
ガスを各々0.3 Nm37m1n供給した。同時に炉
の上方より上吹ランス6を下降し、静止場面とランス先
端との距離が0.7mとなる位置で固定し、酸素ガスを
12.5 Nm”/winの速度で供給した。最初、炉
底羽口2からCaO粉を150 kg、炉上シュータ−
から塊コークスを500 kg添加し溶鉄温度が155
0°Cになるまで約7分間吹錬を行った。First, the inside of the converter 1 was sufficiently preheated with coke oven gas, and then 5 tons of hot metal was charged. The hot metal temperature was 1264°C. Next, after standing the furnace upright, the inner pipes of the four bottom tuyeres and the four side blowing tuyeres were each rated at 5.0 Nm'/l1i.
Oxygen gas of 0.3 Nm and 37 ml of propane gas for protecting the tuyere were supplied from the outer tube. At the same time, the top-blowing lance 6 was lowered from above the furnace, fixed at a position where the distance between the stationary scene and the tip of the lance was 0.7 m, and oxygen gas was supplied at a rate of 12.5 Nm''/win. 150 kg of CaO powder from bottom tuyere 2,
500 kg of lump coke was added and the temperature of the molten iron was 155.
Blowing was performed for about 7 minutes until the temperature reached 0°C.
溶鉄温度の確認は炉上からサブランスを用いて行った。The temperature of the molten iron was checked from above the furnace using a sublance.
この時の温度と成分を第1表に示す。The temperature and ingredients at this time are shown in Table 1.
続いて、炉上のシュータ−から塊コークスを28kg/
…inの割合で添加しつつ、塊成化したクロム鉱石を溶
鉄温度が一定となるように投入した。また、底吹羽口か
らはCaO粉をスラグ塩基度が1.5となるように吹き
込んだ。使用した塊コークスおよびクロム鉱石の組成を
第2.3表に示す。Next, 28 kg of lump coke was released from the shooter above the furnace.
The agglomerated chromium ore was added at a rate of ... in so that the temperature of the molten iron remained constant. In addition, CaO powder was blown into the slag from the bottom blowing tuyere so that the basicity of the slag was 1.5. The compositions of the lump coke and chromium ore used are shown in Table 2.3.
クロム鉱石の添加量がloookgになった時点で吹錬
を終了した。このときの操業結果を第4表に示す。The blowing was completed when the amount of chromium ore added reached LOOOKG. The operational results at this time are shown in Table 4.
第4表
同表より明らかなように、供給したクロム鉱石中のクロ
ム分は95%がメタル中に回収された。なお残りのクロ
ム分のうち1.0%はスラグ中に残留し、4%はダスト
やスピッティングによる炉外への逸散量である。As is clear from Table 4, 95% of the chromium content in the supplied chromium ore was recovered into the metal. Of the remaining chromium content, 1.0% remains in the slag, and 4% is the amount that escapes to the outside of the furnace due to dust and spitting.
実施例2
実施例1と同一の設備と操業方法に従うが、この例では
粉状のクロム鉱石を使用するため、第2図に示すような
特殊上吹きランスを用い、上吹きランスの中心からはク
ロム鉱石粉を窒素ガスを搬送ガスとして炉内へ導入し、
またその外管からは酸素ガスを12.5 Nm’/mi
nの割合いで吹付けて操業を行った。このときの操業結
果を第5表に示す。Example 2 The same equipment and operating method as in Example 1 were followed, but since powdered chromium ore was used in this example, a special top blowing lance as shown in Figure 2 was used, and from the center of the top blowing lance Chromium ore powder is introduced into the furnace using nitrogen gas as a carrier gas,
In addition, oxygen gas is supplied from the outer tube at a rate of 12.5 Nm'/mi.
The operation was carried out by spraying at a ratio of n. The operation results at this time are shown in Table 5.
第5表
この方法によれば、クロム鉱石粉が高温の酸素気流中を
通過することにより、予熱されて溶鉄中に侵入すること
から、さらに操業時間、各種原単位を削減可能である。Table 5 According to this method, the chromium ore powder passes through a high-temperature oxygen stream and is preheated before entering the molten iron, making it possible to further reduce operating time and various basic units.
また、クロム鉱石粉の添加歩留りが向上することによっ
て還元回収率も96%と一段と増加した。Furthermore, by improving the addition yield of chromium ore powder, the reduction recovery rate further increased to 96%.
比較例
実施例2と全く同一の設備と操業方法に従うが、底吹き
羽口からは窒素ガスを1.0 Nm3/minの割合で
、また横吹き羽口からは酸素ガスを5.0 Nm37m
1n、上吹きランスからは酸素ガスを17.5Nm3/
minとクロム鉱石粉とを供給して操業を行った。この
ときの操業結果を第6表に示す。Comparative Example The same equipment and operating method as in Example 2 were followed, except that nitrogen gas was supplied from the bottom blowing tuyere at a rate of 1.0 Nm3/min, and oxygen gas was supplied from the side blowing tuyere at a rate of 5.0 Nm37m.
1n, oxygen gas from the top blowing lance at 17.5Nm3/
The operation was carried out by supplying min. min and chromium ore powder. The operation results at this time are shown in Table 6.
第6表
第5表と第6表の操業結果を比較すれば明らかなように
、1000kgのクロム鉱石粉を溶融還元するのに、従
来法では底吹ガスが窒素であるためコークスの持つエネ
ルギーを十分に有効活用できず、その結果操業時間の延
長、すなわち諸原単位の増加を招き経済的とは言えない
。また、従来法では還元回収率は底吹ガス撹拌が不足し
ていることもあって91%と低い値であった。Table 6 As is clear from a comparison of the operation results in Tables 5 and 6, in order to melt and reduce 1000 kg of chromium ore powder, the conventional method uses nitrogen as the bottom blowing gas, so the energy of the coke is used. It cannot be used effectively, and as a result, the operating time is extended, which means that various basic units are increased, which is not economical. Furthermore, in the conventional method, the reduction recovery rate was as low as 91%, partly due to the lack of bottom-blowing gas stirring.
これに対しこの発明法では、コークスの持つエネルギー
を有効に使用することができ、操業時間の短縮、さらに
は諸原単位の低減と高クロム還元回収率を得ることがで
きる。On the other hand, in the method of this invention, the energy possessed by coke can be used effectively, and the operating time can be shortened, and further, various basic units can be reduced and a high chromium reduction recovery rate can be obtained.
(発明の効果)
カ<シてこの発明によれば、コークスの持つエネルギー
の有効利用の下に金属溶湯を効果的に加熱することがで
き、ひいてはコークス、精錬ガスの原単位を大幅に削減
できるだけでなく、クロム鉱石中のクロム分をメタル中
に高歩留りで還元回収することができる。(Effects of the Invention) According to the invention, molten metal can be effectively heated by effectively utilizing the energy of coke, and the consumption of coke and refining gas can be significantly reduced. Instead, the chromium content in chromium ore can be reduced and recovered into metal at a high yield.
第1図は、この発明の実施に用いて好適な反応容器の模
式図、
第2図は、粉状鉱石の吹込み機能をそなえる特殊上吹ラ
ンスのランス先端のノズル構造を示した図である。
1・・・転炉炉体 2・・・底吹羽口3・・・
溶鉄 4・・・スラグ5・・・塊コークス
6・・・上吹ランス7・・・炉上シュータ−8
・・・横吹羽口9・・・横吹羽口の酸素供給ノズル
10・・・横吹羽口のクーラントガス入口11・・・粉
体の流路 12・・・酸素ガスの流路13・・・
ノズル 14・・・冷却水流路特許出願人
川崎製鉄株式会社
第1図
第2図
An、工、」A・
A−A’4見Fig. 1 is a schematic diagram of a reaction vessel suitable for carrying out the present invention, and Fig. 2 is a diagram showing the nozzle structure at the lance tip of a special top blowing lance that has the function of blowing powdered ore. . 1... Converter furnace body 2... Bottom blowing tuyere 3...
Molten iron 4...Slag 5...Lump coke 6...Top blow lance 7...Furnace shooter 8
...Horizontal blowing tuyere 9...Horizontal blowing tuyere oxygen supply nozzle 10...Horizontal blowing tuyere coolant gas inlet 11...Powder flow path 12...Oxygen gas flow path 13...
Nozzle 14...Cooling water flow path patent applicant
Kawasaki Steel Co., Ltd. Figure 1 Figure 2 An, Engineering, A.A-A'4 View
Claims (1)
溶湯に対し、該反応容器の上方および下方から酸素を上
、底吹きすると共に、浮遊スラグに塊コークスを添加し
、該反応容器の炉腹に設けた羽口から該スラグ中に直接
、酸素を供給することを特徴とする金属溶湯の加熱方法
。1. Oxygen is blown from above and below the molten metal with floating slag stored in the reaction vessel from the top and bottom of the reaction vessel, and lump coke is added to the floating slag, A method for heating molten metal, characterized by supplying oxygen directly into the slag from a tuyere provided in the slag.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28410987A JPH01127614A (en) | 1987-11-12 | 1987-11-12 | Method for heating molten metal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28410987A JPH01127614A (en) | 1987-11-12 | 1987-11-12 | Method for heating molten metal |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01127614A true JPH01127614A (en) | 1989-05-19 |
Family
ID=17674313
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28410987A Pending JPH01127614A (en) | 1987-11-12 | 1987-11-12 | Method for heating molten metal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01127614A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5261808A (en) * | 1990-09-18 | 1993-11-16 | Toyota Jidosha Kabushiki Kaisha | Shaping apparatus using a liquid forming medium |
-
1987
- 1987-11-12 JP JP28410987A patent/JPH01127614A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5261808A (en) * | 1990-09-18 | 1993-11-16 | Toyota Jidosha Kabushiki Kaisha | Shaping apparatus using a liquid forming medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5611838A (en) | Process for producing an iron melt | |
JP3058039B2 (en) | Converter steelmaking method | |
US6143054A (en) | Process of producing molten metals | |
RU2105069C1 (en) | Method for reduction smelting of metallurgical raw materials | |
Jalkanen et al. | Converter steelmaking | |
KR101018535B1 (en) | Refining ferroalloys | |
CA2335753C (en) | A direct smelting process | |
AU704090B2 (en) | Process and apparatus for the manufacture of steel from iron carbide | |
JP3189096B2 (en) | Method for producing steel in liquid bath and apparatus for carrying out the method | |
JPH01127614A (en) | Method for heating molten metal | |
JPS62228410A (en) | Method for recovering metal from granular ore by melt reduction | |
US5733358A (en) | Process and apparatus for the manufacture of steel from iron carbide | |
JPH0471965B2 (en) | ||
JPS61213310A (en) | Production of molten ferrous alloy | |
US3498783A (en) | Method of refining a carbonaceous metal | |
JPS6184311A (en) | Method for heating molten iron by secondary combustion method | |
JP2022117935A (en) | Molten iron refining method | |
JPS62116712A (en) | Melting and smelting vessel having splash lance | |
JPH03111507A (en) | Method and apparatus for producing molten ferrous alloy | |
JPH01195211A (en) | Method for melting and reducing iron oxide | |
Nijhawan | Some aspects of Pilot Plant Research and Development in Iron and Steel Industry | |
JPS62192513A (en) | Method and apparatus for melt reduction | |
JPH02282410A (en) | Smelting reduction method for ore | |
JPH032312A (en) | Production of low-phosphorus pig iron | |
JPS60181213A (en) | Manufacture of iron in reactor |