JPH01126595A - Core performance monitoring apparatus - Google Patents
Core performance monitoring apparatusInfo
- Publication number
- JPH01126595A JPH01126595A JP62284671A JP28467187A JPH01126595A JP H01126595 A JPH01126595 A JP H01126595A JP 62284671 A JP62284671 A JP 62284671A JP 28467187 A JP28467187 A JP 28467187A JP H01126595 A JPH01126595 A JP H01126595A
- Authority
- JP
- Japan
- Prior art keywords
- distribution
- core
- burnup
- output
- inputted
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000012544 monitoring process Methods 0.000 title claims description 6
- 238000009826 distribution Methods 0.000 claims abstract description 85
- 239000000463 material Substances 0.000 claims abstract description 4
- 238000012806 monitoring device Methods 0.000 description 10
- 238000003860 storage Methods 0.000 description 7
- 229910052770 Uranium Inorganic materials 0.000 description 6
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 description 6
- 239000000446 fuel Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 2
- 238000009835 boiling Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Monitoring And Testing Of Nuclear Reactors (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の目的]
(産業上の利用分野)
本発明は、燃料装荷パターンおよび制御棒パターンが1
74対称性を有する原子炉の炉心性能を監視するための
炉心性能監視装置に関する。[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention provides a fuel loading pattern and a control rod pattern that are
The present invention relates to a core performance monitoring device for monitoring the core performance of a nuclear reactor having 74 symmetry.
(従来の技術)
一般に原子炉においては、炉心がその健全性を保ちなが
ら必要とされる性能を発揮しているか否かを監視するた
めに、精度の高い炉心の出力分布を得ることが要求され
る。このような原子炉の炉心性能のオンライン監視精度
の向上を目的として、プロセス計算機に炉心3次元物理
モデルを内蔵させる場合、出力分布の算出には正確な燃
焼度分布が必要とされる。(Prior art) Generally, in a nuclear reactor, it is required to obtain a highly accurate core power distribution in order to monitor whether the core is exhibiting the required performance while maintaining its health. Ru. When incorporating a three-dimensional core physical model into a process computer for the purpose of improving the accuracy of online monitoring of reactor core performance, an accurate burnup distribution is required to calculate the power distribution.
燃焼度分布は、燃料集合体中に含まれるウラン重元素の
単位重量当りの積算出力を表す。The burnup distribution represents the integrated power per unit weight of the heavy element uranium contained in the fuel assembly.
炉心を空間的に多数の節点(ノード)の集合で表した場
合、ノードnの時刻t1での燃焼度分布は時刻toでの
燃焼度分布を用いて次式で表すことができる。When the core is spatially represented by a set of many nodes, the burnup distribution of node n at time t1 can be expressed by the following equation using the burnup distribution at time to.
Eo (t+ )=En (to )+/ [pi
<t)/wn ] ctt ・・・(1)t。Eo (t+)=En (to)+/ [pi
<t)/wn] ctt...(1)t.
ここで、
En (t)・・・時vqtにおけるノードnの燃焼
度Pn (t)・・・時刻tにおけるノードnの出力
Wo・・・ノードnの炉心装荷時のウラン重量である。Here, En (t)... Burnup of node n at time vqt Pn (t)... Output Wo of node n at time t... Weight of uranium at the time of core loading of node n.
原子炉炉心の燃料装荷パターンは、一般に174鏡像対
称あるいは174回転対称を持つように設計される。従
って、制御棒パターンもまた同様の対称性を持つ場合は
、炉心3次元物理モデルによる計算を174の炉心領域
でのみ行うようにすれば、炉心性能計算時間を大幅に短
縮することができる。The fuel loading pattern of a nuclear reactor core is generally designed to have 174 mirror symmetry or 174 rotational symmetry. Therefore, if the control rod pattern also has similar symmetry, the core performance calculation time can be significantly shortened by performing calculations using the core three-dimensional physical model only in 174 core regions.
(発明が解決しようとする問題点)
しかしながら、燃料装荷パターンが174対称性を持つ
場合でも、(1)式におけるノードnの炉心装荷時のウ
ラン重量は、製造工程上の誤差により微小な差を有する
のが背通である。燃焼度分布は燃料の熱的制限値を計算
する上で、また重元素アイソトープの管理の点でも非常
に重要な量であるので、この微小な差を無視することは
できず、従来は1/4の炉心領域での計算だけで精度の
良い燃焼度分布を得ることができなかった。(Problem to be Solved by the Invention) However, even when the fuel loading pattern has 174 symmetry, the weight of uranium at the time of core loading at node n in equation (1) has a small difference due to errors in the manufacturing process. What it has is a back passage. The burnup distribution is a very important quantity in calculating the thermal limit value of the fuel and also in the management of heavy element isotopes, so this minute difference cannot be ignored, and conventionally it was It was not possible to obtain an accurate burnup distribution only by calculation in the core region of 4.
なお、第4図に174鏡像対称の80万KW級の沸騰水
型原子炉におけるバンドル初期重元素量の違いと、バン
ドル平均燃焼度の違いの一例を示す。この例において鏡
像対称位置の座徨(05,10)のA点、座a(O5,
17) cy>B点、座標(22,10) ノC点、(
22゜11)のD点におけるバンドル初期重元素量は、
それぞれ172055(1、1719490,1720
87(] 、171931(1であり、バンドル平均燃
焼度は、それぞれ175758Wd/l、 17550
MWd/l、 17555MWd/l、 175678
騨d/lである。In addition, FIG. 4 shows an example of the difference in the bundle initial heavy element content and the difference in the bundle average burnup in an 800,000 KW class boiling water nuclear reactor with 174 mirror image symmetry. In this example, point A of locus (05, 10) at the mirror image symmetrical position, locus a (O5,
17) cy>B point, coordinates (22,10) no C point, (
The initial heavy element content of the bundle at point D at 22°11) is
172055 (1, 1719490, 1720 respectively)
87(], 171931(1), and the bundle average burnup is 175758 Wd/l and 17550 Wd/l, respectively.
MWd/l, 17555MWd/l, 175678
It is d/l.
本発明はかかる点に対処してなされたもので、1/4対
称性を有する炉心について、短時間でかつ精度の高い燃
焼度分布を得ることのできる炉心性能監視装置を提供し
ようとするものである。The present invention has been made in response to this problem, and aims to provide a core performance monitoring device that can obtain highly accurate burnup distribution in a short time for a core with 1/4 symmetry. be.
〔発明の構成]
(問題点を解決するための手段)
本発明の炉心性能監視装置は、炉心3次元物理モデルに
基づいて1/4の炉心領域の出力分布を算出する出力分
布計算装置と、この出力分布計算装置によって算出され
た1/4の炉心領域の出力分布と過去の燃焼度分布と炉
心装荷時の核分裂性物質重量の比率に基づき炉心出力の
対称性を利用して全炉心内の燃焼度分布を算出する燃焼
度分布計算装置とを備えたことを特徴とする。[Structure of the Invention] (Means for Solving the Problems) The core performance monitoring device of the present invention includes a power distribution calculation device that calculates the power distribution of a 1/4 core region based on a three-dimensional core physical model; Based on the power distribution of the 1/4 core region calculated by this power distribution calculation device, the past burnup distribution, and the ratio of the weight of fissile material at the time of core loading, the symmetry of the core power is used to calculate the power distribution in the entire core. The present invention is characterized by comprising a burnup distribution calculation device that calculates a burnup distribution.
(作 用)
本発明の炉心性能監視装置において、出力分布計算装置
は原子炉内に配置された各種計測器からの計数値を入力
するとともに燃焼度分布記憶装置から燃焼度分布を入力
しあらかじめこの装置内に内蔵されている炉心3次元物
理モデルに基づき、1/4対称性を有する炉心の174
の領域の出力分布のみを計算し、燃焼度分布計算装置は
この出力分布計算装置で計算された1/4炉心の出力分
布と燃焼度分布記憶装置から入力した過去の燃焼度分布
に基づき核分裂性物質装荷重量の微小な非対称性を補正
した炉心内全体の燃焼度分布を算出することにより、従
来よりも短時間で正確な燃焼度分布を計算することがで
きる。(Function) In the core performance monitoring device of the present invention, the power distribution calculation device inputs counts from various measuring instruments placed in the reactor and also inputs the burnup distribution from the burnup distribution storage device. Based on the core three-dimensional physical model built into the equipment, the core 174 has a quarter symmetry.
The burnup distribution calculation device calculates the fissionability based on the power distribution of the 1/4 core calculated by this power distribution calculation device and the past burnup distribution input from the burnup distribution storage device. By calculating the burnup distribution throughout the core with correction for small asymmetries in the material loading, it is possible to calculate an accurate burnup distribution in a shorter time than conventional methods.
(実施例)
以下、図面に示す一実施例について本発明の詳細な説明
する。(Example) Hereinafter, the present invention will be described in detail with regard to an example shown in the drawings.
第1図は本発明の一実施例の炉心性能監視装置の構成を
示すもので、この炉心性能監視装置は、原子炉1内に配
置されている各種計測器からの計数値を入力するデータ
入力装置2と、装置内に予め内蔵されている炉心3次元
物理モデルに基づき炉心内出力分布を計算する出力分布
計算装置3と、この出力分布計算装置3で計算された出
力分布に基づいて燃焼度分布を計算する燃焼度分布計算
装置4と、この燃焼度分布計算装置4で計算された燃焼
度分布を記憶する燃焼度分布記憶装置5と、これらの炉
心性能計算結果を出力するオペレータ出力波r!16と
で構成されている。FIG. 1 shows the configuration of a core performance monitoring device according to an embodiment of the present invention. A device 2, a power distribution calculation device 3 that calculates the power distribution in the core based on a three-dimensional physical model of the reactor core pre-built in the device, and a burnup calculation device 3 that calculates the power distribution in the core based on the power distribution calculated by the power distribution calculation device 3. A burnup distribution calculation device 4 that calculates the distribution, a burnup distribution storage device 5 that stores the burnup distribution calculated by the burnup distribution calculation device 4, and an operator output wave r that outputs the results of these core performance calculations. ! It consists of 16.
次に、このように構成された炉心性能監視装置の動作に
ついて第2図のフローチャートを参照して説明する。Next, the operation of the core performance monitoring device configured as described above will be explained with reference to the flowchart of FIG. 2.
まず、データ入力装置2により、原子炉1内に設置され
た各種計測器から現在の炉心状態を表すプラントデータ
を入力する(a)。First, the data input device 2 inputs plant data representing the current state of the reactor core from various measuring instruments installed in the reactor 1 (a).
次に、出力分布計算装置3において、データ入力装置2
より入力された炉心現状データと、燃焼度分布記憶装置
5に記憶された燃焼度分布とから、炉心の174の領域
(以下問題領域というンの出力分布を炉心3次元物理モ
デルに基づいて算出する(b)。Next, in the output distribution calculation device 3, the data input device 2
The power distribution of 174 regions (hereinafter referred to as problem regions) of the reactor core is calculated based on the core three-dimensional physical model from the core current data input from the reactor core and the burnup distribution stored in the burnup distribution storage device 5. (b).
この後、燃焼度分布計算装置4において、上記問題領域
の出力分布からこの領域の燃焼度増分を算出する(c)
。After this, the burnup distribution calculation device 4 calculates the burnup increment in this region from the output distribution of the above problem region (c)
.
しかる後、燃焼度分布計算装置4において、上記問題領
域以外の対称位置バンドル座標を算出しくd)、問題領
域のバンドルとこれらの対称位置バンドルとのウラン重
量比を算出して(e)、問題領域以外の燃焼度増分を算
出しくf)、これらの燃焼度増分から全炉心の燃焼度の
積算を行う(g)。After that, the burnup distribution calculation device 4 calculates the coordinates of bundles at symmetrical positions other than the problem area (d), calculates the uranium weight ratio between the bundles in the problem area and these bundles at symmetrical positions (e), and Calculate the burnup increments outside the area f), and integrate the burnup of the entire core from these burnup increments (g).
なお、燃焼度分布計算装置4は、1/4の炉心の出力分
布から次のようにして全炉心の燃焼度分布の計算を行う
。Note that the burnup distribution calculation device 4 calculates the burnup distribution of the entire core from the power distribution of the 1/4 core as follows.
第3図に示す炉心の径方向断面図において、問題領域外
のノードmの斜線で示す問題領域内の鏡像対称あるいは
回転対称の位置のノードをnとすれば、問題領域内のノ
ードnについては出力分布P11が計算されており、時
刻toと時刻t1の間の燃焼度の増分δE、Qは(1)
式よりδE、=/ [P、(t)/VL ] dt・
(2)t。In the radial cross-sectional view of the reactor core shown in Figure 3, if n is a node at a mirror-symmetric or rotationally symmetrical position within the problem area indicated by diagonal lines of node m outside the problem area, then for node n inside the problem area, The output distribution P11 has been calculated, and the burnup increments δE and Q between time to and time t1 are (1)
From the formula, δE, =/ [P, (t)/VL] dt・
(2)t.
で計算されるため、時刻t1の燃焼度分布Efl(tl
)は次式で与えられる。Therefore, the burnup distribution Efl(tl
) is given by the following equation.
Ea Ct+ ’)=En (to )+δEl+
−(3)ここで時刻toにおける燃焼度分布Eo(to
)は燃焼度分布記憶装置5に記憶されている。Ea Ct+ ')=En (to)+δEl+
-(3) Here, the burnup distribution Eo(to
) is stored in the burnup distribution storage device 5.
一方、問題領域外のノードmについては出力分布P、が
与えられていないので、第1近似として問題領域内の対
称位置ノードの出力分布P0を代用すると、ノードmの
時刻toと時刻t1の間の燃焼度増分δE、は、
δ E、 =f [Pn (t)/w、 コ
dt ・ <4)t。On the other hand, since the output distribution P is not given for the node m outside the problem domain, if we substitute the output distribution P0 of the node at the symmetric position within the problem domain as a first approximation, then The burnup increment δE, is: δ E, =f [Pn (t)/w, dt ・<4)t.
となる、(4)式は
δB m = (wn / Wm ) xf (Pn
(t)/Wn )at・・・(5)t。Equation (4) is δB m = (wn/Wm) xf (Pn
(t)/Wn)at...(5)t.
と変形することができるので、結局燃焼度増分δE1は
、
δE@ = (Wn /Wm )δEn =(6)で
表される。ここで、W、 、W、はそれぞれノードn、
mの炉心装荷時のウラン重量である。Therefore, the burnup increment δE1 is finally expressed as δE@=(Wn/Wm)δEn=(6). Here, W, , W are nodes n, respectively.
This is the weight of uranium when loaded into the core.
問題領域外のノードmの時刻t1における燃焼度分布E
−(t+)は
Ea (tl) −Evs (t o )+δE、
−(7)で表されるため、(6)、(7)式よりEx
(t + ) =E!l (t o ) +<Wf
l /Wm )δEfi・・・(8)で計算することが
できる。Burnup distribution E of node m outside the problem area at time t1
−(t+) is Ea (tl) −Evs (t o )+δE,
−(7), so from equations (6) and (7), Ex
(t+)=E! l (t o ) +<Wf
l /Wm ) δEfi (8).
以上のようにして燃焼度分布計算装置4で計算された燃
焼度分布EfiおよびElにより燃、焼度分布記憶装置
5の内容が更新される。The contents of the burn-up distribution storage device 5 are updated with the burn-up distributions Efi and El calculated by the burn-up distribution calculation device 4 as described above.
オペレータ出力装置6は以上の炉心性能計算結果をオペ
レータに表示する。The operator output device 6 displays the above core performance calculation results to the operator.
このように本発明の炉心性能監視装置によれば、炉心が
174対称性を有する場合に、出力分布の計算を炉心の
1/4の領域でのみ行ってもウラン装荷量の微小な非対
称性を考慮した全炉心にわたる精度の良い燃焼度分布を
短時間で計算することができる。As described above, according to the core performance monitoring device of the present invention, when the core has 174 symmetry, even if the power distribution is calculated only in the 1/4 region of the core, it is possible to detect slight asymmetry in the uranium loading amount. Accurate burnup distribution over all considered cores can be calculated in a short time.
以上の説明からも明らかなように、本発明の炉心性能監
視装置によれば、1/4対称性を有する炉心について、
炉心性能監視上非常に重要で正確さを要求される燃焼度
分布を短時間で計算することができ、高速度かつ高精度
の炉心性能監視を行うことが可能となる。As is clear from the above explanation, according to the core performance monitoring device of the present invention, for a core having 1/4 symmetry,
The burnup distribution, which is extremely important for core performance monitoring and requires accuracy, can be calculated in a short time, making it possible to perform high-speed and highly accurate core performance monitoring.
第1図は本発明の一実施例の炉心性能監視装置を示すブ
ロック図、第2図は第1図に示す炉心性能監視装置の動
作を示すフローチャート、第3図は炉心の径方向断面図
、第4図はバンドル初期重元素量の違いとバンドル平均
燃焼度の違いの例を示す説明図である。
1・・・・・・・・・原子炉
3・・・・・・・・・出力分布計算装置4・・・・・・
・・・燃焼度分布計算装置5・・・・・・・・・燃焼度
分布記憶装置出願人 日本原子カ事業株式会
社出願人 株式会社 東芝
代理人 弁理士 須 山 佐 −
第1 図
第2図
第3図FIG. 1 is a block diagram showing a core performance monitoring device according to an embodiment of the present invention, FIG. 2 is a flowchart showing the operation of the core performance monitoring device shown in FIG. 1, and FIG. 3 is a radial cross-sectional view of the core. FIG. 4 is an explanatory diagram showing an example of a difference in bundle initial heavy element content and a difference in bundle average burnup. 1...... Nuclear reactor 3... Output distribution calculation device 4...
...Burnup distribution calculation device 5...Burnup distribution storage device Applicant: Japan Atomic Power Industry Co., Ltd. Applicant: Toshiba Corporation Representative Patent attorney Satoshi Suyama - Figure 1 Figure 2 Figure 3
Claims (1)
域の出力分布を算出する出力分布計算装置と、この出力
分布計算装置によって算出された1/4の炉心領域の出
力分布と過去の燃焼度分布と炉心装荷時の核分裂性物質
重量の比率に基づき炉心出力の対称性を利用して全炉心
内の燃焼度分布を算出する燃焼度分布計算装置とを備え
たことを特徴とする炉心性能監視装置。(1) A power distribution calculation device that calculates the power distribution of the 1/4 core region based on a three-dimensional core physical model, and the power distribution of the 1/4 core region calculated by this power distribution calculation device and the past A reactor core characterized by comprising a burnup distribution calculation device that calculates a burnup distribution in the entire reactor core using symmetry of the core output based on the burnup distribution and the ratio of the weight of fissile material when loaded into the core. Performance monitoring equipment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62284671A JPH01126595A (en) | 1987-11-11 | 1987-11-11 | Core performance monitoring apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62284671A JPH01126595A (en) | 1987-11-11 | 1987-11-11 | Core performance monitoring apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01126595A true JPH01126595A (en) | 1989-05-18 |
Family
ID=17681475
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62284671A Pending JPH01126595A (en) | 1987-11-11 | 1987-11-11 | Core performance monitoring apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01126595A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0527077A (en) * | 1991-07-22 | 1993-02-05 | Toshiba Corp | Nuclear reactor state estimating device |
JP2009300394A (en) * | 2008-06-17 | 2009-12-24 | Chugoku Electric Power Co Inc:The | Device, method and program for calculating total weight of fissile element in nuclear reactor |
KR102123236B1 (en) * | 2019-07-31 | 2020-06-16 | 한전원자력연료 주식회사 | Deep learning method for accurate assembly-wise nuclear core parameters prediction and faster training using minimum data |
-
1987
- 1987-11-11 JP JP62284671A patent/JPH01126595A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0527077A (en) * | 1991-07-22 | 1993-02-05 | Toshiba Corp | Nuclear reactor state estimating device |
JP2009300394A (en) * | 2008-06-17 | 2009-12-24 | Chugoku Electric Power Co Inc:The | Device, method and program for calculating total weight of fissile element in nuclear reactor |
KR102123236B1 (en) * | 2019-07-31 | 2020-06-16 | 한전원자력연료 주식회사 | Deep learning method for accurate assembly-wise nuclear core parameters prediction and faster training using minimum data |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH11264887A (en) | Reactor nuclear instrumentation system, reactor power distribution monitoring system provided with this system and reactor power monitoring method | |
Bernardeau et al. | Cosmic propagators at two-loop order | |
JPS62229097A (en) | Method of calibrating on-line core-performance predictor | |
Ferrer et al. | The linear source approximation and particle conservation in the Method of Characteristics for isotropic and anisotropic sources | |
CN108447574A (en) | A kind of nuclear power station ex-core detector neutron count rate computational methods and its system | |
Peng et al. | The application of radial basis function interpolation in reactor core power distribution on-line monitoring | |
JPH01126595A (en) | Core performance monitoring apparatus | |
WO2024087422A1 (en) | Power tilt prediction method and apparatus, device, storage medium, and program product | |
JP4008926B2 (en) | Core performance calculator | |
JP3679866B2 (en) | Core performance calculator | |
JPS6122278B2 (en) | ||
Santandrea et al. | Positive linear and nonlinear surface characteristic schemes for the neutron transport equation in unstructured geometries | |
JP3023185B2 (en) | Reactor core performance calculator | |
JPH06186380A (en) | Performance calculator for reactor core | |
JP2003177196A (en) | Reactor core nuclear instrumentation response calculation method | |
JP2975654B2 (en) | Core monitoring device | |
JPH0772282A (en) | Method and device for estimating reactor core performance | |
JPH1020072A (en) | Reactor core performance calculating device | |
JPH1123787A (en) | Planning method for operating nuclear power station and reactor, and planning device therefor | |
Pryor | Response matrix method and the cosine-currents approximation | |
JPH0285796A (en) | Output distribution monitor for pressurized water reactor | |
Bouchey et al. | Optimization of nuclear systems by geometric programming | |
JPH0481696A (en) | Surveillance device of nuclear reactor core | |
Dos Santos et al. | Criticality Analyses Based on the Coupled NJOY/AMPX-II/TORT Systems | |
Ray et al. | Few-group diffusion theory parameters from lattice calculations using leakage corrected collision probabilities |