JPH01126361A - Epoxy resin composition - Google Patents

Epoxy resin composition

Info

Publication number
JPH01126361A
JPH01126361A JP62284199A JP28419987A JPH01126361A JP H01126361 A JPH01126361 A JP H01126361A JP 62284199 A JP62284199 A JP 62284199A JP 28419987 A JP28419987 A JP 28419987A JP H01126361 A JPH01126361 A JP H01126361A
Authority
JP
Japan
Prior art keywords
resin
silicone
epoxy resin
silicone oil
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62284199A
Other languages
Japanese (ja)
Inventor
Masatoshi Ichi
正年 位地
Shinichiro Asai
新一郎 浅井
Masayuki Kobayashi
正之 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP62284199A priority Critical patent/JPH01126361A/en
Publication of JPH01126361A publication Critical patent/JPH01126361A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/544Marks applied to semiconductor devices or parts, e.g. registration marks, alignment structures, wafer maps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54426Marks applied to semiconductor devices or parts for alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54453Marks applied to semiconductor devices or parts for use prior to dicing

Abstract

PURPOSE:To obtain a composition giving a semiconductor sealant having remarkably decreased internal stress and excellent moisture resistance, moldability, printability and adhesivity to carrier tape, by compounding a silicone resin with an epoxy resin, a phenolic resin and an inorganic filler. CONSTITUTION:The objective composition is produced by compounding (A) a silicone-modified resin produced by dispersing at least two kinds of silicone oils having mutually reactive functional groups in a phenolic resin or an epoxy resin in the form of oil droplets using a dispersing agent, (B) an epoxy resin, (C) a phenolic resin and (D) an inorganic filler. The mixing ratio of the silicone coils of the component A is preferably selected to give a ratio of the numbers of the reactive functional groups of the resin and the oil of preferably close to 1:1.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、特に半導体等の電子部品の封正に優れた半導
体封止用エポキシ樹脂組成物に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an epoxy resin composition for encapsulating semiconductors that is particularly excellent in encapsulating electronic components such as semiconductors.

(従来の技術) 近年半導体(以下ICという)の封止はほとんど樹脂対
土で行なわれるようにな夛、また樹脂の種類も素子との
密着性や価格の点からエポキシ樹脂組成物が主流となっ
ている。そしてこれらには、半導体の特性2保持に必要
な技術的改良が要求されている。この中でも耐湿信頼性
の向上と、樹脂の硬化収縮や樹脂と素子との熱膨張率の
差によるひずみから発生する内部応力の低減は、2つの
重大な課題となっている。
(Prior art) In recent years, most of the encapsulation of semiconductors (hereinafter referred to as ICs) has been performed using resin to soil, and epoxy resin compositions have become mainstream in terms of adhesiveness with elements and cost. It has become. These require technical improvements necessary to maintain characteristic 2 of semiconductors. Among these, two important issues are improving moisture resistance reliability and reducing internal stress generated from distortion caused by curing shrinkage of the resin and the difference in coefficient of thermal expansion between the resin and the element.

特に最近のICの高集積化から、素子が大型化したため
、内部応力や、熱衝撃時の内部応力に起因する樹脂のク
ラック発生は大きな問題となっている。
In particular, due to the recent increase in the integration of ICs, the size of devices has increased, and cracks in the resin due to internal stress and internal stress during thermal shock have become a major problem.

このため、最近この内部応力の低減忙目的とした様々な
検討がなされ、内部応力を低減させる方法としては、 ■ 樹脂の熱膨張率を下げ、素子の熱膨張率に近くする
、 ■ 弾性率を下げる、 などが挙げられる。
For this reason, various studies have recently been conducted with the aim of reducing this internal stress, and methods for reducing internal stress include: - lowering the coefficient of thermal expansion of the resin to be close to that of the element; ■ increasing the modulus of elasticity. Examples include lowering.

前者は、一般に熱膨張率の小さい無機光てん剤’rs1
11Iに添加することでなされるが、これらの充てん剤
の形状は通常実質的に破断面を有しているため高充てん
した場@は、成形性不良及び流動性低下の間WAr生じ
る。後者は、樹脂に町とう性付与剤を添付することでな
される。これにはブタジェン系やシリコーン系プムの粉
体やシリコーン樹脂の粉体を添加すること(特開昭54
−54168号公報、特開昭61−283649号公報
)、樹脂と反応性のある官能基を持つシリコーンオイル
を添加することが検討されている。特に反応性のシリコ
ーンオイル混合物中にミクロン単位で分散させると、低
応力性や耐熱衝撃性で優れた特性を示すことが知られて
いる。
The former is generally an inorganic photoresist with a small coefficient of thermal expansion.
However, since the shape of these fillers usually has a substantially fractured surface, if they are highly filled, WAr will occur during which poor moldability and flowability will occur. The latter is achieved by adding a toughness imparting agent to the resin. To this, powder of butadiene-based or silicone-based PUM or powder of silicone resin may be added (Japanese Patent Laid-Open No. 54
No. 54168, Japanese Unexamined Patent Publication No. 61-283649), it has been considered to add silicone oil having a functional group reactive with resin. In particular, it is known that when dispersed in micron units in a reactive silicone oil mixture, it exhibits excellent properties such as low stress and thermal shock resistance.

しかしこれらの分散し危シリコーンオイルの内部は、樹
脂とに反応していないため、成形中に、未反応のシリコ
ーンオイルがしみ出してきて、金型汚れt起こし、又、
成形体表面のしみ出したシリコーンオイルによって捺印
インクによる捺印性が低下し、さらにICパッケージ運
搬用のテープとの密着性が不足するなど様々な問題が生
じている。
However, since the inside of these dispersed dangerous silicone oils does not react with the resin, unreacted silicone oil oozes out during molding, causing mold stains, and
Silicone oil that has seeped out on the surface of the molded product causes various problems, such as a decrease in the marking performance of the marking ink and a lack of adhesion with the tape used to transport the IC package.

これに対してあらかじめ樹脂とシリコーンオイルr反応
させて未反応物を減少させ工うとするものや(特開昭5
9−18724号公1計重)、この系にシリコーンオイ
ルの分散剤勿加えることによってシリコーンオイルと樹
脂との相溶性やシリコーンオイルの分散安定性を高めよ
うとする検討(特開昭62−124116号公報)が行
なわれているが、未反応物のしみ出し性に対しては大き
な効果が得られていない。
On the other hand, there are methods to reduce unreacted substances by reacting the resin with silicone oil in advance (Unexamined Japanese Patent Publication No. 5
9-18724 Publication No. 1 weighing), and a study to improve the compatibility between silicone oil and resin and the dispersion stability of silicone oil by adding a dispersant for silicone oil to this system (Japanese Patent Laid-Open No. 124116/1983) However, no significant effect has been obtained on the seepage of unreacted substances.

ま友シリコーンオイルtあら〃1じめグル化させてρλ
ら添加する検討もあるが、(特開昭62−184017
号公報)これではミクロン単位の分散ができず、低応力
性や耐熱衝撃性の大幅な改良はできない。
Mayu silicone oil t Oh, let's make it sticky ρλ
There is also consideration of adding
(No. Publication) This does not allow for dispersion in micron units, and it is not possible to significantly improve low stress properties or thermal shock resistance.

(発明が解決し工う、とする問題点) 本発明はかかる欠点を解決するものであり、シリコーン
オイルと特定のシリコーン化合物とr分散剤として、フ
ェノール樹脂又はエポキシ樹脂と変性し九シリコーン変
性樹脂をエポキシ樹脂組成物に含有させることにより、
封止材料の内部応力が大幅に低減し、耐湿性に優れ、し
かも金型汚れ等の成形性、捺印性及びICパッケージ運
搬用テープとの密着性が良好な半導体封止用エポキシ樹
脂組成物を提供しようとするものである。
(Problems to be Solved by the Invention) The present invention solves these drawbacks, and uses silicone oil, a specific silicone compound, and a phenol resin or epoxy resin as a dispersant. By incorporating into the epoxy resin composition,
An epoxy resin composition for semiconductor encapsulation that significantly reduces the internal stress of the encapsulation material, has excellent moisture resistance, and has good moldability against mold stains, imprintability, and adhesion to IC package transportation tapes. This is what we are trying to provide.

(問題r解決するホめの手段) すなわち本発明に、 (&)  フェノール樹脂又はエポキシ樹脂中に、互い
に反応できる官能基を持つ少なくとも2種類のシリコー
ンオイルを分散剤を用いて油滴として分散させ、前記シ
リコーンオイルを油滴内で架橋反応させてなるシリコー
ン変性樹脂 (′0)エポキシ樹脂 (c)フェノール樹脂および (a)  無機充填剤 を含有してなることを特徴とするエポキシ樹脂組成物で
ある。
(Means to Solve Problem R) That is, the present invention has the following features: (&) At least two types of silicone oils having functional groups that can react with each other are dispersed as oil droplets in a phenol resin or an epoxy resin using a dispersant. , an epoxy resin composition comprising: a silicone modified resin obtained by subjecting the silicone oil to a crosslinking reaction within oil droplets; ('0) an epoxy resin; (c) a phenol resin; and (a) an inorganic filler. be.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明のシリコーン変性樹脂とは、フェノール樹脂又は
エポキシ樹脂中にシリコーンオイル混合物とt分散剤で
分散させた後、フェノール樹脂又はエポキシ樹脂中に油
滴分散したシリコーンオイルを油滴内でシリコーンオイ
ル同志で架橋反応させた変性樹脂およびフェノール樹脂
又はエポキシ樹脂とシリコーンオイルとに反応させると
ともに、前記と同様樹脂中油境内でシリコーンオイル同
志を架橋反応させ比変性樹脂、さらに前記2′s類の混
合物のいずれでちってもよい。
The silicone-modified resin of the present invention refers to silicone oil that is dispersed in a phenol resin or epoxy resin with a silicone oil mixture and a t-dispersant, and then the silicone oil is dispersed in oil droplets in the phenol resin or epoxy resin. The modified resin and phenol resin or epoxy resin subjected to a crosslinking reaction are reacted with silicone oil, and the silicone oil is crosslinked with each other in the oil boundary in the resin in the same manner as above to form a specific modified resin, and any of the mixtures of the above 2's. You can also make one.

本発明のシリコーン変性樹脂に用いるシリコーンオイル
とは、フェノール樹脂又はエポキシ樹脂と反応する官能
基及びシリコーンオイル同志互いに反応する官能基?持
つ直鑓状のポリジメチルシロキサン又はこのメチル基の
代りにフェニル基や水素で値換させたものにペンダント
状か又は両末端に反応性の官能基を結合させ友ものの少
なくとも21m類の混合物tさす。これらの官能基は、
フェノール樹脂又はエポキシ樹脂との反応及びシリコー
ンオイル同志お互いに反応し、架橋できる組み台せなら
特に制限はないが、好ましくはエポキシ基とアミノ基、
エポキシ基とカルボキシル基、水素とビニル基、エポキ
シ基とメルカプト基、エボΦり基と水酸基tそれぞれ持
つシリコーンオイルの組み甘せが挙げられる。
The silicone oil used in the silicone-modified resin of the present invention includes a functional group that reacts with a phenol resin or an epoxy resin, and a functional group that reacts with each other in the silicone oil. A mixture of at least 21 m groups of polydimethylsiloxane having a pendant shape or having reactive functional groups bonded to both ends of the polydimethylsiloxane, or one obtained by replacing the methyl group with a phenyl group or hydrogen. . These functional groups are
There is no particular restriction as long as the assembly can react with a phenol resin or an epoxy resin and react with each other and crosslink, but preferably an epoxy group and an amino group,
Examples include combinations of silicone oils having epoxy groups and carboxyl groups, hydrogen and vinyl groups, epoxy groups and mercapto groups, and evo-Φ groups and hydroxyl groups.

これらのシリコーンオイルの混合比は、フェノール樹脂
又はエポキシ樹脂及びシリコーンオイル同志とが反応す
る官能基の化学量論量【基準とする限シ特に制限にない
が、できるだけ互いに反応できる官能基の数が1:1に
近いことが好ましく、ふ 極端に離れる架橋しにくくなる。
The mixing ratio of these silicone oils is based on the stoichiometric amount of functional groups that can react with each other with the phenol resin or epoxy resin and the silicone oil. It is preferable that the ratio be close to 1:1, and it becomes difficult to crosslink the two extremes.

これらのシリコーンオイルの官能基当量や分子’iは、
少なくともシリコーン変性樹脂中油筒内でシリコーンオ
イル同志の適切な架橋が起こり、しη1も樹脂中で適切
に分散できる範囲にあることが必要である。例えば官能
基当量としては、100〜20.000が好ましくさら
に好ましくは600〜1.000が挙げられる。官能基
当量が100未満だとでき九シリコーンオイルの架橋体
の架橋密度が高すぎて、低応力化の効果が減少し、又2
0.000 ’に超えると架橋しにくくなシ、樹脂中油
滴として分散し九未反応物のしみ出しが多くなって問題
となシ、さらにシリコーンオイルの分散性が悪くなり低
応力化の効果が減少する。分子量としてに、200〜i
 o o、o o oが好ましく、さらに好ましくU4
00〜70.000が挙げられる。
The functional group equivalents and molecule 'i of these silicone oils are
It is necessary that appropriate cross-linking between silicone oils occurs at least within the oil cylinder in the silicone-modified resin, and that η1 also be within a range that can be appropriately dispersed in the resin. For example, the functional group equivalent is preferably 100 to 20.000, and more preferably 600 to 1.000. If the functional group equivalent is less than 100, the crosslinking density of the silicone oil crosslinked product will be too high, reducing the stress reduction effect, and
If it exceeds 0.000', it becomes difficult to crosslink, the silicone oil is dispersed as oil droplets in the resin, and unreacted substances seep out, which causes problems, and the dispersibility of the silicone oil deteriorates, reducing the effect of reducing stress. Decrease. As molecular weight, 200~i
o o, o o o are preferable, and U4 is more preferable
00 to 70.000.

分子量が200未満だと耐熱@撃性が低下し、i o 
o、o o o v超えるとシリコーンオイルの分散性
が悪くなシ低応力化の効果が減少する。
If the molecular weight is less than 200, heat resistance @ impact resistance will decrease, and i o
If it exceeds o, o o o o v, the dispersibility of the silicone oil will be poor and the effect of reducing stress will be reduced.

シリコーン変性樹脂中でシリコーンオイルが分散し、内
部で架橋し友ものの粒径は、0.01〜70μmが好ま
しく、さらに好ましくは0.05〜60μmが挙げられ
る。0.01μm未満だと耐熱衝撃性が低下し、70μ
m2超えると低応力性の効果が減少する。
The particle size of the silicone oil dispersed in the silicone modified resin and internally crosslinked is preferably 0.01 to 70 μm, more preferably 0.05 to 60 μm. If it is less than 0.01 μm, thermal shock resistance will decrease, and if it is less than 0.01 μm,
If it exceeds m2, the low stress effect will decrease.

本発明のシリコーン変性樹脂中でのこれらのシリコーン
オイルの総量に対する含量は、2〜50重量%が好まし
く、さらに3〜40重量%が好ましい。2重量%未満だ
と低応力化の効果が減少し50重量4に超えるとシリコ
ーンオイルの樹脂中での分散性が低下する。
The content of these silicone oils in the silicone-modified resin of the present invention is preferably 2 to 50% by weight, more preferably 3 to 40% by weight. If it is less than 2% by weight, the effect of reducing stress will decrease, and if it exceeds 50% by weight, the dispersibility of the silicone oil in the resin will decrease.

次にシリコーン変性樹脂の反応時に用いる分散剤として
は、フェノール樹脂又はエポキシ樹脂中にシリコーンオ
イル?分散させることができ、反応を妨げることのない
シリコーン化合物〒あればよく、好ましくは下記一般式
で表わされる。
Next, as a dispersant to be used during the reaction of silicone modified resin, silicone oil in phenol resin or epoxy resin? Any silicone compound that can be dispersed and does not interfere with the reaction is sufficient, and is preferably represented by the following general formula.

R1に水素、メチル、基、エチル基あるいはフェニル基
を示し、R2は炭素数1から5までのアルキル基を示し
、Xはエポキシ樹脂又はフェノール樹脂と反応や相溶す
る官能基でエポキシ基、アミノ基、カルボキシル基、メ
ルカプト基あるいはフェニル基を示す。又Yは、繰シ返
し単位を有する官能基でオキシエチレン重合体、オ中シ
ゾロぎレン重合体あるいはこれらの共重合体であるオキ
シアルキレン重合体を示し、Yは直接ケイ素原子に結付
していても良い。1、mお工びnは整数r示すO この末端基については特に限定はないが、−〇R1R,
−08i(R)3及び−81(R)3(Rは水素・メチ
ル基、エチル基、などのアルキル逼、フェニル基すどの
アリル基、エポキシ基含有有機基あるいはビニル基含有
有機基を示す)で表わされるものが好ましい。
R1 represents hydrogen, methyl, group, ethyl group, or phenyl group; R2 represents an alkyl group having 1 to 5 carbon atoms; group, carboxyl group, mercapto group, or phenyl group. Further, Y is a functional group having a repeating unit, and represents an oxyethylene polymer, an oxyalkylene polymer, or a copolymer thereof, and Y is directly bonded to a silicon atom. It's okay. 1, where n is an integer and indicates O. There are no particular limitations on this terminal group, but -〇R1R,
-08i(R)3 and -81(R)3 (R represents hydrogen, an alkyl group such as a methyl group or an ethyl group, an allyl group such as a phenyl group, an epoxy group-containing organic group, or a vinyl group-containing organic group) Those represented by are preferred.

このシリコーン化合物の分子量は、2000〜200.
000が好ましく、2000未満だと耐熱衝撃性が低下
し、200.000 k超えるとシリコーンオイルの分
散性が悪くなる。
The molecular weight of this silicone compound is 2000 to 200.
000 is preferable; if it is less than 2,000 k, thermal shock resistance will decrease, and if it exceeds 200,000 k, the dispersibility of silicone oil will deteriorate.

エポキシ基、アミン基、カルボキシル基、メルカプト基
あるいはフェニル基の官能基当量は150〜20.00
0が好ましく、150未満だとシリコーンオイルの分散
性が悪くなり、20.000?f−超えると樹脂との反
応性や相溶性が低下し、分散剤自体のしみ出しが発生し
て金型汚れt起こす。
The functional group equivalent of epoxy group, amine group, carboxyl group, mercapto group or phenyl group is 150 to 20.00
0 is preferable, and if it is less than 150, the dispersibility of silicone oil will be poor, and 20,000? If it exceeds f-, the reactivity and compatibility with the resin will decrease, and the dispersant itself will ooze out, causing mold stains.

シリコーン変性m指反応時に用いるシリコーン化合物の
添加量は、0.1〜20重量憾が好ましく、0.1重量
係未満だとシリコーンオイルの分散性が低下し、20重
量s2超えると耐湿性が悪化する。
The amount of the silicone compound used in the silicone modification m-finger reaction is preferably 0.1 to 20% by weight; if it is less than 0.1% by weight, the dispersibility of the silicone oil will decrease, and if it exceeds 20% by weight, the moisture resistance will deteriorate. do.

シリコーン変性樹脂のエポキシ樹脂組成物全体に対する
添加量は、0.5〜60重量係が好ましく、0.5 i
!量憾未満だと低応力化の効果が減少し、60重量IL
−超えると成形体の強度が低下する。
The amount of silicone modified resin added to the entire epoxy resin composition is preferably 0.5 to 60% by weight, and 0.5 i
! If it is less than 60 weight IL, the effect of reducing stress will decrease.
- If it exceeds, the strength of the molded article will decrease.

シリコーン変性樹脂の製造方法は、例えばフェノール樹
脂又はエポキシ樹脂t110〜180°0で溶融させ、
好ましくはこれにトリフェニルホスフィ/や1,8ジア
ゾビシクロ(5,4,0)ウンデセン(以後DBUと略
す)を加えた後、分散剤とシリコーンオイルの混合物を
添加し、攪拌しながら所定時間反応させることが挙げら
れる。この際、シリコーンオイルt70−以下の粒径に
分散させ、さらにシリコーンオイル同志を互に架橋反応
勿十分に行なわせることが必要である。具体的にはシリ
コーン変性樹脂中油境内でシリコーンオイルの20%以
上の官能基を架橋反応させることがシリコーンオイルの
しみ出し防止に好ましい。
A method for producing silicone modified resin includes, for example, melting a phenol resin or epoxy resin at t110 to 180°0,
Preferably, after adding triphenylphosphine/1,8 diazobicyclo(5,4,0) undecene (hereinafter abbreviated as DBU), a mixture of a dispersant and silicone oil is added, and the mixture is stirred for a predetermined period of time. One example is to cause a reaction. At this time, it is necessary to disperse the silicone oil to a particle size of t70 or less, and to cause the silicone oils to cross-link with each other sufficiently. Specifically, it is preferable to cause 20% or more of the functional groups of the silicone oil to undergo a crosslinking reaction within the oil boundary in the silicone modified resin in order to prevent seepage of the silicone oil.

本発明に用いるエポキシ樹脂は、その分子中にエポキシ
結@を少なくとも2個以上有するものであれば、分子構
造、分子量などに特に制限はない。
The epoxy resin used in the present invention is not particularly limited in molecular structure, molecular weight, etc., as long as it has at least two or more epoxy bonds in its molecule.

例工ばビスフェノールA型エポキシ樹脂、フェノールノ
ボラック型エポキシ樹脂、クレブールノポラック型エポ
キシ樹脂などが挙げられるが、その際、不純物や加水分
解性塩素の少ないものが望ましい〇 次にフェノール樹脂としては、フェノールノボラック樹
脂やクレゾールノボラック樹脂などが挙げられる。これ
らの使用量については特に制限はないが、エポキシ基と
硬化剤の化学量論量欠如えることが必要である。
Examples include bisphenol A type epoxy resin, phenol novolac type epoxy resin, Kreborg novolac type epoxy resin, etc. In this case, it is desirable to use one with less impurities and hydrolyzable chlorine.Next, as the phenol resin, Examples include phenol novolac resin and cresol novolac resin. There are no particular restrictions on the amounts used, but it is necessary that the epoxy group and curing agent be present in stoichiometric amounts.

また前記エポキシ樹脂やフェノール樹脂の添加方法は、
エポキシ樹脂組成物に必要な全量をシリコーン変性樹脂
とのプレ反応の際に添加してもよいし、プレ反応時には
必要量だけ添加して残シは他溢加成分と同時に添加して
もよい。
Furthermore, the method of adding the epoxy resin or phenol resin is as follows:
The entire amount required for the epoxy resin composition may be added during the pre-reaction with the silicone-modified resin, or only the required amount may be added during the pre-reaction and the remainder may be added at the same time as the other components.

次に本発明に用い、られる無機光てん剤としては、例え
ば結晶シリカ、溶融シリカ、タルク、アルミナ、硅酸カ
ルシウム、炭酸カルシウム、あるいはガラス繊維等の粉
末が挙げられるが、高純度及び低熱膨張率を有すること
から、結晶シリカ及び溶融シリカを用いることが好まし
い。
Examples of the inorganic photonic agent used in the present invention include powders of crystalline silica, fused silica, talc, alumina, calcium silicate, calcium carbonate, and glass fiber, which have high purity and low coefficient of thermal expansion. It is preferable to use crystalline silica and fused silica.

これらの無機光てん剤の形状は、実質的に破断面を有す
るもの、破断面を有しないもの、例えば球状、タマが状
、ひようたん状、カン状及び棒状等、あるいはこれらの
混合系でも差支えない。
The shapes of these inorganic photonic agents include those with a substantially fractured surface, those without a fractured surface, such as spherical, ball-shaped, gourd-shaped, can-shaped, rod-shaped, etc., or even a mixture thereof. No problem.

無機光てん剤の平均粒径は0.5〜150−5好ましく
は1〜60μmである。平均粒径が0.5μm未満であ
ると組成物の溶融時の流動性が低化し、また低応力性、
特に耐ヒート・ショック性も低下してしまう。ま*is
oμF”f”超えると、成形時に金型来光てんやワイヤ
ー流れ等を生ずることがある。
The average particle size of the inorganic photonic agent is 0.5 to 150-5 μm, preferably 1 to 60 μm. If the average particle size is less than 0.5 μm, the composition will have low fluidity when melted, and will also have low stress properties.
In particular, heat shock resistance also deteriorates. M*is
If it exceeds oμF "f", mold leakage or wire flow may occur during molding.

ま九無機充てん剤の比表面積は、0.1〜15mF/g
好ましくは0.5〜1Qs2/gである。比表面る。ま
九ism”、’yr超えると、組成物の溶融時の流動性
が低下し1、また低応力性、特に耐ヒートシヨツク性も
低下してしまう。
The specific surface area of Maku inorganic filler is 0.1 to 15 mF/g
Preferably it is 0.5-1Qs2/g. Specific surface. If it exceeds 9ism", 'yr, the fluidity of the composition during melting will decrease, and the low stress properties, especially the heat shock resistance, will also decrease.

無機光てん剤は、樹脂分(エポキシ@指、硬化剤用フェ
ノール樹脂、難燃剤用臭素化エポキシ樹脂及びフェノー
ル変性シリコーン化合物)100重量部に対して150
〜900″IjLI1部の添加量が好ましく、さらに好
ましくは200〜700重量部が良い。添加量が150
重量部未満では、低応力性、特に耐サーマルショック性
が低下して好ましくなく、ま九900重置部勿超えると
組成物の溶融時の流動性が低下するので好ましくない。
The inorganic photonic agent is 150 parts by weight per 100 parts by weight of the resin (epoxy@finger, phenol resin for hardening agent, brominated epoxy resin for flame retardant, and phenol-modified silicone compound).
The amount added is preferably 1 part by weight of ~900'' IjLI, more preferably 200 to 700 parts by weight.
If the amount is less than 900 parts by weight, the low stress properties, particularly thermal shock resistance, will deteriorate, which is undesirable, and if it exceeds 900 parts by weight, the fluidity of the composition when melted will decrease, which is undesirable.

その他、必要に応じて加えられる成分としてはγ−グリ
シドキシプロビルトリメトキシシランなどのシランカッ
プリング剤、イミダゾール類、トリフェニルフォスフイ
ンなどの7オスフイン類するいはDBHなどの硬化促進
剤、カーボンブラックなどの顔料、モンタナワックス、
カルナバワックスあるいはへキストワツクスなどの離型
剤、臭素化エポキシ樹脂や二酸化アンチモンなどの難燃
剤などが挙げられる。
Other ingredients that may be added as needed include silane coupling agents such as γ-glycidoxypropyltrimethoxysilane, imidazoles, heptadosephines such as triphenylphosphine, curing accelerators such as DBH, and carbon Pigments such as black, montana wax,
Examples include mold release agents such as carnauba wax or Hoechst wax, and flame retardants such as brominated epoxy resin and antimony dioxide.

本発明の樹脂組成物は、各成分及び添加剤rミキサ−で
攪拌混合し、加熱ロールにて混練し、冷、却、粉砕する
ことによシ得ることができる。
The resin composition of the present invention can be obtained by stirring and mixing each component and additives in a mixer, kneading with heated rolls, cooling, cooling, and pulverizing.

(実施例) 以下実施例及び比較例の「憾」と「部」とは、全て重量
r基準とする。
(Example) In the following Examples and Comparative Examples, "regret" and "part" are all based on weight r.

実施例1〜9 表1に示した構造のシリコーンオイルや分散剤のシリコ
ーン化合物を表2に示した添加量で、フェノールノビラ
ック樹脂又は0−クレゾールノポラックエポギシ樹脂4
0部、トリフェニルフォスフインあるいはn5U0.2
部と140℃で6時間反応させ次。できた生成物tヘン
シェルミキサーで粉砕し素抜、他の材料と表2に示し九
割合(部)で、それぞれミキサーで混合した。又フェノ
ール樹脂やエポキシ樹脂は、表2に示した添加量になる
ように不足分tさらに付は加え九。その後、この混合物
?加熱ロールで混練し、冷却後、粉砕し9種類の成形材
料を製造し友。各評価結果を表3に示す。
Examples 1 to 9 Phenol nobilac resin or 0-cresol nopolac epoxy resin 4 was prepared by adding the silicone oil having the structure shown in Table 1 and the silicone compound as a dispersant in the amount shown in Table 2.
0 parts, triphenylphosphine or n5U0.2
Next, the mixture was reacted with 140°C for 6 hours. The resulting product was pulverized using a Henschel mixer and then mixed with other ingredients in the nine proportions (parts) shown in Table 2 using a mixer. Also, for phenol resin and epoxy resin, add the missing amount (t) and add (9) so that the added amount is as shown in Table 2. Then this mixture? It is kneaded with heated rolls, cooled, and then crushed to produce nine types of molding materials. Table 3 shows the results of each evaluation.

比較例1〜7 各種有機シリコーン化合物と他の材料とt表2に示し九
割合で、実施例と同様にシリコーン変性樹脂を製造し、
これと他の材料r混合混練して成形材料を作シ評価し九
。表3に評価結果を示す。
Comparative Examples 1 to 7 Silicone-modified resins were produced in the same manner as in Examples using various organic silicone compounds and other materials in the nine ratios shown in Table 2.
This and other materials were mixed and kneaded to form a molding material and evaluated. Table 3 shows the evaluation results.

各物性評価 1)応力評価 半導体素子にか〃)る内部応力r評価するかめぜ工・!
抵抗素子(応力にエリ抵抗値の変化するピエゾ抵抗を半
導体チップに形成しtもの)t16ビンDIP型ICの
フレームにセットし、各組成物でトランスファー成形し
、素子にかかる応力r抵抗変化エフ測定し友。
Evaluation of each physical property 1) Stress evaluation Kamezeko evaluates the internal stress r of semiconductor elements!
A resistive element (a piezoresistor whose resistance value changes with stress is formed on a semiconductor chip) is set in the frame of a T16 DIP type IC, transfer molded with each composition, and the stress applied to the element is measured. My friend.

2)耐ヒートシヨツク性評価 アイランドサイズ4x7.5Inの16ビンリードフレ
ームを各組成物によシトランスファー成形し、その16
V!ンDIP型成形体’に一196°Cの液体と+26
0℃の液体に50秒ずつ浸漬を繰り返して成形体表面の
クラックの発生率r試料価数50個から求めた。
2) Heat shock resistance evaluation A 16-bin lead frame with an island size of 4 x 7.5 inches was transfer molded using each composition.
V! -196°C liquid and +26°C
The crack occurrence rate r on the surface of the molded product was determined from 50 samples by repeating immersion in a liquid at 0° C. for 50 seconds each.

6)耐湿性評価 各組成物を用い、対向するアルミニウム線の電極r有す
る素子rトランスファー成形し、この封止サンプルにつ
いて、温度125℃、2.5気圧の水蒸気加圧下で、電
極間に直流20Vのバイアス電圧rカ)け、時間の経過
によるアルミニウム線のオープン不良率を試料価数50
個から求めた。このテスト28PCT (バイアスプレ
ッシャークツカーテスト)と呼ぶ。また同轡に、ノンバ
イアス下でもテス)k行ない、このテス) ?!−PC
T (プレッシャークツカーテスト)と呼ぶ。
6) Moisture resistance evaluation Using each composition, a device with opposing aluminum wire electrodes was transfer molded, and the sealed sample was heated at 125°C and under a steam pressure of 2.5 atm, with a direct current of 20V between the electrodes. The bias voltage r) was applied, and the open defect rate of the aluminum wire over time was calculated using a sample value of 50.
Obtained from individuals. This test is called 28PCT (Bias Pressure Test). Similarly, even under non-bias conditions, do Tess) k, this Tess)? ! -PC
It is called T (pressure test).

4)捺印性評価方法 各組成物を用いて、半導体tトランスファー成形法にて
成形して封止サンプルを作成し友。これに捺印インク(
マーケムエシアテツク(株)製;商品名マーケム722
4)で捺印し、120℃で100分間アフターキュアし
た後、捺印性【評価し九。
4) Stampability evaluation method Each composition was molded using a semiconductor t-transfer molding method to prepare a sealed sample. This is stamped with ink (
Manufactured by Markem Associates Co., Ltd.; Product name: Markem 722
4) and after-cured at 120°C for 100 minutes, the sealability was evaluated as 9.

捺印性は、捺印インクの半導体装置表面へのヌレ性とイ
ンクの付着強度によって評価し九。
Stamp performance is evaluated based on the wettability of the marking ink to the surface of the semiconductor device and the adhesion strength of the ink.

(1)  インクのヌレ性は、インクのハジキ具合いr
肉眼によって○〜Xで判断した。○・・・ノ・ジキなし
、△・・・ハジキややあシ、X・・・ハジキあシ (2)  インクの付着強度は、トリクレンに捺印しア
フターキュアした半導体装置t5分間浸せきした後、歯
ブラシの毛が豚毛製(仲屋プラシ工業(株)製、11号
)であるブラシ?用いて手で捺印面勿一方向に5回こす
り、このサイクルケ1回として、捺印した印が一部消え
るまでくシ返すことによって求めた。表にはこのサイク
ル数r示しである。
(1) The wettability of the ink is determined by the repellency of the ink.
Judgment was made with the naked eye as ○ to X. ○...no cracks, △...repellents and feet, X...repellents (2) The adhesion strength of the ink is determined by imprinting on Triclean and after-curing the semiconductor device (t) after soaking it for 5 minutes. A brush whose bristles are made of pig hair (manufactured by Nakaya Plushi Kogyo Co., Ltd., No. 11)? The marking was determined by rubbing the stamped surface with one hand five times in one direction, and repeating this cycle once until the stamp partially disappeared. The table shows the number of cycles r.

5)  ICパッケージ運搬用テープ(以後キャリアテ
ープと略す)との密着性試験 各種組成物を用いて半尋体tトランスファー底形法にて
成形し、封止サンプルを作成し迄。
5) Adhesion test with IC package transport tape (hereinafter abbreviated as carrier tape) Various compositions were molded using the half-body t-transfer bottom method to create sealed samples.

これtギヤリアテープ(東洋化学(株)製、商品名、%
554N)の粘着部分に密着させ、密着の度@を引張シ
試験方法にて測定した。
This gear rear tape (manufactured by Toyo Kagaku Co., Ltd., product name, %
554N), and the degree of adhesion was measured using a tensile test method.

密看力は、キャリアーテープに封止サンプルに15に9
/crIL2の荷重で5秒間押しつけた時の密着力【引
張シ試験機を使用して引張り強度12(1m/分の速度
で測定し、測定値rキャリアーテーゾ粘着剤有効面積(
半導体装置との密潰面8t)で除して算出した。
The sealing force is 15 to 9 for the sample sealed on the carrier tape.
/cr Adhesion strength when pressed for 5 seconds with a load of IL2 [Tensile strength 12 (measured at a speed of 1 m/min using a tensile tester, measured value
It was calculated by dividing by the tight crushing surface (8t) with the semiconductor device.

引張り強度測定値/ 24 tm” =密着力6)金型
汚れ評価法 封止用金型tメラミン樹脂(日本カーバイト工業(株)
製、商品名工カレットESR%AB G■)で5回封止
してクリーニングしt後、各種組数物で連続50回成形
した後の金型の汚れ具合を評価し九。
Tensile strength measurement value / 24 tm” = adhesion force 6) Mold stain evaluation method Sealing mold t Melamine resin (Nippon Carbide Industries Co., Ltd.)
After sealing and cleaning the mold 5 times with Meiko Cullet ESR%AB G■ (trade name) manufactured by Meiko Co., Ltd., the degree of dirt on the mold was evaluated after molding 50 times in a row with various pieces.9.

汚れ具合は、肉眼によってO〜×で判断した。The degree of staining was judged by the naked eye as O to ×.

O・・・汚れなし、△・・・汚れややあり、×・・・汚
れあII         II  II      
   II  I+=              と
                 ミjII  II
         II         II   
      II  II守          δ 
       S        =クロ   ロ ぐ−− ll   II          11−   日 
               C一 田 ワ +1 11         ll  II     
    11ヘ  りh   ロ      クロ ク
ロの′−oへへヘ   ヘhへ■   寸−蛸ヘヘII
  II  II  II  II       II
  II  II  II      II  II 
 II  I9I71 el       cl       cso  ロ 
 0ロ クロ  ロu”+、f、tnNlj”l嘴唖 
 (Nり−N  哨−寸一一クッ 1:l       G’       91a (発明の効果) 以上の通り、本発明は特定のシリコーン変性樹脂tエポ
キシ樹脂組成物に添加し友ことにょ9、封止成形品の内
部応力の低減、耐熱衝撃性及び耐湿信頼性向上に優れ、
さらに成形時の金型汚れや成形品の捺印性やΦヤリアテ
ープとの密着性が良好で、用途として半導体等の電子部
品の封正に優れた効果r発揮するものである。
O...no stains, △...slight stains, ×...stains II II II
II I+= and MijII II
II II
II II Guardian δ
S = black log-- ll II 11- day
C Ichidawa+1 11 ll II
11Herih Ro Kuro Kuro'-ohehehehehe■ Size-Takohehe II
II II II II II II
II II II II II II
II I9I71 el cl cso lo
0ro black ro u”+, f, tnNlj”l beak
(Effects of the Invention) As described above, the present invention can be applied to a specific silicone modified resin by adding it to an epoxy resin composition, forming a sealing molding. Excellent in reducing the internal stress of the product and improving thermal shock resistance and moisture resistance reliability.
In addition, it has good properties against mold stains during molding, marking properties on molded products, and adhesion to Φ Yaria tape, and exhibits excellent effects in sealing electronic components such as semiconductors.

特許出願人 電気化学工業株式会社Patent applicant Denki Kagaku Kogyo Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)(a)フェノール樹脂又はエポキシ樹脂中に、互
いに反応できる官能基を持つ少なくとも2種類のシリコ
ーンオイルを分散剤を用いて油滴として分散させ、前記
シリコーンオイルを油滴内で架橋反応させてなるシリコ
ーン変性樹脂 (b)エポキシ樹脂 (c)フェノール樹脂および (d)無機充填剤 を含有してなることを特徴とするエポキシ樹脂組成物。
(1) (a) At least two types of silicone oils having functional groups that can react with each other are dispersed as oil droplets in a phenol resin or epoxy resin using a dispersant, and the silicone oils are subjected to a crosslinking reaction within the oil droplets. An epoxy resin composition comprising: (b) an epoxy resin; (c) a phenol resin; and (d) an inorganic filler.
JP62284199A 1987-11-12 1987-11-12 Epoxy resin composition Pending JPH01126361A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62284199A JPH01126361A (en) 1987-11-12 1987-11-12 Epoxy resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62284199A JPH01126361A (en) 1987-11-12 1987-11-12 Epoxy resin composition

Publications (1)

Publication Number Publication Date
JPH01126361A true JPH01126361A (en) 1989-05-18

Family

ID=17675446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62284199A Pending JPH01126361A (en) 1987-11-12 1987-11-12 Epoxy resin composition

Country Status (1)

Country Link
JP (1) JPH01126361A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0362844A (en) * 1989-02-27 1991-03-18 Shin Etsu Chem Co Ltd Epoxy resin composition for sealing semiconductor and semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0362844A (en) * 1989-02-27 1991-03-18 Shin Etsu Chem Co Ltd Epoxy resin composition for sealing semiconductor and semiconductor device

Similar Documents

Publication Publication Date Title
US4720515A (en) Epoxy resin composition for encapsulating semiconductor
JPH10195179A (en) Epoxy resin composition for semiconductor sealing and semiconductor device sealed therewith
JP3137314B2 (en) Liquid sealing material
JPH0450925B2 (en)
KR100781042B1 (en) Semiconductor Encapsulating Epoxy Resin Composition and Semiconductor Device
JPH01126361A (en) Epoxy resin composition
JP2641277B2 (en) Epoxy resin composition
JP3581192B2 (en) Epoxy resin composition and resin-encapsulated semiconductor device
JPS61163927A (en) Epoxy resin composition
KR100587453B1 (en) Epoxy Resin Compositions for Sealing Semiconductor and Semiconductor Devices
JP2665484B2 (en) Epoxy resin composition
JP2642966B2 (en) Epoxy resin composition
JP2006257309A (en) Epoxy resin composition for sealing semiconductor and semiconductor device
JPS61166823A (en) Resin composition for sealing
JP3013511B2 (en) Epoxy resin composition for semiconductor encapsulation
JPH09124774A (en) Resin composition for semiconductor sealing
JPH062808B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JPH05125159A (en) Epoxy resin composition, its cured product and semiconductor device
JPS63183917A (en) Epoxy resin composition
JPS61264018A (en) Epoxy resin composition
JPH08176269A (en) Epoxy resin composition for sealing
JP3226229B2 (en) Resin-sealed semiconductor device
JP2983613B2 (en) Epoxy resin composition
JPH0577689B2 (en)
JPH09176286A (en) Epoxy resin composition and resin-sealed semiconductor device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20040914

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050208