JPH01125407A - Movable plate-type wave-breaking submerged levee - Google Patents

Movable plate-type wave-breaking submerged levee

Info

Publication number
JPH01125407A
JPH01125407A JP62280462A JP28046287A JPH01125407A JP H01125407 A JPH01125407 A JP H01125407A JP 62280462 A JP62280462 A JP 62280462A JP 28046287 A JP28046287 A JP 28046287A JP H01125407 A JPH01125407 A JP H01125407A
Authority
JP
Japan
Prior art keywords
movable plate
submerged
waves
wave
damping mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62280462A
Other languages
Japanese (ja)
Other versions
JPH0560006B2 (en
Inventor
Tetsushi Kiyokawa
清川 哲志
Masahiro Tanaka
正博 田中
Takumi Oyama
巧 大山
Masakazu Mitsumata
三俣 正和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP62280462A priority Critical patent/JPH01125407A/en
Publication of JPH01125407A publication Critical patent/JPH01125407A/en
Publication of JPH0560006B2 publication Critical patent/JPH0560006B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/11Hard structures, e.g. dams, dykes or breakwaters

Landscapes

  • Revetment (AREA)

Abstract

PURPOSE:To obtain an effective wave-breaking effect by providing a vertically movable plate with changes of sea surface, a spring system to restore the plate to fixed position, and a damping mechanism to bring about the energy loss of waves for the seabed. CONSTITUTION:A flat rectangular box-shaped frame 3 with an opened upside is settled on the seabed 2, and a vertically movable rectangular plate 4 with changes of sea surface is set so as to cover the opening of the upside of the frame 3. A spring system 5 to restore the plate 4 to its fixed position and a damping mechanism 6 top bring about the energy loss of waves with the vertical movement of the plate 4 are also provided between the plate 4 and the frame 3. As the damping mechanism 6, oil damper or fluid damper consisting of the frame 3 which many water-passing holes may be cited. The water depth above the top of the submerged breakwater 1 can thus be increased and the width of the breakwater can also be reduced.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、例えば漁港、一般港、海洋に面するマリーナ
や原子力発電所等の諸設備を保護する防波堤の開口海域
に、あるいは静穏度の高い人工的な内海域を形成する海
域などに沈設されて用いられた場合に好適な新規な構造
の可動板型消波用潜堤に関するものである。
Detailed Description of the Invention "Industrial Application Field" The present invention is applicable to open areas of breakwaters that protect various facilities such as fishing ports, general ports, marinas facing the ocean, and nuclear power plants, or to The present invention relates to a movable plate-type wave-dissipating submerged levee having a novel structure suitable for use by being sunk in a sea area forming a high artificial inland sea area.

「従来の技術とその問題点」 近年、景観上の観点から人工リーフ、潜堤などの没水型
海域制御構造物が見直されている。しかし、これら従来
型の没水構造物の場合、一定の防波効果を得るには、潜
堤の天端を水面近くまで持ってくる必要があり、しかも
堤体幅も大きくする必要があるで、大断面構造物となり
、対費用効果の面からも問題があった。
``Conventional technology and its problems'' In recent years, submerged sea area control structures such as artificial reefs and submerged levees have been reconsidered from a landscape perspective. However, in the case of these conventional submerged structures, in order to obtain a certain level of breakwater effect, it is necessary to bring the top of the submerged embankment close to the water surface, and it is also necessary to increase the width of the embankment body. However, this resulted in a large cross-sectional structure, and there were also problems in terms of cost effectiveness.

ところで、一定の防波(消波)効果を得るために必要な
、海面から潜堤の天端までの水深並びに堤体幅等につい
ては、波高や波長との間に次のような相関性があること
が知られている。
By the way, regarding the water depth from the sea surface to the top of the submerged levee and the width of the levee body, which are necessary to obtain a certain wave-breaking (wave-dissipating) effect, there is the following correlation between wave height and wavelength. It is known that there is.

例えば、第15図において、潜堤Sの天端水深をR1入
射波高をHi とした場合、入射波が潜堤を越えて内側
へ侵入してくる度合を示すいわゆる透過率KTを、0.
5以下にするには、堤体幅によっても異なる (堤体幅
が大きい程よく消える)が、R/Hi<0.5〜1.5
とする必要がある。したがって、仮に5炭の波高の波を
消すには、R=2.5〜75肩、すなわち水深h−20
とすると、水深の約60〜90%までを潜堤で埋める必
要があるこ=2− とになる。そうした場合、潜堤本来の重要な機能である
天端」二の水深Rを確保する]−て大きな問題が生じる
For example, in FIG. 15, when the water depth at the top of the submerged levee S is R1 and the incident wave height is Hi, the so-called transmittance KT, which indicates the degree to which the incident wave crosses the submerged levee and invades inside, is set to 0.
To make it 5 or less, it depends on the width of the embankment (the wider the embankment, the better it disappears), but R/Hi < 0.5 to 1.5
It is necessary to do so. Therefore, in order to eliminate waves with a wave height of 5 charcoal, R = 2.5 to 75 shoulders, that is, water depth h-20
This means that it is necessary to fill approximately 60 to 90% of the water depth with submerged embankments = 2-. In such a case, a major problem arises in securing the water depth R at the top, which is an essential function of a submerged levee.

一方、堤体幅をB、入射波長を1.とした場合、B/L
>0.5とすることが必要であり、これ以下では波はほ
とんど透過してしまう。したがって、大きな波高の波(
−波長も長い)を消すには、堤体幅も大きくする必要が
ある。なお、通常の設計波は波長50〜150m程度を
基準にしている。
On the other hand, the embankment body width is B and the incident wavelength is 1. In this case, B/L
It is necessary to set the value to >0.5; if it is less than this, most of the waves will be transmitted. Therefore, waves of large wave height (
-The wavelength is also long), it is necessary to increase the width of the embankment body. Note that the standard design wave is based on a wavelength of about 50 to 150 m.

「発明の目的」 そこで、本発明は、上記したような種々の問題点を持つ
従来型の潜堤を根本的に改良し、本来的に潜堤に要求さ
れる機能、即ち、潜堤の天端」−の水深の確保と消波効
率並びに提体幅なととの関係においていずれの点も改善
でき、しかも小断面構造物となって、対費用効果の面で
も改善できろ新規な構造の可動板型消波用潜堤を提供す
ることを目的としている。
``Object of the Invention'' Therefore, the present invention fundamentally improves the conventional submerged levee which has the various problems mentioned above, and achieves the functions originally required of a submerged levee, that is, the top of the submerged levee. A new structure that can improve all aspects of securing the water depth at the end, wave dissipation efficiency, and structure width, and also improves cost effectiveness by creating a small cross-section structure. The purpose of this project is to provide a movable plate-type wave-dissipating submerged embankment.

「問題点を解決するための手段」 本発明による可動板型消波用潜堤は、水面下に位置し、
波による水面の変化に応答して上下動可能に配置された
可動板と、この可動板を定位置に戻すための復元力を与
えるばね系と、MO記記動動板上下運動に伴って波のエ
ネルギー損失を生じさせる減衰機構とを備えた構成とし
ている。
"Means for solving the problem" The movable plate type wave-dissipating submersible according to the present invention is located below the water surface,
A movable plate arranged to be able to move up and down in response to changes in the water surface due to waves, a spring system that provides a restoring force to return this movable plate to its home position, and a movable plate that moves vertically in response to changes in the water surface caused by waves. The structure includes a damping mechanism that causes an energy loss.

1作用 」 波による水面の変化、即ち、入射・散乱波等による波力
を受けた可動板は、ばね系の作用により波の周期に応じ
た上下往復運動をする。そしてその運動に伴って放射波
が可動板より発生する。その放射波は、水面に達して表
面波となるときに、入射・散乱波と位相差を持つことに
なる。そして、入射・散乱波と放射波が重合し、この結
果、透過側で入射・散乱波の峰と放射波の谷が重なって
互いに打ち消しあう。また、入射波が持っていたエネル
ギーの一部は、減衰機構のする仕事に消費され、全体と
して波のエネルギーが減少する。
1 Effect: The movable plate receives the wave force caused by changes in the water surface due to waves, i.e., incident and scattered waves, and moves up and down in accordance with the period of the waves due to the action of the spring system. Along with this movement, radiation waves are generated from the movable plate. When the radiated waves reach the water surface and become surface waves, they will have a phase difference with the incident and scattered waves. Then, the incident/scattered waves and the radiated waves overlap, and as a result, the peaks of the incident/scattered waves and the troughs of the radiated waves overlap and cancel each other out on the transmission side. Also, part of the energy of the incident wave is consumed by the work done by the attenuation mechanism, and the energy of the wave as a whole decreases.

「実施例」 まず、本発明の理解の便宜のために、本発明に至る経緯
について説明し、その後、本発明の具体的実施例の説明
に移行する。
"Examples" First, for the convenience of understanding the present invention, the circumstances leading to the present invention will be explained, and then the explanation will move on to specific embodiments of the present invention.

本発明の発明者等は、前述した潜堤の問題点を解決する
ために、既に、可撓性膜を利用した袋体による潜堤(人
工礁)(特願昭60−280790号)を発明し、これ
を提案した。この発明は、膜にすることで、大断面の構
造物が安価にできること、海洋レジャー等に対する安全
性が高いことなどに着目したもので、この水理性能の確
認や解析のために、造波水槽を用いて模型実験を行った
The inventors of the present invention have already invented a submerged reef (artificial reef) made of a bag using a flexible membrane (Japanese Patent Application No. 60-280790) in order to solve the above-mentioned problems with the submerged levee. and suggested this. This invention focuses on the fact that by using membranes, structures with large cross-sections can be made at low cost and are highly safe for marine leisure activities. A model experiment was conducted using a water tank.

ところが、第15図及び第!6図に示すように、比較の
ために行った不動(剛体)型潜堤の場合の実験ではほと
んど波が透過してしまうが(透過率KT=1)、同じ形
状で袋体のような可撓性にずろと逆に透過率が下がる場
合があるという全く予期せぬ結果を得た。しかも図から
分かるように天端水深Rと入射波高Hi との比R/ 
Hiか大きい、換言すれば相対的に天端水深Rが大きい
方か透過率が低いという従来の潜堤に関する知識からは
想像できない結果を得た。また、図による説明は省略す
るが、砕波しないのにかなりのエネルギー損失が生じて
いることもわかった。これは極めて重要な研究成果であ
り、言わば、没水率(天端水深Rと水深りとの比)が大
きくても波のエネルギーを消費させ、透過率を下げるこ
とが可能であるということを意味している。
However, Figure 15 and Figure 15! As shown in Figure 6, in the experiment conducted for comparison with an immovable (rigid body) type submerged levee, most of the waves were transmitted (transmittance KT = 1), but with the same shape but a flexible submerged levee like a bag. A completely unexpected result was obtained in that the transmittance sometimes decreased as the flexibility changed. Moreover, as can be seen from the figure, the ratio of the crest water depth R to the incident wave height Hi is R/
We obtained results that could not be imagined based on conventional knowledge regarding submerged embankments, such as Hi or large, in other words, relatively large crest water depth R or low permeability. In addition, although we will not explain the diagram, it was also found that a considerable amount of energy was lost even though the waves did not break. This is an extremely important research result, showing that even if the submersion rate (the ratio of the crest water depth R to the water depth) is large, it is possible to consume wave energy and lower the transmittance. It means.

このメカニズムを解明することができれば、より経済的
な波浪制御構造物を開発することが可能となる。図に示
す結果の他にも、膜の質量あるいは内部圧力を変えると
特性が大きく変化する等の結果も得ているが、これらの
結果を総合的に検討した結果、このメカニズムとして次
のような仮説を立てた。
If this mechanism can be elucidated, it will be possible to develop more economical wave control structures. In addition to the results shown in the figure, we have also obtained results that show that changing the mass or internal pressure of the membrane significantly changes its properties, but after comprehensively examining these results, we believe that this mechanism is as follows. I made a hypothesis.

(i)  膜構造物が一種の振動系になっており、膜の
質量あるいは内部圧力を変えることは固有周期を変える
ことに等しい。そして膜が振動することが重要で、振動
で生じるradiation wave(放射波)と入
射・散乱波との位相差により透過率が下がる。
(i) The membrane structure is a type of vibration system, and changing the mass or internal pressure of the membrane is equivalent to changing the natural period. It is important that the membrane vibrate, and the transmittance decreases due to the phase difference between the radiation waves generated by the vibrations and the incident/scattered waves.

(11)砕波しない場合の波のエネルギー損失は、振動
系として膜が持つ減衰機構(ダンパー)のする仕事によ
って生じる。
(11) Wave energy loss when waves are not broken is caused by the work done by the damping mechanism (damper) of the membrane as a vibration system.

そして、この仮説を確かめるためには、第1図に示すよ
うな単純化したモデルにより理論的に検討するのが最も
良いとの結論に達した。
In order to confirm this hypothesis, we have come to the conclusion that it is best to conduct a theoretical study using a simplified model as shown in Figure 1.

以上が本発明の研究を始めた動機であるが、実際に理論
を構築して計算してみると、」二の仮説か検証されたの
みならず、以下に述べるように、この単純化モデル自体
が極めて良好な性能を持つことが明らかとなった。そこ
でこれを可動板型消波用潜堤と名付け、本発明提案に至
った。
The above was the motivation for starting research on the present invention, but when we actually constructed a theory and performed calculations, we not only verified the second hypothesis, but also found that this simplified model itself It was revealed that it had extremely good performance. Therefore, we named this a movable plate type wave-dissipating submerged embankment and proposed the present invention.

以下、本発明の実施例を図面を参照して具体的に説明す
る。
Embodiments of the present invention will be specifically described below with reference to the drawings.

第1図は本発明の可動板型消波用潜堤を原理的に表現し
ている概念図であり、次の第2図及び第3図がその具体
的実施例を示す平面図及び縦断面図である。これら図に
おいて、全体として符号Iで示されるものが可動板型消
波用潜堤(以下単に潜堤と称する)であり、従来の潜堤
と同様、沈設すべき海域や港域の海底2に設置される。
Fig. 1 is a conceptual diagram showing the principle of the movable plate type wave-dissipating submerged embankment of the present invention, and the following Figs. 2 and 3 are a plan view and a vertical cross-section showing specific examples thereof. It is a diagram. In these figures, what is indicated by the symbol I as a whole is a movable plate type wave-dissipating submerged levee (hereinafter simply referred to as a submerged levee), and like a conventional submerged levee, it is located on the seabed 2 of the sea area or port area where it is to be submerged. will be installed.

この実施例で示ず潜堤1は、第2図及び第3図に示すよ
うに、上面が開口した偏平な矩形箱状の枠体3と、この
枠体3の上面開口部を覆う形態で水平に、かつ、枠体3
内で」1下動可能に配置された矩形板状の可動板4と、
この可動板4と枠体3との間に設けられ、前記可動板4
を定位置に戻すための復元力を与えるばね系5と、同じ
く可動板4と枠体3との間に設(づられ、前記可動板4
の」二下動を抑制するための(即ち上下動に伴って波の
エネルギー損失を生じさせる)減衰機構6とを備えた構
成とされている。
As shown in FIGS. 2 and 3, the submerged levee 1 (not shown in this embodiment) has a flat rectangular box-shaped frame 3 with an open top, and a form that covers the top opening of the frame 3. horizontally and frame body 3
a rectangular plate-shaped movable plate 4 disposed so as to be movable downward within the frame;
The movable plate 4 is provided between the movable plate 4 and the frame body 3.
A spring system 5 is provided between the movable plate 4 and the frame body 3 to provide a restoring force to return the movable plate 4 to the normal position.
The structure includes a damping mechanism 6 for suppressing the vertical movement (that is, causing wave energy loss due to the vertical movement).

前記枠体3は、海底2の定位置に安定的に設置できるよ
うに海水よりも比重が大きくかつ耐腐食性のある材料、
例えばコンクリートにより形成されており、また、前記
可動板4も、やはり耐腐食性のあるコンクリートあるい
は防錆対策の施された鋼板等により形成されている。前
記ばね系5は、この実施例ではコイルスプリングにて構
成され、図示のように四隅近くと中間部に間隔をおいて
配設されかつ、可動板4と枠体3の底板との間に介装さ
れてそれ自体が可動板4を」1下動可能に支持する構成
となっている。また、前記減衰機構6は、オイルダンパ
ーにて構成され、枠体3の底板及び可動板4を連結する
形聾で前記ばね系5の間に間隔をおいて複数個配設され
ている。
The frame 3 is made of a material that has a higher specific gravity than seawater and is corrosion resistant so that it can be stably installed at a fixed position on the seabed 2.
For example, it is made of concrete, and the movable plate 4 is also made of corrosion-resistant concrete or a steel plate treated with rust prevention measures. The spring system 5 is constituted by a coil spring in this embodiment, and is arranged at intervals near the four corners and in the middle part as shown in the figure, and is interposed between the movable plate 4 and the bottom plate of the frame body 3. The movable plate 4 itself is configured to support the movable plate 4 so as to be movable downward. Further, the damping mechanism 6 is constituted by an oil damper, has a deaf shape that connects the bottom plate of the frame body 3 and the movable plate 4, and is disposed in plurality at intervals between the spring systems 5.

可動板4の周囲には、この可動板4の周囲と枠体3の内
壁との間に形成されている間隙を密閉して枠体3内を液
密に保ち、かつ、可動板4の上下動を許容する構成の防
水膜7が設けられ、これにより枠体3の内部には空気室
8が形成されている。
Around the movable plate 4, the gap formed between the periphery of the movable plate 4 and the inner wall of the frame body 3 is sealed to keep the inside of the frame body 3 liquid-tight, and the upper and lower sides of the movable plate 4 are sealed. A waterproof membrane 7 configured to allow movement is provided, thereby forming an air chamber 8 inside the frame 3.

この防水膜7としては、図示のようにその両側部をそれ
ぞれ枠体3と可動板4とに固定し、中間部に余裕を持た
せて可動板4の上下動を許容さH゛ろ構成、あるいは防
水膜7自体を伸縮性のある材料で形成しておく構成など
が適用される。
As shown in the figure, the waterproof membrane 7 has a H-shaped structure in which both sides are fixed to the frame 3 and the movable plate 4, and a margin is provided in the middle part to allow vertical movement of the movable plate 4. Alternatively, a configuration in which the waterproof membrane 7 itself is formed of a stretchable material may be applied.

このように構成された可動板型消波用潜堤にあっては、
可動板4に入射・散乱波による波力が作用すると、可動
板4は波の周期に応じた」二下運動を行うが、可動板4
自体は等間隔をおいて配された複数のばね系5及び減衰
機構6等によって枠体3に水平に支持されているので、
その」二下運動か円滑に行なわれる。この際、ばね系5
は主として可動板4を定位置に戻すいわゆる復元力を与
える作用を発揮し、減衰機構6は可動板4の上下運動を
抑制する、即ち可動板の上下運動に負荷を与える作用を
発揮する。なおこのとき、枠体3内に存在する空気室8
には、可動板4の上下運動に基づいて内圧変化か生じる
ので、この空気室8は可動板4を支持しているばね系5
と同様の作用を発揮することになる。可動板4の上下運
動により、可動板4から放射波が発生してそれが海面に
達し、いわゆる表面波として海面」二を広が西。この表
面波、即ち放射波のうち、海面上を透過側(潜堤の内側
海域)へ広がる放射波と、潜堤上を進行してきた入射・
散乱波とは略同一方向へ進行し、かつ双方の波はそれら
の波の発生条件等から進行速度や周期等は同一となるが
、位相差はむしろ異なる場合か多いので、これにより入
射・散乱波の峰と放射波の谷とか透過側において重なる
現象が起こり、互いに打ち消しあうことになる。従って
、透過側における入射・散乱波の波高はその分、小さく
なる。一方、潜堤上へ進行してきた入射波が持ってlO
− いたエネルギーの一部は、主に可動板4を押し下げると
きに減衰機構6のする仕事によって消費され、この結果
、波のエネルギーそのものか減少することになる。この
ように可動板を備えた潜堤1は、透過側において波高を
小さくし、かつ波のエネルギーそのものをも減少(損失
)させるという作用を同時に発揮するため、その相乗効
果として極めて効果的な消波作用を備える構造となる。
In the movable plate type wave-dissipating submerged embankment configured in this way,
When wave force due to incident and scattered waves acts on the movable plate 4, the movable plate 4 performs a downward movement according to the period of the waves, but the movable plate 4
Since it is supported horizontally on the frame 3 by a plurality of spring systems 5 and damping mechanisms 6 arranged at equal intervals,
The two movements are performed smoothly. At this time, spring system 5
The damping mechanism 6 mainly exerts an effect of providing a so-called restoring force to return the movable plate 4 to a normal position, and the damping mechanism 6 exerts an effect of suppressing the vertical movement of the movable plate 4, that is, exerts a function of applying a load to the vertical movement of the movable plate. At this time, the air chamber 8 existing within the frame 3
Since internal pressure changes occur based on the vertical movement of the movable plate 4, this air chamber 8 is connected to the spring system 5 supporting the movable plate 4.
It will exhibit the same effect. Due to the vertical movement of the movable plate 4, radiation waves are generated from the movable plate 4, reach the sea surface, and spread across the sea surface to the west as so-called surface waves. Of these surface waves, or radiated waves, there are radiated waves that spread on the sea surface to the transmission side (inner sea area of the submerged levee), and incident waves that have traveled on the submerged levee.
The scattered waves and the scattered waves travel in approximately the same direction, and both waves have the same traveling speed and period due to the generation conditions of those waves, but the phase difference is often different. A phenomenon occurs where the peaks of the waves and the troughs of the radiated waves overlap on the transmission side, and they cancel each other out. Therefore, the wave heights of incident and scattered waves on the transmission side become correspondingly smaller. On the other hand, the incident wave that has progressed onto the submerged embankment has lO
- A part of the energy is mainly consumed by the work done by the damping mechanism 6 when pushing down the movable plate 4, and as a result, the wave energy itself is reduced. In this way, the submerged levee 1 equipped with a movable plate has the effect of reducing the wave height on the transmission side and also reducing the wave energy itself (loss), so as a synergistic effect, it has an extremely effective dissipation effect. The structure has wave action.

第4図及び第5図は、本発明の第2実施例を示すもので
、この実施例では、耐海水性の減衰機構(オイルダンパ
ー)6aを使用することで空気室を不要とし、かつ、枠
体3の代わりに床板I+を使用することで簡素化を図っ
たものである。このような構造にした場合、第1実施例
のいわゆる密閉式に比べて保守管理を容易に行える利点
がある。
4 and 5 show a second embodiment of the present invention. In this embodiment, an air chamber is not required by using a seawater-resistant damping mechanism (oil damper) 6a, and Simplification is achieved by using the floor plate I+ instead of the frame 3. This structure has the advantage that maintenance can be easily performed compared to the so-called closed type of the first embodiment.

第6図ないし第8図は、本発明の第3実施例を示すもの
で、この実施例では、可動板4の上下動を抑制する減衰
機構として、第1実施例のようにオイルダンパーを設け
る代イつりに、枠体3の側壁部分に複数の透水孔9を設
けて、いイつゆる流体ダンパーによる減衰機構IOを構
成したものである。
6 to 8 show a third embodiment of the present invention. In this embodiment, an oil damper is provided as a damping mechanism for suppressing the vertical movement of the movable plate 4 as in the first embodiment. Alternatively, a plurality of water permeable holes 9 are provided in the side wall portion of the frame body 3 to constitute a damping mechanism IO using a so-called fluid damper.

したがって、この潜堤の設置状態においては枠体3内は
海水で満たされ、また、可動板4の周囲と枠体3の内壁
との間の間隙も防水膜等で密閉することなくそのままの
状態に、つまり、海水が出入りできる間隙αが存在する
状態に保たれた構成とされている。
Therefore, in the installed state of this submersible, the inside of the frame 3 is filled with seawater, and the gap between the periphery of the movable plate 4 and the inner wall of the frame 3 remains as it is without being sealed with a waterproof membrane or the like. In other words, the configuration is such that a gap α is maintained through which seawater can enter and exit.

このように構成した場合、オイルダンパーの如く別途製
作して取り付ける工程と工費が不要となるだ1づでなく
、減衰機構10自体の耐久性を理論的には半永久的なも
のにすることができる他、例えば、複数ある透水孔9の
うちのいくつかを栓体(図示せず)で閉じることにより
、減衰機構10の減衰率を容易に調節することができる
When configured in this way, not only does the process and labor cost of separately manufacturing and installing an oil damper become unnecessary, but also the durability of the damping mechanism 10 itself can theoretically be made semi-permanent. In addition, for example, the damping rate of the damping mechanism 10 can be easily adjusted by closing some of the plurality of water permeable holes 9 with plugs (not shown).

(計算例による作用効果の説明) 次に、第1図の概念図、第9図及び第1O図を参照して
計算例による作用効果の裏付けについて説明する。
(Explanation of effects based on calculation examples) Next, with reference to the conceptual diagram of FIG. 1, FIG. 9, and FIG.

第9図は、R/hが01および0.9の場合、すなわち
水深のそれぞれ9割および1割まで構造物が占める場合
について、無次元ばね定数K(説明省略)を1および■
としたときの透過率KTをB / 1.の関数として表
し、比較したものである。
Figure 9 shows the dimensionless spring constants K (explanation omitted) of 1 and
When the transmittance KT is B/1. It is expressed as a function of and compared.

ここで、R−ωは不動を意味している。なお、減衰機構
(ダンパー)は0としている。
Here, R-ω means immobility. Note that the damping mechanism (damper) is set to 0.

この図から、潜堤が不動の場合よりも可動の方が透過率
が低くなることがわかる。また、R/hが0.9(破線
)の場合、不動潜堤(R−oo)ではすべてのB / 
Lに対し入射波はそのまま透過してしまうが、可動(R
=1)とすると透過率が大幅に下がり、しかもB/L<
0.5でR/h =0.1(実線)の場合よりも消波効
果が高い。
This figure shows that the transmittance is lower when the submerged embankment is movable than when it is immobile. In addition, when R/h is 0.9 (broken line), all B/
The incident wave is transmitted through L as it is, but it is movable (R
= 1), the transmittance decreases significantly, and moreover, B/L<
When R/h is 0.5, the wave-dissipating effect is higher than when R/h is 0.1 (solid line).

これは、構造物として極めて有利な性質である。This is an extremely advantageous property as a structure.

なぜなら、堤体幅が小さく、しかも堤体高が低いほうが
消波効果が高いこ七を意味しているので、経済的に有利
であるばかりでなく、船舶などの航行の障害にならない
ため、防波堤の開口海域に沈設することができ、既設の
港の静穏度改善も容易になる。
This is because the smaller the width of the breakwater body and the lower the height of the breakwater body, the higher the wave dissipation effect, which is not only economically advantageous, but also because it does not impede the navigation of ships. It can be sunk in open waters, making it easier to improve the calmness of existing ports.

次に、減衰機構を加えたらどうなるかをR/h一〇、9
、R=1の場合を例にとって示す。第10図はそのとき
のエネルギー損失KL″(−1−KT’−K R”、K
 R:反射率)を示したもので、図中のCは減衰係数(
説明省略)を表している。これかられかるように、減衰
機構の使用により最大50%の波エネルギーを消すこと
ができる。全エネルギーの50%をこのように没水率の
大きな、換言すれば海底にへばりついているような構造
物によって消すことができ、しかも第9図に示したよう
に透過率も下げることができるというのは、極めて画期
的な発明として位置付けすることができるものである。
Next, what will happen if we add a damping mechanism to R/h 10, 9?
, R=1 is shown as an example. Figure 10 shows the energy loss KL''(-1-KT'-KR'', K
R: reflectance), and C in the figure is the attenuation coefficient (
(explanation omitted). As will be seen, up to 50% of the wave energy can be extinguished through the use of damping mechanisms. It is said that 50% of the total energy can be extinguished by a structure with a high submergence rate, in other words, a structure that clings to the seabed, and it is also possible to reduce the transmittance as shown in Figure 9. This can be regarded as an extremely groundbreaking invention.

以上計算例で示したように、可動板型消波用潜堤は、従
来の潜堤ではほとんど波が透過するようなり/Lが小さ
い場合や、天端水深が深い場合でも波の透過を防ぐこと
ができる。また、減衰機構を使用すれば、砕波や渦が無
くても1基あたり最大50%のエネルギー損失を生じさ
せることができる。しかも、B/Lが小さく天端水深が
深いということは、同時に作用波力も小さいことを意味
しているので、構造物の安定に対しても有利である。ず
なわぢ、小型で経済的な低反射・低透過の没水型波浪制
御構造物を提供することかできる。
As shown in the above calculation example, the movable plate type wave-dissipating submerged levee prevents waves from penetrating even when L is small or when the water depth at the top is deep. be able to. Furthermore, if a damping mechanism is used, it is possible to generate a maximum energy loss of 50% per unit even without breaking waves or eddies. Furthermore, the fact that the B/L is small and the top water depth is deep means that the acting wave force is also small, which is advantageous for the stability of the structure. Zunawaji can provide a small, economical, low-reflection, low-transmission submerged wave control structure.

(従来型潜堤との断面比較) 没水構造物による波浪制御は、2x前後の波高の波が対
象となることが多いと考えられる。第13図は、水深h
= 201!、入射波高Hi=2i、入射波長L=10
0πとした場合に、透過率を0.5 以下に押さえるの
に必要な断面を従来型の潜堤と可動板型潜堤とで比較し
たものである。ただし、これらの諸元は、従来型潜堤の
場合第14図(a)、(b)、可動板型潜堤の場合第9
図より求めている。図から明らかなように、同じ水理性
能を得るのに必要な断面は、可動板型消波用潜堤の方が
圧倒的に小さい。
(Cross-sectional comparison with a conventional submerged levee) Wave control using submerged structures is considered to often target waves with a wave height of around 2x. Figure 13 shows water depth h
= 201! , incident wave height Hi=2i, incident wavelength L=10
The cross section required to keep the transmittance below 0.5 when 0π is compared between a conventional submerged embankment and a movable plate type submerged embankment. However, these specifications are as shown in Figures 14 (a) and (b) for a conventional submerged embankment, and as shown in Figure 9 for a movable plate type submerged embankment.
I'm looking for it from the diagram. As is clear from the figure, the cross section required to obtain the same hydraulic performance is overwhelmingly smaller for the movable plate type wave-dissipating submerged levee.

なお、実施例においては、可動板型消波用潜堤を単独で
沈設した場合の構成並びにその水理性能などについて説
明したが、例えばこの潜堤を複数個並べた構成、あるい
は段差を持たせて並へた構成、さらには一つの潜堤が複
数個の可動板を備えた構成など、沈設すべき海域の状況
や目標とする透過率等との関係において適宜展開できる
ことは勿論である。なお、この場合に特記すべきことは
、可動板を複数個とすることによって単独の場合最大5
0%であったエネルギー損失を第1+図に示す如く幅広
いB/Lの範囲にわたってそれ以上とすることができる
ことである。またそのとき第12図に示す如く透過率K
Tも大きく下がり、単独の場合よりもさらに防波効果の
高い潜堤を構築することが可能である。
In addition, in the examples, the configuration and hydraulic performance of a single movable plate-type wave-dissipating submerged levee were explained. Of course, it is possible to develop the structure as appropriate depending on the situation of the sea area where the submerged vessel is to be submerged, the target transmittance, etc., such as a structure in which the submerged vessel is parallel to the ground, or even a structure in which one submerged levee is provided with a plurality of movable plates. What should be noted in this case is that by using multiple movable plates, a maximum of 5 movable plates can be used individually.
The energy loss, which was 0%, can be increased over a wide range of B/L as shown in Figure 1+. At that time, as shown in Fig. 12, the transmittance K
T is also significantly lowered, making it possible to construct a submerged embankment with even higher breakwater effects than a single submerged embankment.

また、ばね系や減衰機構なども実施例に限定されること
なく、これらと基本的に同様の機能を発揮するものであ
れば、他の構成のものを採用しても良いことは言うまで
もない。また、実施例では、海域制御用の潜堤として説
明しているが、必要とあらば、例えば波浪対策の必要な
湖水域などにも適用できることは勿論である。
Furthermore, it goes without saying that the spring system, damping mechanism, etc. are not limited to the embodiments, and other configurations may be employed as long as they perform basically the same functions as these. Furthermore, in the embodiment, the present invention is described as a submerged levee for sea area control, but if necessary, it is of course applicable to, for example, lake areas where measures against waves are required.

「発明の効果」 以上詳述したように、本発明による可動板型消波用潜堤
は、水面下に位置し、波による水面の変化に応答して上
下動可能に配置された可動板と、この可動板を定位置に
戻すための復元力を与えろばね系と、前記可動板の上下
運動に伴って波のエネルギー損失を生じさせる減衰機構
とを備えた構成であるから、波力を受けて上下運動をす
る可動板が放射波を発生して水面上に広がる表面波を造
り、これが透過側において入射・散乱波等と重合し互い
に打ち消しあう現象を発生させて波高を小さくする作用
効果を発揮し、さらに、入射波が持っているエネルギー
の一部を減衰機構が消費して、波のエネルギーそのもの
を減少させる作用効果を発揮する。この結果、波の透過
率を著しく減少させ得るという、極めて効率的な消波効
果を持たせることができる。しかも、可動板の存在によ
り、潜堤の天端上の水深が大きくかつ堤体幅が小さくて
も大きな消波効果を発揮するので、潜堤の天端」二の水
深を深くとることができ、したがって、特に船舶の往来
する防波堤の開口海域等に沈設して用いた場合に好適な
ものとなり、さらに、小断面構造となるので対費用効果
の面からも改善できる一17= など、種々の優れた効果を奏する。
"Effects of the Invention" As detailed above, the movable plate type wave-dissipating submerged embankment according to the present invention has a movable plate located under the water surface and arranged to be movable up and down in response to changes in the water surface caused by waves. The configuration includes a spring system that provides a restoring force to return the movable plate to its home position, and a damping mechanism that causes wave energy loss as the movable plate moves up and down. A movable plate that moves up and down generates radiated waves, creating surface waves that spread on the water surface, which combine with incident and scattered waves on the transmission side and cancel each other out, resulting in the effect of reducing the wave height. Furthermore, the attenuation mechanism consumes a part of the energy of the incident wave, and exhibits the effect of reducing the energy of the wave itself. As a result, it is possible to provide an extremely efficient wave-dissipating effect that can significantly reduce wave transmittance. Furthermore, due to the presence of the movable plate, a large wave-dissipating effect can be achieved even if the water depth at the top of the submerged levee is large and the dam body width is small, so the water depth at the top of the submerged levee can be made deep. Therefore, it is particularly suitable for use when it is submerged in the open sea areas of breakwaters where ships come and go, and furthermore, it has a small cross-sectional structure, so it can be improved in terms of cost effectiveness. It has excellent effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第14図(a)、(b)は本発明の詳細な
説明するために示す図であり、第1図は可動板型消波用
潜堤の概念図、第2図及び第3図は本発明の第1実施例
を示す平面図及び縦断面図、第4図及び第5図は本発明
の第2実施例を示す平面図及び縦断面図、第6図、第7
図及び第8図は本発明の第3実施例を示す平面図、縦断
面図及び側面図、第9図は潜堤が可動と不動の場合の透
過率の比較図、第1O図は減衰機構による波のエネルギ
ー損失を示す曲線図、第11図は潜堤を複数個並べた場
合の波のエネルギー損失を示す曲線図、第12図は同じ
く潜堤を複数個並べた場合の波の透過率と反射率を示す
曲線図、第13図は透過率を085以下にするのに必要
な潜堤断面の比較図、第14図(a)、(b)は潜堤に
よる透過率を示すための側面図及び曲線図、第15図及
び第16図は本発明のきっかけとなった模型実験の結果
を説明するために示したもので、第15図はモデル図、
第16図は第15図に示す模式及び剛潜堤の透過率に関
する実験値を示す図である。 1・・・可動板型消波用潜堤、4 ・ 可動板、5・・
 ・ばね系、6.6a、10・ 減衰機構、7 ・・・
防水膜、9・・・・・透水孔、11・・・・床板。
Figures 1 to 14 (a) and (b) are diagrams shown to explain the present invention in detail. 3 is a plan view and a longitudinal sectional view showing a first embodiment of the present invention, FIGS. 4 and 5 are a plan view and a longitudinal sectional view showing a second embodiment of the invention, and FIGS.
8 and 8 are a plan view, a vertical sectional view, and a side view showing the third embodiment of the present invention, FIG. 9 is a comparison diagram of transmittance when the submerged embankment is movable and immobile, and FIG. 1O is a damping mechanism. Figure 11 is a curve diagram showing wave energy loss when multiple submerged levees are lined up, and Figure 12 is a curve diagram showing wave energy loss when multiple submerged levees are lined up. Figure 13 is a comparison diagram of the submerged embankment cross section required to reduce the transmittance to 085 or less, and Figures 14 (a) and (b) are curve diagrams showing the transmittance due to the submerged embankment. The side view, curve diagram, and Figures 15 and 16 are shown to explain the results of the model experiment that led to the present invention. Figure 15 is a model diagram,
FIG. 16 is a diagram showing the model shown in FIG. 15 and experimental values regarding the transmittance of the rigid submerged embankment. 1... Movable plate type submerged wave dissipating levee, 4 - Movable plate, 5...
・Spring system, 6.6a, 10・ Damping mechanism, 7...
Waterproof membrane, 9...water permeable hole, 11...floorboard.

Claims (1)

【特許請求の範囲】[Claims]  水面下に位置し、波による水面の変化に応答して上下
動可能に配置された可動板と、この可動板を定位置に戻
すための復元力を与えるばね系と、前記可動板の上下運
動に伴って波のエネルギー損失を生じさせる減衰機構と
を備えた可動板型消波用潜堤。
A movable plate located below the water surface and arranged to be movable up and down in response to changes in the water surface due to waves, a spring system that provides a restoring force to return the movable plate to a normal position, and a vertical movement of the movable plate. A movable plate-type wave-dissipating submersible equipped with a damping mechanism that causes wave energy loss.
JP62280462A 1987-11-06 1987-11-06 Movable plate-type wave-breaking submerged levee Granted JPH01125407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62280462A JPH01125407A (en) 1987-11-06 1987-11-06 Movable plate-type wave-breaking submerged levee

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62280462A JPH01125407A (en) 1987-11-06 1987-11-06 Movable plate-type wave-breaking submerged levee

Publications (2)

Publication Number Publication Date
JPH01125407A true JPH01125407A (en) 1989-05-17
JPH0560006B2 JPH0560006B2 (en) 1993-09-01

Family

ID=17625401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62280462A Granted JPH01125407A (en) 1987-11-06 1987-11-06 Movable plate-type wave-breaking submerged levee

Country Status (1)

Country Link
JP (1) JPH01125407A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995008060A1 (en) * 1993-09-15 1995-03-23 Margittai Thomas B Submerged wave energy pump
ES2145662A1 (en) * 1996-12-13 2000-07-01 Univ Catalunya Politecnica One use for a physical system located within a liquid
WO2009150267A1 (en) * 2008-06-09 2009-12-17 Bendito Vallori Sebatian Enriq Underwater system for converting energy from water

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995008060A1 (en) * 1993-09-15 1995-03-23 Margittai Thomas B Submerged wave energy pump
US5473892A (en) * 1993-09-15 1995-12-12 Margittai; Thomas B. Apparatus for generating high pressure fluid in response to water weight changes caused by waves
ES2145662A1 (en) * 1996-12-13 2000-07-01 Univ Catalunya Politecnica One use for a physical system located within a liquid
WO2009150267A1 (en) * 2008-06-09 2009-12-17 Bendito Vallori Sebatian Enriq Underwater system for converting energy from water
ES2354799A1 (en) * 2008-06-09 2011-03-18 Sebastian E. Bendito Vallori Underwater system for converting energy from water

Also Published As

Publication number Publication date
JPH0560006B2 (en) 1993-09-01

Similar Documents

Publication Publication Date Title
JP4070236B2 (en) Wave attenuation device for floating structures
KR100542331B1 (en) Floating breakwater with submerged horizontal plate
JP7391431B1 (en) Float-type wave-dissipating device and wave-dissipating bank
JPH01125407A (en) Movable plate-type wave-breaking submerged levee
KR102025654B1 (en) Submerged breakwater type fish reef
JPH0699890B2 (en) Method for damping ocean waves and apparatus therefor
KR200388821Y1 (en) The concave-shaped tetrapod for reduction of wave-force
JP2006193981A (en) Littoral transport control structure
JPS5869909A (en) Breakwater
JPH03129005A (en) Lattice type floating wave suppressing bank incorporating wave power generation
KR20210141134A (en) Installation technology of breakwater dispersing wave energy
JPH06212611A (en) Breakwater
JP4370375B2 (en) High wave breakwater breakwater
JP2845094B2 (en) Breakwater block
JPS62117905A (en) Sea water-crossed breakwater
JP2639577B2 (en) Wave absorber
KR100764915B1 (en) Floating breakwater of low centroid comprising extending pannel
JP4370374B2 (en) Seawater exchange type breakwater
JP2000154518A (en) Reflected wave reducing structure having different draft type double curtain wall
KR100892375B1 (en) Built-up-type revetment block
JP3887791B2 (en) Seawater exchange method and equipment in harbor
JP4229441B2 (en) Artificial leaf with adjustable buoyancy
JP2000319840A (en) Sea water exchange type breakwater responding to fluctuation in tidal level
JPH0529212Y2 (en)
JPH04289310A (en) Wave dissipation structure