JP4370374B2 - Seawater exchange type breakwater - Google Patents

Seawater exchange type breakwater Download PDF

Info

Publication number
JP4370374B2
JP4370374B2 JP2003006227A JP2003006227A JP4370374B2 JP 4370374 B2 JP4370374 B2 JP 4370374B2 JP 2003006227 A JP2003006227 A JP 2003006227A JP 2003006227 A JP2003006227 A JP 2003006227A JP 4370374 B2 JP4370374 B2 JP 4370374B2
Authority
JP
Japan
Prior art keywords
curtain wall
overflow
rear curtain
wave
front curtain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003006227A
Other languages
Japanese (ja)
Other versions
JP2004218257A (en
Inventor
孝幸 中村
哲巌 中山
徹 河野
嘉満 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYOKUTO KOWA CORP.
Hitachi Zosen Corp
JFE Engineering Corp
Penta Ocean Construction Co Ltd
Fisheries Research Agency
Sekisui Kasei Co Ltd
Original Assignee
KYOKUTO KOWA CORP.
Hitachi Zosen Corp
JFE Engineering Corp
Penta Ocean Construction Co Ltd
Fisheries Research Agency
Sekisui Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYOKUTO KOWA CORP., Hitachi Zosen Corp, JFE Engineering Corp, Penta Ocean Construction Co Ltd, Fisheries Research Agency, Sekisui Kasei Co Ltd filed Critical KYOKUTO KOWA CORP.
Priority to JP2003006227A priority Critical patent/JP4370374B2/en
Publication of JP2004218257A publication Critical patent/JP2004218257A/en
Application granted granted Critical
Publication of JP4370374B2 publication Critical patent/JP4370374B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Revetment (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、長周期波が到来する海域における海水交換型消波堤に係り、とくに、2重カーテン壁による低反射・低透過構造の海水交換型防波堤に関するものである。
【0002】
【従来の技術】
一般に港湾は、厳しい波浪環境下にある場合が多く、外郭施設の整備より、船舶の接岸や荷役業務に対して十分に安全なように港湾波浪の静穏化が求められる。しかし、湾内静穏度を求めるあまり、港内外の海水交流が抑止され、港湾域が閉鎖性海域になりがちであり、湾内に海水が入らず、港内水の湾内の海水が汚れ、水質悪化が問題となっている。
【0003】
その対策として、古くから透過性防波堤の適用や海水交換型防波堤の開発も進められてきている。従来、海水交換型防波堤としては、▲1▼堤体の一部に透水孔を設け、潮流や波浪流等の流れの疎通をよくするものや、▲2▼さらに越流工や弁などを設けて通水孔内の流向を制御するものなど、▲3▼また別途に潜堤を設けるものなどが知られている。
【0004】
前記の何れもできるだけ防波・消波機能を維持しながら、通水あるいは海水交換機能を持たせるような工夫がなされているが、波の遮蔽効果や反射波低減効果が充分でないものや、構造が複雑すぎる例などもみられる。
【0005】
前記の既存技術を改良するものとして、本出願人に係る反射波低減構造物が提案されている(特許文献1)。この先行技術は、沖側が傾斜型の前面カーテン壁と、陸側が傾斜型の後面カーテン壁とを間隔をおいて配置するようにした異吃水式二重カーテン壁を備えた反射波低減構造物において、沖側の前面カーテン壁の吃水を陸側の後面カーテン壁の吃水よりも浅くするものである。
【0006】
【特許文献1】
特開2000−154518号公報
【0007】
【発明が解決しようとする課題】
前記の従来技術は、港湾の防波構造物として、沖側の前面カーテン壁の吃水を陸側の後面カーテン壁の吃水よりも浅く設定することにより、反射波を効果的に低減させることができるというものである。本発明は、▲1▼防波施設としての本来の機能である来襲波の遮断および反射波の低減などをできるだけ維持したうえ、▲2▼海水交換をより有効に行える構造とすることを目指すが、前記▲1▼と▲2▼は両立が難しい関係にあり、しかも従来技術ではこの問題解決について殆ど関心が払われていなかった。さらに消波時の静穏化および構造の簡易化の点でも改良すべき点が残されていた。
【0008】
すなわち、前記の異吃水2重カーテン防波堤で通水機能を高める(海水交換)ためには、後面カーテン壁下部の通水開口長を広くする方法が一般にはとられる。しかし、その場合の透過波は大きくなり、港湾の静穏度が悪くなるという問題があった。
【0009】
本発明者は、港湾域における海水交換を促進する目的から海水交換型防波堤を目指し、特に、防波施設としての機能である来襲波の遮断および反射波の低減などをなるだけ維持して、しかも海水交換を有効かつ静穏に行える構造体について研究した。
【0010】
本発明は、前記の研究結果に基づく提案に係り、本来の防波施設としての機能である来襲波の遮断および反射波などを低減でき、加えて海水交換が有効かつ静穏に行える海水交換型防波堤を提案するものである。
【0011】
【課題を解決するための手段】
前記の課題を解決するため、本発明は次のように構成する。
【0012】
第1の発明は、海側の前面カーテン壁と陸側の後面カーテン壁を所定の間隔をあけて海底に設置する越流式の海水交換型消波堤において、吃水下端部を有する前面カーテン壁の後部に間隔をあけて後面カーテン壁を設け、前記後面カーテン壁の天端に越流部を設け、後面カーテン壁の下端部を海底部またはコンクリート製底版に接して設置すると共に、前記後面カーテン壁の越流部を前面カーテン壁の吃水下端部よりも高レベル位置とし、前記前面カーテン壁の天端を後面カーテン壁の天端よりも突出させ、前面カーテン壁の吃水を後面カーテン壁の吃水よりも浅くして、前面カーテン壁と後面カーテン壁との間に遊水室を形成し、その遊水室内のピストンモード波浪共振を利用して越流させる前記越流部を設けるようにしたことを特徴とする。
【0014】
の発明は、第の発明において、後面カーテン壁のさらに後側に所定の間隔をあけて、かつ前面カーテン壁よりも吃水が浅くなるようにして、越流部背後カーテン壁を設けたことを特徴とする。
【0015】
の発明は、第1または第2の発明において、前面カーテン壁と後面カーテン壁の間に、前面カーテン壁の吃水下端部よりも深い吃水下端部を有する中間部カーテン壁を設けたことを特徴とする。
【0016】
の発明は、第1ないし第の発明において、前面カーテン壁が、全面閉鎖型の壁又は横形ブラインド状に隙間を持って配列された複数の傾斜板を備えた壁であることを特徴とする。
【0017】
の発明は、第1ないし第の発明において、前面カーテン壁と後面カーテン壁のうち、前面カーテンが垂直型又は、下部が前方に迫り出した傾斜型であり、後面カーテンが垂直型又は、下部が後方に迫り出した傾斜型の何れかであることを特徴とする。
【0018】
以下、本発明をさらに詳細に説明する。
【0019】
本発明は、潮流や波浪流等の流れの通水機能を維持するための越流型堤体の実現を目的とするもので、図1は、その基本思想の第1例を説明するための模式図として、異吃水2重カーテン式構造の海水交換型消波堤を示す図である。図2は、同じく、本発明の基本思想の第2例を説明するための模式図として、図1の後面カーテン壁の後方にさらに越流部背後カーテン壁を設けた例を示す図である。図3、図4は、それぞれ図1、図2をより具体化して示す具体的模式説明図である。図5は、本発明の基本思想の第3例を説明するための具体的模式説明図である。また、図6〜図11は、図1に示す海水交換型消波堤を用いた各種実験のデータを示すグラフである。
【0020】
本発明に係る越流型堤体の海水交換型消波堤1は、異吃水2重カーテン式構造とし、海側(イ)に配置する吃水下端部2aを有する前面カーテン壁2と、陸側(ロ)に配置し、天端に越流部3aを有する後面カーテン壁3を所定の間隔をあけてあり、前後のカーテン壁2、3の間に遊水室4を形成し、遊水室4内のピストンモード波浪共振を利用して越流部3aからの越流量を増加させ、海水交換を進める形式の堤体である。
【0021】
この海水交換型消波堤1において、通水機能を上げるために前面カーテン壁2の吃水を浅くし、海底部8に立設する後面カーテン壁3の高さを低くするとき透過波の増大が懸念されるが、ここでは、図中に示す前面カーテン壁2の静水面10から吃水下端部2aまでの深さd1を所定深さに確保し、かつ後面カーテン壁3の天端に越流部(越波部)3aを設けて、これによる透過波の低減効率を検討した。この場合、遊水室4内のピストンモード波浪共振による越流量の増大のため、後面カーテン壁3の天端に設ける越流部3aの高さは、静水面10と略同一または、静水面10より少し突出しているか、又は水中に没するように設ける。このようにして本発明では、後面カーテン壁3の天端に越流工を設け、越流工の越波による海水交換を期待する構造体を提案するものである
【0022】
図2の基本思想の第2例にあっては、越流部3aからの越流に伴う透過波の増大を抑制するため、後面カーテン壁3のさらに後側に所定の間隔をあけて、吃水下端部5aを有する越流部背後カーテン壁5を設けてある。越流部背後カーテン壁5の吃水下端部5aは、前面カーテン壁2の吃水下端部2aよりも浅くなるように設け、それにより内港からの作用波に対する反射波低減工としても作用するようにしてある。なお、図3、図4には、それぞれ図1、図2の海水交換型消波堤1を、任意の支持手段により海底地盤に設置の捨石工6に打設のコンクリート底版12(図1、図2の海底部8に相当する)に構築した例が示されている。
【0023】
同じく図5には、本発明の基本思想の第3例として、図3の構成に加えて、前面カーテン壁2と後面カーテン壁3の間に吃水下端部7aを有する中間部カーテン壁7を設けた例が示されている。中間部カーテン壁7の吃水下端部7aは、前面カーテン壁2の吃水下端部2aよりも深く、越流部背後カーテン壁5の吃水下端部5aよりも浅く設けている。
【0024】
図1の海水交換型消波堤1は、潮流や波浪流等の流れの通水機能を期待する越流型堤体であって、海側(イ)から波となって押し寄せる海水は前面カーテン壁2の吃水下端部2aと海底部8との間に形成される遊水室開口部9を通って、該前面カーテン壁2と後面カーテン壁3の間に形成される遊水室4内に入り、この遊水室4内で所定周期の波は減衰されると共に、遊水室4内でピストンモードの波浪共振が発生し、それにより波の一部は後面カーテン壁3の天端の越流部(越波部)3aを超えて陸側(ロ)に越流する。また、越流部背後カーテン壁5を設けた図2の例では、越流部3aを超えて陸側(ロ)に越流する透過波は、この越流部背後カーテン壁5により一層減衰されることになる。
【0025】
従来公知の異吃水2重壁構造の海水交換型消波堤では、遊水室のピストンモードの波浪は後面カーテン壁によって遮蔽され、反射波となって前方に押し返されて減衰されるが、後面カーテン壁の下部が透過型で波が透過しやすいことや振動流である波動運動に対して効率的に一方向平均流を発生できないなどの欠点が見られる。
【0026】
このように、港湾内の水をよどませないための潮流や波浪流等の流れの通水機能を確保することと、消波とは両立が難しい問題があった。然るに、本発明の異吃水2重壁構造の海水交換型消波堤では、後面カーテン壁の天端に越流部3aを設けることで、越波現象という確実な方法による通水機能の確保と消波とを同時に解決でき、しかも静穏に消波できることが実験結果からも確認された。
【0027】
以下、前記構造に基づく実験結果を説明する。
【0028】
実験装置および実験方法
[模式堤体]
実験用模型では、潮流や波浪流等の流れの通水機能を期待する越流型の堤体において、海水交換をよくするため前面カーテン壁2の吃水下端部2aの深さを浅くして遊水室開口部9の大きさを確保し、かつ、遊水室4によってピストンモードの波浪共振を派生させ、それにより越流量が増大されることを利用し、後面カーテン壁3の天端の越流部3aを波が越流できるようにしている。これにより通水機能を確保し、なおかつ長周期波の透過波と反射波の低減効果も有効に低減できるとことが、以下に説明する模型実験によって実証された。
【0029】
すなわち、図1に示す堤体1を模型縮尺が1/15程度の大きさに作成した。これらは何れも前面カーテン壁2と後面カーテン壁3の2枚で構成し、遊水室4内でのピストンモード波浪共振による前後壁の下端部での渦流れの増大効果により反射波を低減する機構を採用している。前記前面カーテン壁2と後面カーテン壁3は両側に設けた側板(図示省略)で支持する構造としており、堤体1ユニットの長さは50cmである。水中に、水槽幅(1m)にほぼ等しくなるように2基のユニットを直列に配置した。
【0030】
この実験においても、潮流や波浪流等の流れの通水機能を維持するため越流型堤体とし、この場合、通水機能を上げるために、前面カーテン壁2の吃水を浅くし、後面カーテン壁3の高さを低くするとき透過波の増大が懸念される点に関し、図中に示す前面カーテン壁2の吃水下端部2aの深さを所定深さに確保し、かつ後面カーテン壁3の天端に越流部3aを設けて、これによる透過波の低減効率を検討した。
【0031】
図1の越流型堤体において、越流部3aよりの越波量を堤体1ユニット分について、有効波数の5波〜10波分について越流弁を用いて測定した。こうして静穏かつ海水交換を有効に行えることを期待する本発明における、2重式カーテン構造で特徴的な遊水室内のピストンモード波浪共振による越流量の増大がどの程度期待できるかについて検討した。
【0032】
図1の堤体では、越流部3aの静水面から天端までの高さhcの影響を検討するため、高さhcを−5cmから+4cmの範囲内で4種類に変化させた。ただし、越流量の測定実験では、天端が水面下となる場合には、測定が困難であるためhc=0〜+4cmの範囲内の3種類とした。
【0033】
実験では、計5〜8本の容量式波高計を用いて、各堤体の反射率Crと透過率Ctおよび遊水室内外の水面変動等を測定した。このとき反射率は、入・反射波の分離推定法を用いて求めた。また、図1の越流型堤体では、越流部よりの越波量を堤体1ユニット分について、有効波数の5波〜10波分について越流弁を用いて測定した。
【0034】
用いた波条件は、ピストンモードの波浪共振条件を考慮して、周期Tが、0.9〜2.0sの8種類程度、入射波高Hは、5cm、10cmの2種類とした。
【0035】
[越流型堤体の越流量と波浪制御効果]
(1)越流量
図1、図2に示す越流型堤体では、越流量増大のため遊水室4内のピストンモードの波浪共振を利用する。図6には、波周期に関する無次元量として遊水室幅Bと波長Lとの比を用い、かつ後面カーテン壁3の天端高さ(越波部)を充分高くして、越流がない状態での遊水室4内の空間平均波高HcのB/Lによる変化を実験結果と算定結果の両者について示す。なお、両結果において、対象とした周期条件の範囲では、遊水室4内の波高の空間変動は殆ど見られず、ピストンモードに近い状況にあったことを確認している。
【0036】
図6に見られるように、入射波高で無次元化した遊水室4内の波高は、B/L>0.12の条件では、入射波高を上回る大きさになり、後述する反射波の低減効果の著しいB/L<0.1の長周期に対しては増幅割合も比較的大きくなることが分る。実験結果は、算定結果よりも全般的に低く、実在流体場では、波浪共振点付近でより大きな逸散を生じているためと推定される。
【0037】
図7は、図1に示す堤体1で後面カーテン壁3の天端高(越波部)3aを静水面位置(hc=0cm)としたときの越流量を示す。ここで、越流量としては、堤体1の単位幅当たりで1波当たりの量(=Q)としてあり、これを行進波の半周期当たりの流体移動量で無次元化してある。図中には、前記した遊水室4内の波高変動の算定結果と次の越流公式とを組み合わせた越流量の算定結果についても併せて示してある。ここでは、越流公式として一般的に知られている次式を用いた。
【0038】
【数1】

Figure 0004370374
ここに、q:単位幅、単位時間当たりの越流量、Cd:無次元流量係数、g:重力加速度、hw:堰上端(後面カーテン壁の天端(越流部))の水頭高さである。
【0039】
越流型堤体において、hwは時間的に変動することから、遊水室4内の水位変動が正弦的に変化するものと仮定して、遊水室4内の後面カーテン壁3より上側の水位をhwとして適用すると、波の1周期当たりの越流量は次式で求められる。
【0040】
【数2】
Figure 0004370374
ここに、Δt:遊水室内の水面が背後カーテン壁の天端(越流部)の上にある時間、ω:角振動数(=2π/T)である。算定でCdには、水底からの天端高さの影響を考慮して0.82を用いた。
【0041】
図7に見られるように、無次元越流量は、図6に示す遊水室4内の波浪共振度合いに対応して増加する傾向が認められ、最大で進行波としての水塊移動量の2割程度になることが分る。そして、算定結果は、概略的には実験結果の変動傾向と一致するものの、定量的には共振度合いの予測が充分でないため、高めの予測になる傾向が強い。
【0042】
図8は、越流量に及ぼす後面カーテン壁3の天端高さhcの影響について検討したもので、前記の結果に加えてhc=3cm、4cmのときの結果も合わせ示してある。この図8より、越流量は、当然のことながら後面カーテン壁3の天端(越流部3a)が静水面に一致するとき最も大きく、天端を高くすると減少する傾向にある。但し、hc=3cm、4cmのときの越流量にはそれほど有意な差は見られず、越流量はある程度の突出高があるときには天端高さにそれほど鋭敏に影響されないと判断される。
【0043】
(2)波浪制御効果
図9、図10は、図1に示す越流型堤体1で後面カーテン壁3の天端を静水面に一致させたとき(hc=0cm)、および後面カーテン壁3の天端をhc=−5cmとしたときの反射率Crと透過率CtのB/Lよる変化を示す。これらの図中には、減衰波理論による算定結果についても示すが、線形理論であるためhc=5cmの条件では越流部3aよりの透過波の影響は考慮できない。
【0044】
図9より、反射率の実験結果は、越流効果を無視した算定結果とは概略的に一致している。そして、hc=0cmの条件では、図7に示す越流量が比較的大きくなるB/Lの条件下でも算定結果との一致がよいことから、越流が生じることによる反射波の低減への影響は殆ど無いといえる。
【0045】
しかし、hc=−5cmの条件下では、実験、算定結果の両者共に、hc=0cmの結果に比較して反射率の絶対値は増加する傾向が見られ、後面カーテン壁3の天端を静水面とすることの影響は大きい。hc=0cmのときは、図7と図9との比較から、越流量が大きくなる条件は反射率が比較的小さくなる条件にほぼ一致しており、反射波を制御して越流量を増大させることが可能になる。
【0046】
一方、図10に示す透過率は、越流量の増大および後面カーテン壁3の天端の低下に伴ってやはり増加する傾向にあり、hc=0cmの場合でも透過率Ct=0.3程度と有意な大きさになる。特に、後面カーテン壁3の天端を静水面下に設定する影響は大きい。
【0047】
図11は、越流を許すことによる透過波の増大抑制を目的として、図2に示すように堤体の港内側(背後側)にさらに越流部背後カーテン壁5を設けたときの透過率Ctについて示す。図中には、hc=0cm、−5cmの両者の結果について示す。図10の結果との比較から、港内側に越流部背後カーテン壁5を設けると、透過率は全体的に低下する傾向が見られる。但し、hc=−5cmのときには、やはり透過率は比較的高いままであり、後面カーテン壁3の天端(越流部3a)を静水面下に設定する影響は大きいといえる。
【0048】
前述のように前面カーテン壁2と後面カーテン壁3との構成で、後面カーテン壁3の天端高さ(越流部3a)を静水面10とすると、海水交換に有効な越流量が期待でき、反射波の低減も顕著である。なお、透過波を低減するためには、湾内側にもう1枚カーテンを取り付けるのがよく、その例として、図5には、前面カーテン壁2と後面カーテン壁3の間に中間部カーテン壁7が設けられた例が示されている。この中間部カーテン壁7の下端部の吃水下端部7aは、前面カーテン壁2の吃水下端部2aよりも深く、越流部背後カーテン壁5の吃水下端部5aよりも浅く設けている。つまり、前カーテンを2重にした場合、吃水の違う2枚の垂水版によって波高低減が効果的な周期が2ケ所となる。よって、幅広い周期について、同時に干満差にも効果的となる。
【0049】
[実験のまとめ]
実験から上部越流型防波堤は、遊水室内でのピストンモード波浪運動の増幅度に比例して越流量が増大する傾向が見られる。後面カーテン壁の天端高さを静水面位置程度に設定すると、その増幅度が大きな比較的長周期の条件下では海水交換に有効な越流量が期待できる。このとき、原理的に反射波の低減効果も顕著で波を制御して海水交換が可能であることが、模型実験によって立証された。
【0050】
【発明の実施の形態】
以下、本発明の実施形態を図12〜図15を参照して説明する。
【0051】
図12は、実施形態1に係る越流型でかつ前面垂直型消波堤の斜視図、図13は、図12の部分正面図、図14(a)は、図12の側面図、図14(b)は、図14(a)の支柱と下部構体を省略して示す側面原理説明図、 図15(a)は、実施形態2に係る越流型でかつ前面垂直型消波堤の斜視図、図15(b)は、図15(a)の支柱と下部構体を省略して示す側面原理説明図である。
【0052】
図12〜図14の実施形態1を説明する。この実施形態1は、図2の基本例2の具体的構造を示し、海底部8に構築した捨石工6上にコンクリート製底版12が設置され、このコンクリート製底版12上には横方向に所定の間隔をあけて、前支柱13、後支柱14、背後支柱15が前後3列に設置される。各支柱13、14、15はコンクリート充填の角鋼管柱その他各種の柱材を使用できる。
【0053】
前支柱13には吃水下端部2aを有する前面カーテン壁2が垂直に取り付けられる。この前面カーテン壁2の後方において、後支柱14には天端に越流部(越波波部)3aを有数する後面カーテン壁3が垂直に取り付けられる。後面カーテン壁3の下端部は、コンクリート製底版12上に接して設置され、また、越流部(越波波部)3aの高さ位置は、前面カーテン壁2の吃水下端部2aよりも高い位置に設けられている。
【0054】
後面カーテン壁3の後方に所定の間隔をあけて設けられている背後支柱15には、越流部背後カーテン壁5が取り付けられている。越流部背後カーテン壁5の吃水下端部5aは、前面カーテン壁2の吃水下端部2aよりも浅くなるように設けられている。
【0055】
前面カーテン壁2と後面カーテン壁3と越流部背後カーテン壁5とは、横方向に所定幅の壁板ブロックに設けられていて、各壁板ブロックの両側部位置にそれぞれ前支柱13、後支柱14、背後支柱15が固定されたものが1ユニットをなしており、この1ユニットを横方向に繋いで前面カーテン壁2と後面カーテン壁3と越流部背後カーテン壁5の各列が構築されている。
【0056】
したがって、前記の消波構造体の施工に際しては、前面カーテン壁2が前支柱13に一体に設けられた1ユニットと、後面カーテン壁3が後支柱14に一体に設けられた1ユニットと、越流部背後カーテン壁5が背後支柱15に一体に設けられた1ユニットごとに海底部のコンクリート製底版12上に構築される。
【0057】
前記の消波構造体を構築したとき、前面カーテン壁2と後面カーテン壁3の間にピストンモード波浪共振による越流量の増大のための遊水室4が形成されると共に、前面カーテン壁2の吃水下端部2aとコンクリート製底版12との間に遊水室開口部9が形成される。越流部3aの高さは、静水面10と略同一か又は静水面10より少し突出しているか、或いは水中に没している高さの何れかになるように構築される。
【0058】
さらに、前支柱13の列と背後支柱15の列の上端を繋ぐように、かつ、前面カーテン壁2と越流部背後カーテン壁5の上端縁に接して山型プレキャストコンクリート17が構築され、山型プレキャストコンクリート17の上に、場所打ちコンクリートを打設して上床版18を形成している。
【0059】
実施形態1によると、海側(イ)から波となって押し寄せる海水の一部は前面カーテン壁2の吃水下端部2aとコンクリート製底版12の間に形成される遊水室開口部9を通って遊水室4内に入り、この遊水室4内で所定周期の波は減衰され、一部は反射波となって遊水室4外に再び流出し、他の一部は、後面カーテン壁3の天端の越流部3aを越波して陸側(ロ)に流れる。その越波により波は減衰される。
【0060】
このように、遊水室4の後面カーテン壁3の天端に越流部3aを設けることで、その越波により波は減衰され、反射波の低減効果を損なうことなく、しかも、透過波についても有意に低減できる。前記の作用を効率的に行わせるためには、遊水室4が有効に機能するピストンモード波浪共振による越流量の増大がよく、また、そのための越流部3aの高さは、静水面10と略同一か又は静水面10よりも少し突出している高さ、或いは水中に没している高さになるようにするのがよい。さらに、越流部背後カーテン壁5を設けることで、越流部3aを越えて陸側(ロ)に伝播する波浪を一層減衰できる。
【0061】
図15は実施形態2を示す。実施形態2に係る消波堤1は、実施形態1における前面カーテン壁2が全面閉鎖型であるのに代えて、横形ブラインド状に傾斜間隙19を持って配列された複数の傾斜板20を備えた前面カーテン壁2bを設けた例を示す。
【0062】
実施形態2では、海側(イ)から波となって押し寄せる海水の一部は遊水室開口部9およびブラインド型の前面カーテン壁2bの傾斜間隙19からも遊水室4内に進入、退出できるもので、この構成は内海など比較的低反射を期待する場合に有効である。実施形態2におけるその他の構成と作用は実施形態1と同じであるので、同一要素には同一符号を付して重複説明を省略する。
【0063】
前記の消波構造体において、前面カーテン壁2やブラインド型前面カーテン壁2b、および後面カーテン壁3を垂直に配置するのは、外海(大西洋・太平洋)で、干満差の少ない海域を対象とする場合に適している。
【0064】
また、干満差が大きい内海などでは、前後のカーテン壁を傾斜型とするのが有効である。すなわち、図示を省略するが、実施形態1、2における前面カーテン壁2やブラインド型前面カーテン壁2bを下部が海側(イ)に迫り出すように傾斜配設し、また、後面カーテン壁3を下部が陸側(ロ)に迫り出すように傾斜配設しもよい。このような傾斜型消波堤は、瀬戸内海など低反射を期待する場合に有効である。また、前面カーテン壁2やブラインド型前面カーテン壁2bを傾斜させることは、反射波を低減するうえでも特に有効である。
【0065】
[実施形態のまとめ]
▲1▼越流型で、低反射・低透過構造の海水消波堤は、前面カーテン壁と後面カーテン壁とを備え、後面カーテン壁の高さを抑えて海水が乗り越えるようにした。▲2▼この後面カーテン壁の高さは、海水面か少し低いくらいにする。▲3▼前面カーテン壁が吃水の違うもう一枚のカーテン壁を備えてもよい。▲4▼後面カーテン壁の後ろに吃水の違うもう一枚のカーテン壁を備えてもよい。▲5▼前面カーテン壁の後ろにも中間部カーテン壁を備えている方が、反射波を低減するのに有効である。▲6▼前記消波堤は、杭式でもよく、定置式でもよい。
【0066】
なお、本発明の図に示した構成を適宜設計変更して実施することは、本発明の技術的範囲に含まれる。
【0067】
【発明の効果】
本発明によるとつぎの効果がある。すなわち、上部越流型防波堤の越流量は、遊水室内でのピストンモード波浪運動の増幅度に比例して増大する傾向が見られ、後面カーテン壁の天端高さを静水面位置程度に設定すると、その増幅度が大きな比較的長周期の条件下では、海水交換に有効な越流量が期待でき、しかもこのとき、反射波の低減効果も顕著であり、したがって、波を制御して海水交換が可能になる。また、上部越流型防波堤の越流量は、減衰理論と堰の越流公式を組み合わせた理論算定法によりほぼ予測できるので、設計の通りに消波構造体を構築すれば、前述の作用効果が期待できる越流型防波堤を確実に構築することができる。
【図面の簡単な説明】
【図1】 本発明の基本思想1を説明するための模式図である。
【図2】 本発明の基本思想2を説明するための模式図である。
【図3】 図1をより具体化して示す具体的模式説明図である。
【図4】 図2をより具体化して示す具体的模式説明図である。
【図5】 本発明の基本思想3を示す具体的模式説明図である。
【図6】 本発明の越流型消波堤において、遊水室内の波高比(越流なし)の図である。
【図7】 本発明の越流型消波堤において、越流量(算定結果との比較)を示す図である。
【図8】 本発明の越流型消波堤において、越流量に及ぼす後面カーテン壁の天端高さの影響を示す図である。
【図9】 本発明の越流型消波堤において、反射率Crを示す図である。
【図10】 本発明の越流型消波堤において、透過率Ctを示す図である。
【図11】 本発明の越流型消波堤において、越流部背後カーテン壁の効果(透過率Ct)を示す図である。
【図12】 実施形態1に係る、越流型の海水交換型消波堤を示す斜視図である。
【図13】 図12の正面部分図である。
【図14】 図(a)は、図12の側面図、図(b)は、同図(a)の支柱と下部構体を省略して示す側面原理説明図である。
【図15】図(a)は、実施形態2に係る越流型でかつ前面垂直型消波堤の斜視図、図(b)は、同図(a)の支柱と下部構体を省略して示す側面原理説明図である。
【符号の説明】
1 海水交換型消波堤
2 前面カーテン壁
2a 吃水下端部
3 後面カーテン壁
3a 越流部
4 遊水室
5 越流部背後カーテン壁
5a 吃水下端部
6 捨石工
7 中間部カーテン壁
7a 吃水下端部
8 海底部
9 遊水室開口部
10 静水面
12 コンクリート底版
13 前支柱
14 後支柱
15 背後支柱
17 山型プレキャストコンクリート
18 上床版
19 傾斜間隙
20 傾斜板[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a seawater exchange type breakwater in a sea area where a long period wave arrives, and more particularly to a seawater exchange type breakwater having a low reflection and low transmission structure by a double curtain wall.
[0002]
[Prior art]
Generally, harbors are often in a severe wave environment, and the calm of harbor waves is required to be sufficiently safe for ship berthing and cargo handling operations rather than the construction of outer facilities. However, seawater exchange inside and outside the port is restrained because the calmness of the bay is demanded, and the port area tends to be closed, the seawater does not enter the bay, the seawater in the bay water becomes dirty, and water quality deteriorates. It has become.
[0003]
As countermeasures, the application of permeable breakwaters and the development of seawater exchange breakwaters have been promoted for a long time. Conventional seawater exchange type breakwaters are as follows: (1) Perforated holes are provided in a part of the dam body to improve the flow of tides and waves, and (2) further overflow works and valves are provided. In addition, there are known those that control the flow direction in the water passage, and those that have a separate dike.
[0004]
All of the above have been devised to provide water flow or seawater exchange function while maintaining the wave prevention / quenching function as much as possible, but the wave shielding effect and reflected wave reduction effect are not enough, There are some cases where is too complicated.
[0005]
As an improvement on the existing technology, a reflected wave reducing structure according to the present applicant has been proposed (Patent Document 1). This prior art is applied to a reflected wave reduction structure having a double curtain wall with a different water structure in which the offshore side has an inclined front curtain wall and the land side has an inclined rear curtain wall. The water on the front curtain wall on the offshore side is made shallower than the water on the rear curtain wall on the land side.
[0006]
[Patent Document 1]
JP 2000-154518 A
[0007]
[Problems to be solved by the invention]
The above prior art can effectively reduce reflected waves by setting the flooding of the front curtain wall on the offshore side shallower than the flooding of the rear curtain wall on the land side as a wave-breaking structure of the harbor. That's it. The present invention aims to (1) maintain a structure that can cut off incoming waves and reduce reflected waves, which are the original functions of a wave-breaking facility, and (2) make it possible to make seawater exchange more effective. The above (1) and (2) are difficult to achieve at the same time, and the prior art has paid little attention to solving this problem. Furthermore, the point which should be improved also in the point of calming at the time of a wave-dissipation and the simplification of a structure was left.
[0008]
That is, in order to enhance the water flow function (seawater exchange) with the different double water breakwater breakwater, a method of widening the water flow opening length at the lower part of the rear curtain wall is generally used. However, there was a problem that the transmitted wave in that case became large and the calmness of the harbor deteriorated.
[0009]
The present inventor aims at a seawater exchange type breakwater for the purpose of promoting seawater exchange in a port area, and in particular, keeps as much as possible the blocking of incoming waves and the reduction of reflected waves, which are functions as a wavebreaking facility. A structure that can perform seawater exchange effectively and calmly was studied.
[0010]
The present invention relates to a proposal based on the above-described research results, and is capable of reducing the interception wave and the reflected wave, which are the functions of the original wavebreaking facility, and in addition, the seawater exchange type breakwater that can effectively and quietly perform seawater exchange This is a proposal.
[0011]
[Means for Solving the Problems]
In order to solve the above problems, the present invention is configured as follows.
[0012]
  A first aspect of the present invention is an overflow type seawater exchange type breakwater in which a front curtain wall on the sea side and a rear curtain wall on the land side are installed at a predetermined interval on the sea floor, and the front curtain wall having a flooded lower end. A rear curtain wall is provided at an interval at the rear, and an overflow section is provided at the top of the rear curtain wall.And installing the lower end of the rear curtain wall in contact with the sea bottom or a concrete bottom plate, and setting the overflow part of the rear curtain wall to a higher level than the flooded lower end of the front curtain wall,The top end of the front curtain wall protrudes from the top end of the rear curtain wall, and the flooding of the front curtain wall is made shallower than that of the rear curtain wall, so that a water-reserving chamber is provided between the front curtain wall and the rear curtain wall. Forming,ThatIt is characterized in that the overflow part is provided to allow overflow using piston mode wave resonance in the water reserving chamber.
[0014]
  First2The invention of the1In the present invention, the overflow curtain behind the overflow curtain wall is provided with a predetermined interval further on the rear side of the rear curtain wall and with a shallower flooding than the front curtain wall.
[0015]
  First3The invention of the1 or 2The invention is characterized in that an intermediate curtain wall having a flooded lower end deeper than the flooded lower end of the front curtain wall is provided between the front curtain wall and the rear curtain wall.
[0016]
  First4The invention of the first to the first3In the invention, the front curtain wall is a wall having a plurality of inclined plates arranged with a gap in the form of a fully closed wall or a horizontal blind.
[0017]
  First5The invention of the first to the first4In the invention, of the front curtain wall and the rear curtain wall, the front curtain is a vertical type or an inclined type with the lower part protruding forward, and the rear curtain is a vertical type or an inclined type with the lower part protruding backward. It is either.
[0018]
Hereinafter, the present invention will be described in more detail.
[0019]
The present invention is intended to realize an overflow type dam body for maintaining a water flow function such as a tidal current and a wave current, and FIG. 1 is for explaining a first example of the basic idea. It is a figure which shows the seawater exchange type | mold wave breakwater of a different water double curtain type structure as a schematic diagram. FIG. 2 is a view showing an example in which an overflow curtain wall is further provided behind the rear curtain wall of FIG. 1 as a schematic diagram for explaining a second example of the basic idea of the present invention. FIGS. 3 and 4 are specific schematic explanatory views showing FIGS. 1 and 2 more specifically. FIG. 5 is a specific schematic explanatory diagram for explaining a third example of the basic idea of the present invention. Moreover, FIGS. 6-11 is a graph which shows the data of various experiments using the seawater exchange type breakwater shown in FIG.
[0020]
The seawater exchange type breakwater 1 of the overflow type embankment according to the present invention has a double-curtained double curtain type structure, a front curtain wall 2 having a flooded lower end 2a disposed on the sea side (a), and a land side (B), the rear curtain wall 3 having the overflow portion 3a at the top is spaced apart by a predetermined interval, and a water reserving chamber 4 is formed between the front and back curtain walls 2 and 3, This is an embankment of a type that promotes seawater exchange by increasing the overflow rate from the overflow section 3a using the piston mode wave resonance.
[0021]
In this seawater exchange type breakwater 1, when the flooding of the front curtain wall 2 is made shallow in order to improve the water flow function and the height of the rear curtain wall 3 standing on the sea floor 8 is lowered, the transmission wave increases. In this case, the depth d from the hydrostatic surface 10 of the front curtain wall 2 shown in the figure to the flooded lower end 2a is shown here.1Is secured at a predetermined depth, and an overflow section (overtop section) 3a is provided at the top end of the rear curtain wall 3, and the reduction efficiency of transmitted waves by this is studied. In this case, the height of the overflow portion 3a provided at the top end of the rear curtain wall 3 is substantially the same as the static water surface 10 or from the static water surface 10 because of the increase of the overflow flow due to the piston mode wave resonance in the water reserving chamber 4. It should be slightly protruding or submerged in water. Thus, in the present invention, an overflow work is provided at the top end of the rear curtain wall 3 to propose a structure that expects seawater exchange by overtopping of the overflow work.
[0022]
In the second example of the basic idea shown in FIG. 2, in order to suppress an increase in transmitted waves accompanying overflow from the overflow section 3a, a predetermined interval is provided on the rear side of the rear curtain wall 3 to An overflow section back curtain wall 5 having a lower end 5a is provided. The flooded lower end 5a of the overflow curtain wall 5 is provided so as to be shallower than the flooded lower end 2a of the front curtain wall 2, so that it also acts as a reflected wave reduction work for the action wave from the inner port. It is. In FIGS. 3 and 4, a concrete bottom slab 12 (FIGS. 1 and 2) in which the seawater exchange type breakwater 1 shown in FIGS. 1 and 2 is placed on a rubble 6 installed on the seabed ground by an arbitrary support means. An example constructed in FIG. 2 (corresponding to the seabed 8) is shown.
[0023]
Similarly, in FIG. 5, as a third example of the basic idea of the present invention, in addition to the configuration of FIG. 3, an intermediate curtain wall 7 having a flooded lower end 7 a is provided between the front curtain wall 2 and the rear curtain wall 3. An example is shown. The flooded lower end 7 a of the intermediate curtain wall 7 is deeper than the flooded lower end 2 a of the front curtain wall 2 and shallower than the flooded lower end 5 a of the overflow curtain wall 5.
[0024]
The seawater exchange type breakwater 1 in FIG. 1 is an overflow type dam body that is expected to have a water flow function such as tidal currents and wave currents. Passing through the reclaimed water chamber opening 9 formed between the flooded lower end 2a of the wall 2 and the seabed 8, and enters the reclaimed water chamber 4 formed between the front curtain wall 2 and the rear curtain wall 3, A wave of a predetermined period is attenuated in the water reserving chamber 4 and a piston mode wave resonance is generated in the water reserving chamber 4, whereby a part of the wave is overflowed at the top of the rear curtain wall 3 (overwave). Part) Cross over 3a to the land side (b). Further, in the example of FIG. 2 in which the overflow section back curtain wall 5 is provided, the transmitted wave that flows over the overflow section 3 a to the land side (b) is further attenuated by the overflow section back curtain wall 5. Will be.
[0025]
In the seawater exchange type breakwater with a conventionally known double-walled double-wall structure, the piston mode waves in the water chamber are shielded by the rear curtain wall and are pushed back and attenuated as reflected waves. There are drawbacks such as that the lower part of the curtain wall is of a transmission type and that waves are easily transmitted, and that a one-way average flow cannot be generated efficiently in response to wave motion that is an oscillating flow.
[0026]
As described above, there is a problem that it is difficult to ensure the water flow function of a flow such as a tidal current and a wave current so as not to stagnate the water in the harbor and the wave extinction. However, in the seawater exchange type water breakwater with double-walled water structure of the present invention, the overflow function 3a is provided at the top end of the rear curtain wall, so that the water flow function can be secured and extinguished by a reliable method of wave overtopping. It was also confirmed from the experimental results that it was possible to solve the waves at the same time, and that the waves could be silenced quietly.
[0027]
Hereinafter, experimental results based on the structure will be described.
[0028]
Experimental apparatus and experimental method
[Model wall]
In the experimental model, in the overflow type dam body that is expected to have a water flow function such as tidal currents and wave currents, in order to improve the seawater exchange, the depth of the flooded lower end 2a of the front curtain wall 2 is made shallower and the water is reclaimed. The overflow portion at the top of the rear curtain wall 3 is secured by securing the size of the chamber opening 9 and using the fact that the regenerative chamber 4 derives the piston mode wave resonance and thereby increases the overflow rate. The wave can overflow 3a. It was proved by a model experiment described below that the water passing function can be secured by this, and the effect of reducing the transmitted wave and reflected wave of the long period wave can be effectively reduced.
[0029]
That is, the dam body 1 shown in FIG. These are both composed of a front curtain wall 2 and a rear curtain wall 3, and a mechanism that reduces reflected waves by the effect of increasing the vortex flow at the lower ends of the front and rear walls due to the piston mode wave resonance in the water chamber 4. Is adopted. The front curtain wall 2 and the rear curtain wall 3 are supported by side plates (not shown) provided on both sides, and the length of the dam body unit is 50 cm. In the water, two units were arranged in series so as to be approximately equal to the water tank width (1 m).
[0030]
In this experiment as well, an overtopping levee body was used to maintain the water flow function such as tidal current and wave current. In this case, in order to improve the water flow function, the front curtain wall 2 was made shallower and the rear curtain Regarding the point of concern about an increase in the transmitted wave when the height of the wall 3 is lowered, the depth of the flooded lower end 2a of the front curtain wall 2 shown in the figure is secured to a predetermined depth, and the rear curtain wall 3 The overflow part 3a was provided in the top | end, and the reduction efficiency of the transmitted wave by this was examined.
[0031]
In the overflow type dam body of FIG. 1, the amount of overtopping from the overflow section 3a was measured with respect to one unit of the dam body using an overflow valve for 5 to 10 effective wave numbers. Thus, it was examined how much increase in the overflow rate due to the piston mode wave resonance in the water-reserving chamber, which is characteristic of the double curtain structure in the present invention, which is expected to be able to perform calm and effective seawater exchange, can be expected.
[0032]
In the dam body of FIG. 1, in order to examine the influence of the height hc from the hydrostatic surface to the top of the overflow section 3a, the height hc was changed to four types within a range of −5 cm to +4 cm. However, in the measurement experiment of the overflow rate, when the top end is below the surface of the water, the measurement is difficult, so three types are in the range of hc = 0 to +4 cm.
[0033]
In the experiment, the reflectivity Cr and transmittance Ct of each dam body and the water surface fluctuations inside and outside the reclaimed water chamber were measured using a total of 5 to 8 capacitive wave height meters. At this time, the reflectance was obtained by using a separate estimation method for incoming and reflected waves. Further, in the overflow type dam body of FIG. 1, the amount of overtopping from the overflow section was measured for one unit of the dam body using an overflow valve for 5 to 10 effective wave numbers.
[0034]
The wave condition used is that the period T is 0.9 to 2.0 in consideration of the piston mode wave resonance condition.sThe incident wave height H was approximately 5 cm and 10 cm.
[0035]
[Overflow rate and wave control effect of overflow type dam body]
(1) Overflow rate
In the overflow type dam body shown in FIGS. 1 and 2, the piston mode wave resonance in the water reserving chamber 4 is used to increase the overflow rate. FIG. 6 shows a state in which there is no overflow by using the ratio of the water chamber width B and the wavelength L as a dimensionless quantity related to the wave period, and sufficiently increasing the top end height (overtop part) of the rear curtain wall 3. The change by the B / L of the spatial average wave height Hc in the recreational water chamber 4 is shown for both experimental results and calculation results. It should be noted that in both results, it was confirmed that, within the range of the periodic conditions of interest, there was almost no spatial fluctuation of the wave height in the water reserving chamber 4, and the situation was close to the piston mode.
[0036]
As can be seen in FIG. 6, the wave height in the water reserving chamber 4 made dimensionless with the incident wave height is larger than the incident wave height under the condition of B / L> 0.12, and the effect of reducing the reflected wave described later is achieved. It can be seen that the amplification ratio becomes relatively large for a long period of B / L <0.1. The experimental results are generally lower than the calculation results, and it is estimated that the actual fluid field has a larger dissipation near the wave resonance point.
[0037]
FIG. 7 shows the overflow rate when the top edge height (overtop part) 3a of the rear curtain wall 3 is set to the hydrostatic surface position (hc = 0 cm) in the dam body 1 shown in FIG. Here, the overflow rate is the amount per wave (= Q) per unit width of the levee body 1, and this is made dimensionless by the amount of fluid movement per half cycle of the marching wave. The figure also shows the calculation result of the overflow rate that combines the calculation result of the fluctuation of the wave height in the reclaimed water chamber 4 and the next overflow formula. Here, the following equation, commonly known as the overflow formula, was used.
[0038]
[Expression 1]
Figure 0004370374
Where q: unit width, overflow rate per unit time, Cd: Dimensionless flow coefficient, g: gravity acceleration, hw: It is the head height at the top of the weir (the top of the rear curtain wall (overflow part)).
[0039]
In the overflow type embankment, hwSince water fluctuates over time, the water level above the rear curtain wall 3 in the water reserving chamber 4 is assumed to be h assuming that the water level fluctuation in the water reserving chamber 4 changes sinusoidally.wAs an application, the overflow rate per wave cycle is obtained by the following equation.
[0040]
[Expression 2]
Figure 0004370374
Here, Δt is the time during which the water surface in the water reserving chamber is above the top end (overflow portion) of the back curtain wall, and ω is the angular frequency (= 2π / T). C in the calculationdIn consideration of the effect of the top height from the bottom of the water, 0.82 was used.
[0041]
As can be seen in FIG. 7, the dimensionless overflow rate has a tendency to increase corresponding to the degree of wave resonance in the water reserving chamber 4 shown in FIG. It turns out that it becomes a grade. Although the calculation result roughly matches the fluctuation tendency of the experimental result, the prediction of the degree of resonance is not sufficient quantitatively, so that the calculation result tends to be a higher prediction.
[0042]
FIG. 8 shows the effect of the top edge height hc of the rear curtain wall 3 on the overflow rate. In addition to the above results, the results when hc = 3 cm and 4 cm are also shown. From FIG. 8, it is obvious that the overflow rate is the largest when the top end (overflow portion 3a) of the rear curtain wall 3 coincides with the hydrostatic surface, and tends to decrease when the top end is raised. However, there is no significant difference in the overflow rate when hc = 3 cm and 4 cm, and it is determined that the overflow rate is not so sensitively influenced by the top height when there is a certain protrusion height.
[0043]
(2) Wave control effect
FIGS. 9 and 10 show the case where the top end of the rear curtain wall 3 is made coincident with the hydrostatic surface (hc = 0 cm) in the overflow type dam body 1 shown in FIG. 1 and the top end of the rear curtain wall 3 is hc = The change by B / L of the reflectance Cr and the transmittance | permeability Ct when set to -5cm is shown. Although these figures also show the calculation results based on the damped wave theory, the influence of the transmitted wave from the overflow section 3a cannot be considered under the condition of hc = 5 cm because of the linear theory.
[0044]
From FIG. 9, the experimental result of the reflectivity roughly agrees with the calculation result ignoring the overflow effect. And under the condition of hc = 0 cm, the calculation result is good even under the B / L condition where the overflow rate shown in FIG. 7 is relatively large. It can be said that there is almost no.
[0045]
However, under the condition of hc = −5 cm, the absolute value of the reflectance tends to increase compared to the result of hc = 0 cm in both the experiment and the calculation result. The effect of water surface is great. When hc = 0 cm, the comparison between FIG. 7 and FIG. 9 shows that the condition for increasing the overflow rate is almost the same as the condition for reducing the reflectance, and the reflected wave is controlled to increase the overflow rate. It becomes possible.
[0046]
On the other hand, the transmittance shown in FIG. 10 also tends to increase with an increase in the overflow rate and a decrease in the top end of the rear curtain wall 3, and even when hc = 0 cm, the transmittance Ct is about 0.3. It becomes the size. In particular, the influence of setting the top end of the rear curtain wall 3 below the hydrostatic surface is great.
[0047]
FIG. 11 shows the transmittance when a curtain wall 5 behind the overflow section is further provided on the inner side (back side) of the bank of the bank as shown in FIG. 2 for the purpose of suppressing the increase of the transmitted wave by allowing overflow. It shows about Ct. In the figure, the results of both hc = 0 cm and −5 cm are shown. From the comparison with the results in FIG. 10, when the overflow curtain wall 5 is provided inside the port, the transmittance tends to decrease as a whole. However, when hc = −5 cm, the transmittance remains relatively high, and it can be said that the influence of setting the top end (overflow portion 3a) of the rear curtain wall 3 below the hydrostatic surface is great.
[0048]
As described above, if the top curtain height 3 (overflow portion 3a) of the rear curtain wall 3 is the static water surface 10 with the configuration of the front curtain wall 2 and the rear curtain wall 3, an overflow rate effective for seawater exchange can be expected. The reduction of the reflected wave is also remarkable. In order to reduce the transmitted wave, it is preferable to install another curtain inside the bay. As an example, FIG. 5 shows an intermediate curtain wall 7 between the front curtain wall 2 and the rear curtain wall 3. An example in which is provided is shown. The flooded lower end 7 a at the lower end of the intermediate curtain wall 7 is deeper than the flooded lower end 2 a of the front curtain wall 2 and shallower than the flooded lower end 5 a of the overflow curtain wall 5. In other words, when the front curtain is doubled, two periods of effective wave height reduction are provided by two dripping plates with different flooding. Therefore, it becomes effective for the tidal difference at the same time for a wide period.
[0049]
[Summary of experiment]
From the experiment, the overflow rate of the upper overflow type breakwater tends to increase in proportion to the amplification degree of the piston mode wave motion in the reclaimed water chamber. If the height of the top edge of the rear curtain wall is set to about the position of the hydrostatic surface, an overflow rate effective for seawater exchange can be expected under a relatively long cycle condition with a large amplification degree. At this time, it was proved by a model experiment that in principle, the effect of reducing the reflected wave was remarkable, and the seawater exchange was possible by controlling the wave.
[0050]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to FIGS.
[0051]
12 is a perspective view of the overflow type front vertical breakwater according to the first embodiment, FIG. 13 is a partial front view of FIG. 12, FIG. 14 (a) is a side view of FIG. FIG. 14B is a side view for explaining the principle of the side surface without the support and the lower structure shown in FIG. 14A. FIG. 15A is a perspective view of the overflow type front vertical vertical breakwater according to the second embodiment. FIG. 15 and FIG. 15B are side surface explanatory views showing the support and the lower structure in FIG.
[0052]
Embodiment 1 of FIGS. 12-14 is demonstrated. This embodiment 1 shows a specific structure of the basic example 2 of FIG. 2, and a concrete bottom plate 12 is installed on a rubble 6 constructed on the seabed 8, and the concrete bottom plate 12 has a predetermined lateral direction. The front strut 13, the rear strut 14, and the back strut 15 are installed in three rows in the front and rear direction. Each of the columns 13, 14, 15 can be a concrete-filled square steel tube column or other various column materials.
[0053]
A front curtain wall 2 having a flooded lower end 2a is vertically attached to the front column 13. Behind the front curtain wall 2, a rear curtain wall 3 having a number of overflow parts (overwave parts) 3 a at the top end is vertically attached to the rear column 14. The lower end of the rear curtain wall 3 is installed in contact with the concrete bottom slab 12, and the height position of the overflow section (overtopping wave section) 3 a is higher than the flooded lower end section 2 a of the front curtain wall 2. Is provided.
[0054]
The overflow curtain behind curtain wall 5 is attached to the back column 15 provided at a predetermined interval behind the rear curtain wall 3. The flooded lower end portion 5 a of the overflow curtain behind the curtain wall 5 is provided so as to be shallower than the flooded lower end portion 2 a of the front curtain wall 2.
[0055]
The front curtain wall 2, the rear curtain wall 3, and the overflow curtain behind the curtain wall 5 are provided in a wall board block having a predetermined width in the lateral direction. The column 14 and the back column 15 are fixed to form one unit, and the front curtain wall 2, the rear curtain wall 3, and the overflow curtain behind the curtain wall 5 are constructed by connecting the one unit horizontally. Has been.
[0056]
Therefore, when constructing the wave-dissipating structure, one unit in which the front curtain wall 2 is provided integrally with the front column 13, one unit in which the rear curtain wall 3 is provided integrally with the rear column 14, The flow back curtain wall 5 is constructed on the concrete bottom plate 12 at the sea bottom for each unit provided integrally with the back column 15.
[0057]
When the wave-dissipating structure is constructed, a water reserving chamber 4 is formed between the front curtain wall 2 and the rear curtain wall 3 for increasing the overflow rate due to piston mode wave resonance, and the front curtain wall 2 is flooded. A water reserving chamber opening 9 is formed between the lower end 2 a and the concrete bottom plate 12. The height of the overflow part 3a is constructed so as to be either substantially the same as the hydrostatic surface 10, slightly protruding from the hydrostatic surface 10, or submerged in water.
[0058]
Furthermore, a mountain-shaped precast concrete 17 is constructed so as to connect the upper ends of the columns of the front columns 13 and the rear columns 15 and in contact with the upper edges of the front curtain wall 2 and the overflow curtain wall 5 at the back. Cast-in-place concrete is cast on the mold precast concrete 17 to form an upper floor slab 18.
[0059]
According to the first embodiment, a part of the seawater that rushes as a wave from the sea side (I) passes through the water reserving chamber opening 9 formed between the flooded lower end 2 a of the front curtain wall 2 and the concrete bottom plate 12. The water enters the water reserving chamber 4, and the waves of a predetermined period are attenuated in this water reserving chamber 4, and a part of the wave becomes a reflected wave and flows out of the water reserving chamber 4 again. It flows over the end overflow part 3a and flows to the land side (b). The wave is attenuated by the overtopping.
[0060]
In this way, by providing the overflow portion 3a at the top of the rear curtain wall 3 of the water reserving chamber 4, the wave is attenuated by the overtopping, and the effect of reducing the reflected wave is not impaired, and the transmitted wave is also significant. Can be reduced. In order to perform the above-mentioned operation efficiently, the increase of the overflow rate due to the piston mode wave resonance in which the water reserving chamber 4 functions effectively is good, and the height of the overflow portion 3a for that is the same as that of the hydrostatic surface 10 It is good to make it the height which is substantially the same, protrudes a little from the still water surface 10, or is immersed in water. Furthermore, by providing the curtain wall 5 behind the overflow section, it is possible to further attenuate the waves that propagate to the land side (b) beyond the overflow section 3a.
[0061]
FIG. 15 shows a second embodiment. The breakwater 1 according to the second embodiment includes a plurality of inclined plates 20 arranged in a horizontal blind shape with inclined gaps 19 in place of the front curtain wall 2 in the first embodiment being entirely closed. An example in which a front curtain wall 2b is provided is shown.
[0062]
In the second embodiment, a part of the seawater that rushes as waves from the sea side (b) can enter and exit the reclaimed water chamber 4 from the reclaimed water chamber opening 9 and the inclined gap 19 of the blind front curtain wall 2b. Therefore, this configuration is effective when a relatively low reflection is expected such as in the inland sea. Since other configurations and operations in the second embodiment are the same as those in the first embodiment, the same elements are denoted by the same reference numerals, and redundant description is omitted.
[0063]
In the wave-dissipating structure, the front curtain wall 2, the blind-type front curtain wall 2b, and the rear curtain wall 3 are arranged vertically in the open sea (Atlantic Ocean / Pacific) in the sea area with little tidal difference. Suitable for cases.
[0064]
In addition, in the inland sea where the tidal range is large, it is effective to make the front and rear curtain walls inclined. That is, although illustration is omitted, the front curtain wall 2 and the blind type front curtain wall 2b in the first and second embodiments are inclined so that the lower part protrudes toward the sea side (A), and the rear curtain wall 3 is You may incline and arrange | position so that a lower part may protrude to the land side (b). Such a sloping breakwater is effective when low reflection is expected, such as in the Seto Inland Sea. Further, inclining the front curtain wall 2 and the blind front curtain wall 2b is particularly effective in reducing reflected waves.
[0065]
[Summary of Embodiment]
(1) The seawater breakwater with an overflow type, low reflection and low transmission structure is equipped with a front curtain wall and a rear curtain wall, and the height of the rear curtain wall is suppressed so that seawater can get over. (2) The height of the rear curtain wall should be a little lower than the sea level. (3) The front curtain wall may be provided with another curtain wall with different flood water. (4) Another curtain wall may be provided behind the rear curtain wall. (5) An intermediate curtain wall behind the front curtain wall is more effective in reducing reflected waves. (6) The breakwater may be a pile type or a stationary type.
[0066]
In addition, it is included in the technical scope of the present invention to appropriately change the design of the configuration shown in the drawing of the present invention.
[0067]
【The invention's effect】
The present invention has the following effects. In other words, the overflow rate of the upper overflow type breakwater tends to increase in proportion to the amplification degree of the piston mode wave motion in the reclaimed water chamber, and the ceiling height of the rear curtain wall is set to about the hydrostatic surface position. Under the condition of a relatively long period with a large amplification degree, an overflow rate effective for seawater exchange can be expected, and at this time, the effect of reducing reflected waves is also remarkable. It becomes possible. In addition, the overflow rate of the upper overflow type breakwater can be almost predicted by the theoretical calculation method that combines the damping theory and the weir overflow formula. The expected overtopping breakwater can be constructed reliably.
[Brief description of the drawings]
FIG. 1 is a schematic diagram for explaining a basic idea 1 of the present invention.
FIG. 2 is a schematic diagram for explaining a basic idea 2 of the present invention.
FIG. 3 is a specific schematic explanatory view showing FIG. 1 more specifically.
FIG. 4 is a specific schematic explanatory view showing FIG. 2 more specifically.
FIG. 5 is a specific schematic explanatory view showing a basic idea 3 of the present invention.
FIG. 6 is a diagram of the wave height ratio (no overflow) in the flood water chamber in the overflow type breakwater of the present invention.
FIG. 7 is a diagram showing the overflow rate (comparison with the calculation result) in the overflow type breakwater of the present invention.
FIG. 8 is a diagram showing the influence of the height of the top edge of the rear curtain wall on the overflow rate in the overflow type breakwater of the present invention.
FIG. 9 is a diagram showing reflectance Cr in the overflow type breakwater of the present invention.
FIG. 10 is a diagram showing the transmittance Ct in the overflow type breakwater of the present invention.
FIG. 11 is a view showing the effect (transmittance Ct) of the curtain wall behind the overflow section in the overflow type breakwater of the present invention.
FIG. 12 is a perspective view showing an overflow type seawater exchange type breakwater according to the first embodiment.
13 is a partial front view of FIG. 12. FIG.
14 (a) is a side view of FIG. 12, and FIG. 14 (b) is a side view illustrating the principle of the support and lower structure shown in FIG.
FIG. 15 (a) is a perspective view of an overflow-type front vertical breakwater according to Embodiment 2, and FIG. 15 (b) omits the support and lower structure in FIG. 15 (a). FIG.
[Explanation of symbols]
1 Seawater exchange type breakwater
2 Front curtain wall
2a Bottom of flooded water
3 Rear curtain wall
3aOverflow section
4 play room
5 Curtain wall behind the overflow section
5a Bottom of flooded water
6 Rubble
7 Middle curtain wall
7a Bottom of flooded water
8 Seabed
9 Reservoir opening
10 Still water surface
12 Concrete bottom slab
13 Front strut
14 Rear strut
15 Back support
17 Mountain precast concrete
18 Upper floor version
19 Inclination gap
20 Inclined plate

Claims (5)

海側の前面カーテン壁と陸側の後面カーテン壁を所定の間隔をあけて海底に設置する越流式の海水交換型消波堤において、吃水下端部を有する前面カーテン壁の後部に間隔をあけて後面カーテン壁を設け、前記後面カーテン壁の天端に越流部を設け、前記後面カーテン壁の下端部を海底部またはコンクリート製底版に接して設置すると共に、前記後面カーテン壁の越流部を前面カーテン壁の吃水下端部よりも高レベル位置とし、前記前面カーテン壁の天端を後面カーテン壁の天端よりも突出させ、前面カーテン壁の吃水を後面カーテン壁の吃水よりも浅くして、前面カーテン壁と後面カーテン壁との間に遊水室を形成し、その遊水室内のピストンモード波浪共振を利用して越流させる前記越流部を設けるようにしたことを特徴とする海水交換型消波堤。In an overtopping seawater exchange type breakwater where the sea side front curtain wall and the land side rear curtain wall are installed on the seabed with a predetermined gap, the rear curtain wall with the bottom of the flood is spaced apart. A rear curtain wall is provided, an overflow portion is provided at the top end of the rear curtain wall, a lower end portion of the rear curtain wall is installed in contact with a seabed or a concrete bottom plate, and an overflow portion of the rear curtain wall is provided. Is set at a higher level than the bottom edge of the front curtain wall, the top edge of the front curtain wall is protruded from the top edge of the rear curtain wall, and the front curtain wall is made shallower than the rear curtain wall. , water exchange, characterized in that so as to form a retarding chamber between the front curtain wall and a rear curtain wall, provided with the overflow portion to flow overflow utilizing piston mode wave resonance of the retarding chamber Shonamitsutsumi. 後面カーテン壁のさらに後側に所定の間隔をあけて、かつ前面カーテン壁よりも吃水が浅くなるようにして、越流部背後カーテン壁を設けたことを特徴とする請求項1記載の海水交換型消波堤。  2. The seawater exchange according to claim 1, further comprising a curtain wall behind the overflow section provided at a predetermined distance on the rear side of the rear curtain wall so that the flooding is shallower than the front curtain wall. Type wave breakwater. 前面カーテン壁と後面カーテン壁の間に、前面カーテン壁の吃水下端部よりも深い吃水下端部を有する中間部カーテン壁を設けたことを特徴とする請求項1または2記載の海水交換型消波堤。  3. A seawater exchange type wave breaker according to claim 1, wherein an intermediate curtain wall having a flooded lower end deeper than the flooded lower end of the front curtain wall is provided between the front curtain wall and the rear curtain wall. Tsutsumi. 前面カーテン壁が、全面閉鎖型の壁又は横形ブラインド状に隙間を持って配列された複数の傾斜板を備えた壁であることを特徴とする請求項1〜3の何れか1項記載の海水交換型消波堤。The sea water according to any one of claims 1 to 3, wherein the front curtain wall is a wall having a plurality of inclined plates arranged with a gap in the form of a totally closed wall or a horizontal blind. Exchange-type breakwater. 前面カーテン壁と後面カーテン壁のうち、前面カーテンが垂直型又は、下部が前方に迫り出した傾斜型であり、後面カーテンが垂直型又は、下部が後方に迫り出した傾斜型の何れかであることを特徴とする請求項1〜4の何れか1項記載の海水交換型消波堤。Of the front curtain wall and rear curtain wall, the front curtain is either a vertical type or an inclined type with the lower part protruding forward, and the rear curtain is either a vertical type or an inclined type with the lower part protruding backward The seawater exchange type breakwater according to any one of claims 1 to 4.
JP2003006227A 2003-01-14 2003-01-14 Seawater exchange type breakwater Expired - Fee Related JP4370374B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003006227A JP4370374B2 (en) 2003-01-14 2003-01-14 Seawater exchange type breakwater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003006227A JP4370374B2 (en) 2003-01-14 2003-01-14 Seawater exchange type breakwater

Publications (2)

Publication Number Publication Date
JP2004218257A JP2004218257A (en) 2004-08-05
JP4370374B2 true JP4370374B2 (en) 2009-11-25

Family

ID=32896669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003006227A Expired - Fee Related JP4370374B2 (en) 2003-01-14 2003-01-14 Seawater exchange type breakwater

Country Status (1)

Country Link
JP (1) JP4370374B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102292038B1 (en) * 2021-07-09 2021-08-23 (주)네오테크 Reinforcement structure for dissipating wave and construction method thereof

Also Published As

Publication number Publication date
JP2004218257A (en) 2004-08-05

Similar Documents

Publication Publication Date Title
JP2007262890A (en) Structure for controlling permeable sea area and construction method thereof
KR100542331B1 (en) Floating breakwater with submerged horizontal plate
CN109537524A (en) A kind of anti-camber curtain wall type breakwater
JP2013023874A (en) Breakwater water structure
JP4370374B2 (en) Seawater exchange type breakwater
KR102025654B1 (en) Submerged breakwater type fish reef
JP2011122314A (en) Seawater exchange-hastening wave absorbing dyke
JP3909343B2 (en) Seawater exchange promotion type breakwater
JP2008190259A (en) Wave breaking type caisson and parapet used in wave breaking type caisson
JPH0641930A (en) Barrier for protection against big wave
CN109208534B (en) Pile foundation open type breakwater and construction method thereof
JPH06272225A (en) Wave killing structure
JP3457755B2 (en) Transmission type wave-breaking structure
JP4370375B2 (en) High wave breakwater breakwater
JPH06212611A (en) Breakwater
JP5544649B2 (en) Long-period wave reduction structure
JP2001115429A (en) Environment-friendly breakwater
JP2012097542A (en) Revetment structure
JP3643816B2 (en) Breakwater
JPH0823129B2 (en) Double slope breakwater
KR100469903B1 (en) Seashore structure
JP3836816B2 (en) Water-circulating wave-dissipating caisson
JP4775738B2 (en) Long-period wave reduction structure
JPH0860634A (en) Submarine fixed type penetrating wave dissipating revetment
EP2504496B1 (en) Vertical maritime structure with multiple unit chambers for attenuation of wave reflection

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040608

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060619

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20061026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080212

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090414

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090702

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090824

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees