JPH01124961A - Electrolyte plate of molten carbonate fuel cell - Google Patents

Electrolyte plate of molten carbonate fuel cell

Info

Publication number
JPH01124961A
JPH01124961A JP62282815A JP28281587A JPH01124961A JP H01124961 A JPH01124961 A JP H01124961A JP 62282815 A JP62282815 A JP 62282815A JP 28281587 A JP28281587 A JP 28281587A JP H01124961 A JPH01124961 A JP H01124961A
Authority
JP
Japan
Prior art keywords
electrolyte plate
electrolyte
porosity
pore size
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62282815A
Other languages
Japanese (ja)
Inventor
Kazuo Koseki
小関 和雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Corporate Research and Development Ltd filed Critical Fuji Electric Corporate Research and Development Ltd
Priority to JP62282815A priority Critical patent/JPH01124961A/en
Publication of JPH01124961A publication Critical patent/JPH01124961A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • H01M8/0295Matrices for immobilising electrolyte melts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To obtain an electrolyte plate which is difficult to break in heat cycles, has affinity to an electrode, and has good electrolyte retainability by forming the electrolyte plate in multilayer structure. CONSTITUTION:An electrolyte plate consists of an inner part 3A whose mean pore size distribution value and porosity are small and outer parts 3B whose mean pore size distribution value and porosity are large. The pore distribution of the inner part 3A exists within 0.01-3mum and its porosity exists within 40-60%. The pore distribution of the outer part 3B exists within 0.01-100mum and its porosity is set to, for example, 60-80%. An electrolyte is well retained by the inner layer having small pore size and a three-phase interface is sufficiently formed within an electrode, and heat shock is well absorbed by the outer layer having large porosity and the breakage of the electrolyte plate is prevented. As a result, the reliability of a fuel cell is remarkably increased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は溶融炭酸塩型燃料電池の電解質板に係り、特
に炭酸塩の保持性に優れ、電極とのなじみがよく割れに
くい電解質板の構造に関する。
[Detailed Description of the Invention] [Field of Industrial Application] This invention relates to an electrolyte plate for a molten carbonate fuel cell, and in particular to a structure of an electrolyte plate that has excellent carbonate retention properties, is compatible with electrodes, and is difficult to break. Regarding.

〔従来の技術〕[Conventional technology]

一般の溶融炭酸塩型燃料電池は第3図に示すように炭酸
塩を含浸した電解質板3をはさんで配置されたアノード
電極4.カソード電極5.ガス分離板1および2.波形
の集電板6.7(波形方向は互いに直角)等から成うて
いる。電解質板3は電解質の保持性を高めるために比較
的緻密なものが用いられる。
As shown in FIG. 3, a typical molten carbonate fuel cell has an anode electrode 4 disposed across an electrolyte plate 3 impregnated with carbonate. Cathode electrode5. Gas separation plates 1 and 2. It consists of corrugated current collector plates 6, 7 (waveform directions are perpendicular to each other), etc. The electrolyte plate 3 is relatively dense in order to improve electrolyte retention.

これは電解質板内の細孔径が小さくなり、溶融塩の浸透
圧が高くなるためである。比較的緻密な電解質板はドク
タブレード法を用いて製作することができる。
This is because the pore diameter within the electrolyte plate becomes smaller and the osmotic pressure of the molten salt becomes higher. Relatively dense electrolyte plates can be fabricated using the doctor blade method.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら上述のような比較的緻密な電解質板は次の
ような問題点のあることがわかった。
However, it has been found that the relatively dense electrolyte plate described above has the following problems.

■比較的緻密な電解質板は気孔率が小さいため固くかつ
もろいのでヒートサイクルをかけると割れやすい、これ
を防ぐためアルミナ繊維等を混合することが行われるが
十分な効果が得られていない。
■The relatively dense electrolyte plate has a low porosity, making it hard and brittle, making it susceptible to cracking when subjected to a heat cycle. To prevent this, alumina fibers, etc. are mixed in, but this has not been sufficiently effective.

■比較的緻密な電解質板は上述の理由により固いため電
極とのなじみが悪く電橋性能が十分でない。
■Relatively dense electrolyte plates are hard for the reasons mentioned above, so they do not fit well with the electrodes and do not provide sufficient electrical bridge performance.

この発明は上述の点に鑑みてなされ、その目的は電解質
板を多層構造とすることによりヒートサイクルに対し割
れにくいうえ電極とのなじみが良く、しかも電解質保持
性能に優れた電解質板を提供することにある。
This invention has been made in view of the above-mentioned points, and its purpose is to provide an electrolyte plate having a multilayer structure that is resistant to cracking due to heat cycles, has good compatibility with electrodes, and has excellent electrolyte retention performance. It is in.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者等はこれまでパルプをバインダとしこれとアル
ミン酸リチウム粉末とを混合し抄紙法により電解質板を
製作する研究を進めてきたが、この方法を用いると細孔
径、気孔率の比較的大きな電解質板が得られ、この電解
質板が柔軟性に富み、ヒートサイクルに対して割れに(
いことを見出した0本発明者はこのような知見に基いて
本発明を行った。
The present inventors have so far conducted research on manufacturing electrolyte plates using a papermaking method using pulp as a binder and mixing it with lithium aluminate powder. An electrolyte plate is obtained, which is highly flexible and resistant to cracking during heat cycles (
The inventors of the present invention have made the present invention based on these findings.

この発明によれば上記の目的はアノード電極とカソード
電極間に配設され、溶融炭酸塩の電解質が含浸される電
解質板において、細孔径分布の平均値および気孔率の小
さい内層部と電極と接し細孔径分布の平均値および気孔
率の大きい外層部とを備えることによって達成される。
According to the present invention, the above object is achieved by forming an electrolyte plate disposed between an anode electrode and a cathode electrode and impregnated with a molten carbonate electrolyte, in which an inner layer portion having a small average pore size distribution and a small porosity is in contact with the electrode. This is achieved by providing an outer layer with a high average pore size distribution and high porosity.

内層部の細孔径分布は最小0.01μmから最大3pm
の範囲内のいづれかに設けられる。また気孔率は40〜
60%の範囲に設けられる。このとき溶融炭酸塩の保持
性が良好である。
The pore size distribution in the inner layer ranges from a minimum of 0.01 μm to a maximum of 3 pm.
It can be set anywhere within the range of Also, the porosity is 40~
It is set in a range of 60%. At this time, the retention of molten carbonate is good.

外層部の細孔径分布は最小0.01μmから最大110
0IIの範囲内のいづれかにあればよい、気孔率分布は
例えば60及至80%のうちのいづれかに設定される。
The pore size distribution in the outer layer ranges from a minimum of 0.01 μm to a maximum of 110 μm.
The porosity distribution may be anywhere within the range of 0II, and the porosity distribution is set to, for example, anywhere between 60 and 80%.

内層部は例えばドクタブレード法で製造することができ
、外層部は例えば抄紙法によって製造することができる
。内層部と外層部は成型後、積層一体色される。
The inner layer can be manufactured, for example, by a doctor blade method, and the outer layer can be manufactured, for example, by a papermaking method. After molding, the inner layer and outer layer are laminated and colored in one piece.

アノード電極としてはニッケル金属、ニッケル・コバル
ト合金、ニッケル・クロム合金、ニッケルとりチウムア
ルミネートのようなセラミックスの複合材料、ニッケル
・コバルト合金とリチウムアルミネートのようなセラミ
ックスの複合材料等が用いられる。
As the anode electrode, nickel metal, nickel-cobalt alloy, nickel-chromium alloy, ceramic composite material such as nickel and lithium aluminate, ceramic composite material such as nickel-cobalt alloy and lithium aluminate, etc. are used.

カソード電極としては、ニッケルの酸化物、銅の酸化物
、銀の酸化物などが用いられる。
As the cathode electrode, nickel oxide, copper oxide, silver oxide, etc. are used.

溶融炭酸塩としては炭酸リチウムと炭酸カリウムの共晶
塩の他、上記2成分に炭酸ナトリウムを加えた三成分系
の共晶塩、炭酸リチウムと炭酸カリウムにアルカリ土類
の炭酸塩を加えた三成分系の共晶塩等が、蒸気圧、導電
率、腐蝕性の観点から用いられる。
Molten carbonates include eutectic salts of lithium carbonate and potassium carbonate, ternary eutectic salts made by adding sodium carbonate to the above two components, and ternary eutectic salts made by adding alkaline earth carbonate to lithium carbonate and potassium carbonate. Component-based eutectic salts and the like are used from the viewpoints of vapor pressure, electrical conductivity, and corrosivity.

電解質板としてはアルミン酸リチウムの他セリア、チタ
ン酸ストロンチウム等の材料が用いられる。電解質板は
その細孔内に電解質を保持するとと本に、アノード電極
とカソード電極の細孔内の電解質量を適当値に保持する
。電解質板内の電解質と、電橋内部の電解質とはイオン
的につながっているが、アノード電極とカソード電極と
は電解質板により電子的に絶縁される。さらに電解質板
はその内部に満たされた溶融炭酸塩電解質によって、ア
ノードガスとカソードガスが相互にリークすることがな
いようガスセールの働きもする。
For the electrolyte plate, materials such as lithium aluminate, ceria, strontium titanate, etc. are used. When an electrolyte plate retains an electrolyte within its pores, it also maintains the amount of electrolyte within the pores of the anode and cathode electrodes at an appropriate value. The electrolyte in the electrolyte plate and the electrolyte inside the bridge are ionically connected, but the anode electrode and the cathode electrode are electronically insulated by the electrolyte plate. Furthermore, the electrolyte plate also acts as a gas sail to prevent the anode gas and cathode gas from leaking into each other due to the molten carbonate electrolyte filled therein.

〔作用〕[Effect]

内層部は細孔径の平均値が小さいので溶融塩電解質をよ
く保持する。外層部はこれに対し細孔径の平均値が大き
いので溶融塩の保持性は若干劣るが、気孔率が大きいの
で柔軟性に冨む。
The inner layer has a small average pore diameter, so it retains the molten salt electrolyte well. On the other hand, the outer layer has a larger average pore diameter, so its ability to retain molten salt is slightly inferior, but it has a higher porosity, so it has more flexibility.

〔実施例〕〔Example〕

次にこの発明の実施例を図面に基いて説明する。 Next, embodiments of the present invention will be described based on the drawings.

実施例 粒径o、s〜1μ・mのアルミン酸リチウム250gに
トリクレン−エタノール混合溶媒400 g 、可塑剤
としてフタル酸オクチル5g、バインダとしてポルビニ
ルブチラール5gを加え、ボールミルで所定時間混合分
散させ、得られたスラリをドクタブレード装置を用いポ
リエステルフィルム上に展延する。ポリエステル上のシ
ートを乾燥しかつ剥離して0.8謹厚の内層部3A用シ
ートを得ることができる。
Example To 250 g of lithium aluminate with a particle size of o, s ~ 1 μm, 400 g of a mixed solvent of tricrene and ethanol, 5 g of octyl phthalate as a plasticizer, and 5 g of porvinyl butyral as a binder were added, and the mixture was mixed and dispersed in a ball mill for a predetermined period of time. The resulting slurry is spread onto a polyester film using a doctor blade device. By drying and peeling the sheet on the polyester, a sheet for the inner layer portion 3A having a thickness of 0.8 cm can be obtained.

次に粒径0.5〜1μmのアルミン酸リチウム250g
と木材パルプ13gと水とを混合させる。さらに高分子
凝集剤を加えてアルミン酸リチウムと木材パルプを凝集
させ、抄造用スラリを得る。この抄造用スラリを通常の
紙漉き法と同じ方法で抄紙し、0.4■厚の外層部3B
用シートを得ることができる。
Next, 250 g of lithium aluminate with a particle size of 0.5 to 1 μm
13 g of wood pulp and water are mixed. Furthermore, a polymer coagulant is added to coagulate the lithium aluminate and wood pulp to obtain a slurry for papermaking. This slurry for paper making was made into paper using the same method as normal paper making, and the outer layer 3B with a thickness of 0.4
You can get a sheet for

上述の方法で得られたドクタブレード法によるシートの
両側を抄紙法シートではさみかつ軽くおしつけて一体化
し第1図に示すような電解質板の成型体を得ることがで
きる。
Both sides of the doctor blade sheet obtained by the above method are sandwiched between papermaking sheets and lightly pressed together to form a molded electrolyte plate as shown in FIG. 1.

比較例 実施例のドクタブレード法と同一の方法で1.6■厚の
シートを成型し、電解質板の成型体を得ることができる
Comparative Example A sheet having a thickness of 1.6 mm was molded using the same method as the doctor blade method used in the Example, to obtain a molded electrolyte plate.

実施例と比較例で述べた成型体を用いて電池を組立て昇
温させる。昇温の過程でバインダ、パルプ等が焼散し、
電解質板が形成される0組立てに用いる電極にはあらか
じめ炭酸塩を含浸しておく。
A battery is assembled using the molded bodies described in Examples and Comparative Examples, and the temperature is raised. During the temperature rise process, binder, pulp, etc. are burnt out,
The electrodes used in the assembly in which the electrolyte plate is formed are impregnated with carbonate in advance.

約550℃で炭酸塩が溶融すると、溶融塩は浸透圧の差
によって電解質板側に移行する。ここでカソード電極に
は酸素ガスと炭酸ガスと窒素ガスの混合ガスを、アノー
ド電極には水素ガスと炭酸ガスの混合ガスを流し、15
0mA/ejの電流密度でヒートサイクル試験(室温二
650℃)を行う、温度の昇降は外部曽のヒータを利用
する。第2図に結果を示す0曲線Aは実施例に係る電解
質板を用いた燃料電池のセル電圧特性1曲線Bは比較例
の電解質板を用いた電池のセル電圧特性である0曲線A
は初期性能も高<15回のヒートサイクル試験後も特性
低下はみられない、初期性能の向上は電極とのなじみが
よくなったことによる。これに対し曲線Bは初期特性も
若干低く、1回目のヒートサイクルで特性が急激に下が
った。これは電解質板に割れが生じたためである0曲線
A、Bともに出力が生じていることから電解質の保持性
は良好である0曲線Cは温度を示す。
When the carbonate is melted at about 550° C., the molten salt moves toward the electrolyte plate due to the difference in osmotic pressure. Here, a mixed gas of oxygen gas, carbon dioxide gas, and nitrogen gas was supplied to the cathode electrode, and a mixed gas of hydrogen gas and carbon dioxide gas was supplied to the anode electrode.
A heat cycle test (room temperature to 650° C.) is performed at a current density of 0 mA/ej, and an external heater is used to raise and lower the temperature. The results are shown in FIG. 2. 0 curve A is the cell voltage characteristic of the fuel cell using the electrolyte plate according to the example. 1 curve B is the cell voltage characteristic of the battery using the electrolyte plate of the comparative example.
The initial performance was also high. No deterioration in characteristics was observed even after 15 heat cycle tests. The improvement in initial performance was due to improved familiarity with the electrode. On the other hand, in curve B, the initial characteristics were also slightly low, and the characteristics rapidly decreased after the first heat cycle. This is due to cracks occurring in the electrolyte plate.Since output is generated in both curves A and B, the retention of the electrolyte is good.Curve C indicates the temperature.

実施例1で製作したシートのうちドクタブレード法によ
るものは水銀圧入法で測定したところ細孔径分布は0.
01〜1μmの範囲にあり、平均値は0.3.umであ
る。気孔率は50%である。また抄紙法によるシートは
細孔径分布はo、oi〜30#mの範囲であり、気孔率
は70%である。ドクタブレード法を用いると細孔径分
布が0.01〜3μmで気孔率が40〜60%のものが
容易に得られる。また抄紙法によると細孔径分布が0.
01〜100μmで気孔率が60〜80%のものが容易
に得られる。これらのものはいづれも本発明に適用する
ことができる。
Among the sheets produced in Example 1, those made by the doctor blade method had a pore size distribution of 0.000 when measured by the mercury intrusion method.
It is in the range of 0.01 to 1 μm, and the average value is 0.3. It is um. The porosity is 50%. Further, the sheet produced by the papermaking method has a pore size distribution in the range of o, oi to 30#m, and a porosity of 70%. When the doctor blade method is used, a material with a pore size distribution of 0.01 to 3 μm and a porosity of 40 to 60% can be easily obtained. Also, according to the papermaking method, the pore size distribution is 0.
01 to 100 μm and a porosity of 60 to 80% can be easily obtained. Any of these can be applied to the present invention.

以上のように、この発明では電解質を保持する機能を受
持つ内層部3Aと、燃料電池のヒートサイクルによって
破損しない外層部3Bとにより電解質板を構成している
ので、内層部3Aがヒートサイクルによって破損した場
合においても外層部3Bによって内層部3Aが保護され
燃料電池の運転に支障をきたすことがない。
As described above, in this invention, since the electrolyte plate is composed of the inner layer part 3A which has the function of holding electrolyte and the outer layer part 3B which is not damaged by the heat cycle of the fuel cell, the inner layer part 3A is not damaged by the heat cycle. Even if it is damaged, the inner layer portion 3A is protected by the outer layer portion 3B, and the operation of the fuel cell will not be affected.

” なお上記抄紙法による外層部の気孔率が80%以下
に制限されているのは、80%を越したときの細孔径が
電解質を保持し得なくなるという理由による。
The reason why the porosity of the outer layer is limited to 80% or less by the above papermaking method is that when the pore size exceeds 80%, the pore size cannot hold the electrolyte.

〔発明の効果〕〔Effect of the invention〕

この発明によればアノード電極とカソード電極間に配設
され溶融炭酸塩の電解質が含浸される電解質板において
、細孔径分布の平均値が小さい内層部と、電極に接し気
孔率の大きい外層部とを備えるので細孔径の細、かい内
部層によって電解質がよ(保持されて電極・内に三相界
面が十分形成され、同時に気孔率の大きい外層部によっ
て熱衝撃がよく吸収されて電解質板の破損が防止され、
その結果燃料電池の信頗性が大きく向上する。
According to the present invention, in an electrolyte plate disposed between an anode electrode and a cathode electrode and impregnated with a molten carbonate electrolyte, an inner layer portion having a small average pore size distribution and an outer layer portion in contact with the electrode and having a high porosity. Because the inner layer with fine pores has a large pore diameter, the electrolyte is well held (retained) and a three-phase interface is sufficiently formed within the electrode, and at the same time, the outer layer with a large porosity absorbs thermal shock well, preventing damage to the electrolyte plate. is prevented,
As a result, the reliability of the fuel cell is greatly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例に係る電解質板の模式断面図
、第2図はこの発明の実施例に係る電解質板の特性図、
第3図は従来の燃料電池の模式断面図である。 3A・・・内層部、3B・・・外層部。 ’1511!] セル電圧(V) セル逼崖(”C)
FIG. 1 is a schematic sectional view of an electrolyte plate according to an embodiment of the invention, FIG. 2 is a characteristic diagram of an electrolyte plate according to an embodiment of the invention,
FIG. 3 is a schematic cross-sectional view of a conventional fuel cell. 3A...inner layer part, 3B... outer layer part. '1511! ] Cell voltage (V) Cell peak ("C)

Claims (1)

【特許請求の範囲】 1)アノード電極とカソード電極間に配設され溶融炭酸
塩の電解質が含浸される電解質板において、気孔率及び
細孔径分布の平均値が小さい内層部と、電極に接し気孔
率及び細孔径分布の平均値の大きい外層部とを備えるこ
とを特徴とする溶融炭酸塩型燃料電池の電解質板。 2)特許請求の範囲第1項記載の電解質板において内層
部の気孔率は40〜60%細孔径分布は0.01乃至3
μmの範囲にあることを特徴とする溶融炭酸塩型燃料電
池の電解質板。 3)特許請求の範囲第1項記載の電解質板において、外
層部の気孔率は60及至80%細孔径分布は0.01〜
100μmの範囲であることを特徴とする溶融炭酸塩型
燃料電池の電解質板。
[Claims] 1) In an electrolyte plate disposed between an anode electrode and a cathode electrode and impregnated with an electrolyte of molten carbonate, an inner layer portion having a small average value of porosity and pore size distribution and a pore portion in contact with the electrode. An electrolyte plate for a molten carbonate fuel cell, comprising: an outer layer having a large average value of pore size distribution and pore size distribution. 2) In the electrolyte plate according to claim 1, the inner layer has a porosity of 40 to 60% and a pore size distribution of 0.01 to 3.
An electrolyte plate for a molten carbonate fuel cell, characterized in that the electrolyte plate is in the μm range. 3) In the electrolyte plate according to claim 1, the outer layer has a porosity of 60 to 80% and a pore size distribution of 0.01 to 80%.
An electrolyte plate for a molten carbonate fuel cell, characterized in that the electrolyte plate is in the range of 100 μm.
JP62282815A 1987-11-09 1987-11-09 Electrolyte plate of molten carbonate fuel cell Pending JPH01124961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62282815A JPH01124961A (en) 1987-11-09 1987-11-09 Electrolyte plate of molten carbonate fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62282815A JPH01124961A (en) 1987-11-09 1987-11-09 Electrolyte plate of molten carbonate fuel cell

Publications (1)

Publication Number Publication Date
JPH01124961A true JPH01124961A (en) 1989-05-17

Family

ID=17657444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62282815A Pending JPH01124961A (en) 1987-11-09 1987-11-09 Electrolyte plate of molten carbonate fuel cell

Country Status (1)

Country Link
JP (1) JPH01124961A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030014895A (en) * 2001-08-13 2003-02-20 와우텍 주식회사 Portable fuel cell system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030014895A (en) * 2001-08-13 2003-02-20 와우텍 주식회사 Portable fuel cell system

Similar Documents

Publication Publication Date Title
US5208121A (en) Battery utilizing ceramic membranes
KR920008994A (en) Oxide modified air electrode surface for high temperature electrochemical cells
JPWO2008143005A1 (en) Electrochemical element and method for producing the same
KR920005401A (en) Thin tubular self-supporting electrodes for solid oxide electrolyte electrochemical cells
JP2008004438A (en) Separator for battery, and lithium secondary cell
JP2846738B2 (en) Method for producing molten carbonate-fuel cell
US3287164A (en) Electrode and battery
JP2004327183A (en) Battery and its manufacturing method
JP4140517B2 (en) Lithium ion secondary battery and its construction method
JP2008004439A (en) Separator for battery, and lithium secondary battery
CA1212717A (en) Air cathode structure manufacture
US4710436A (en) Molten carbonate fuel cell and method of manufacturing electrolyte plate thereof
CN209571500U (en) A kind of lithium ion battery
JP3260972B2 (en) Hydrogen storage alloy electrode and sealed nickel-hydrogen storage battery using the same
US3476601A (en) Battery including inorganic fibrous material
US3446669A (en) Sintered metal oxide battery separator and battery
JP2015088430A (en) Nonaqueous electrolyte secondary battery separator, and nonaqueous electrolyte secondary battery having the same
US3671319A (en) Battery electrode and battery embodying same
US2473546A (en) Alkaline primary cell
JPH01124961A (en) Electrolyte plate of molten carbonate fuel cell
JPS58129775A (en) Fuel battery
JPH0636783A (en) Fuel electrode current collector for flat type solid electrolyte fuel cell
CN113013546A (en) Organic/inorganic particle coating composite diaphragm, preparation method and battery
KR20220161591A (en) A separator and an electrochemical device comprising the same
JPH0650643B2 (en) Method for manufacturing electrolyte plate for molten carbonate fuel cell