JPH01124926A - Oxide cathode - Google Patents

Oxide cathode

Info

Publication number
JPH01124926A
JPH01124926A JP62283952A JP28395287A JPH01124926A JP H01124926 A JPH01124926 A JP H01124926A JP 62283952 A JP62283952 A JP 62283952A JP 28395287 A JP28395287 A JP 28395287A JP H01124926 A JPH01124926 A JP H01124926A
Authority
JP
Japan
Prior art keywords
oxide
cathode
earth metal
electron
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62283952A
Other languages
Japanese (ja)
Inventor
Shigeo Ito
茂生 伊藤
Toshiyuki Kimizuka
君塚 利之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Futaba Corp
Original Assignee
Futaba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Futaba Corp filed Critical Futaba Corp
Priority to JP62283952A priority Critical patent/JPH01124926A/en
Publication of JPH01124926A publication Critical patent/JPH01124926A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve thermionic emission capability by adding a certain amount of rare earth metal oxide into an electron emission substance covering a linear shaped cathode body with its main constituent being tungsten. CONSTITUTION:In an oxide cathode comprising a linear shaped cathode body mainly containing tungsten with its surface covered with an electron emitting layer, the electron emitting layer contains mainly alkaline earth metal oxide containing at least barium and being added with 0.1-20wt.% of rare earth metal oxide. For example, to a ternary carbonate of alkaline earth metals of Ba, Sr, and Ca is added fine powder of scandium oxide as an oxide of rare earth metal and applied to cover the surface of the fine tungsten wire by electrodeposition to form a directly heated oxide cathode. This provides an oxide cathode of a high thermionic emission capability, long life, and less deterioration in the thermionic emission efficiency.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、蛍光表示管及び蛍光表示管の原理を応用した
非発光素子のバックライト用光源、光プリンタ用光源超
大形表示装置の発光ユニット等の発光素子の電子源とな
る酸化物陰極に係わり、特にエミッション特性に優れ長
時−1初期の高μ度を維持できる長寿命の線状の酸化物
陰極に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a fluorescent display tube, a light source for a backlight of a non-light emitting element applying the principles of a fluorescent display tube, a light source for an optical printer, and a light emitting unit for an ultra-large display device. The present invention relates to an oxide cathode that serves as an electron source for a light emitting device such as, and in particular, to a long-life linear oxide cathode that has excellent emission characteristics and can maintain a high initial μ value for a long period of time.

〔従来技術〕[Prior art]

一般に蛍光表示管の構造は、第1図の分解斜視図および
、第2図の断面図に示すように、絶縁性を有するガラス
基板上1に鵠や層等の導電物質による配線パターン2、
フリットガラスを主成分とする絶縁層3.黒鉛による陽
極導体4、蛍光体層5をスクリーン印刷法で積層形成し
て陽極基板Aを構成している。この陽極基板Aに対面し
て、−定間隙だけ離れた位置に設けたメツシュ状の制御
電極6、さらに一定間隙能れて、張設されたフィラメン
ト状の酸化物陰極8、リード端子7、フレーム9、陰極
支持体11等からなる電極構造体Cと、前記陽極基板A
の周縁に封着される箱形の容器部Bから構成゛されてい
るs9aは容器部Bの内面に配設された静電遮蔽膜であ
る。
In general, the structure of a fluorescent display tube is, as shown in the exploded perspective view of FIG. 1 and the cross-sectional view of FIG.
Insulating layer mainly composed of frit glass 3. An anode substrate A is constructed by laminating an anode conductor 4 made of graphite and a phosphor layer 5 using a screen printing method. Facing this anode substrate A, there is a mesh-like control electrode 6 provided at a certain distance apart, a filament-like oxide cathode 8 stretched across a certain space, a lead terminal 7, and a frame. 9. Electrode structure C consisting of cathode support 11 and the like, and the anode substrate A
s9a is an electrostatic shielding film disposed on the inner surface of the container part B.

前記陽極基板Aと容器部Bによって外囲器Hが構成され
、この外囲器H内の気体を排気管10より排気し、高真
空になった状態で封止して、外囲器内を高真空に保持し
て蛍光表示管を構成していた。
An envelope H is constituted by the anode substrate A and the container part B, and the gas inside the envelope H is exhausted from the exhaust pipe 10, and the interior of the envelope is sealed in a high vacuum state. It was maintained in a high vacuum to form a fluorescent display tube.

次に、蛍光表示管の作用について説明する。前記酸化物
陰極8に陰極電圧を印加すると、酸化物陰極は加熱され
て電子を放出する。放出された電子は、制御電極6によ
り加速・制御されて陽極基板A上の蛍光体層5に射突す
ることにより、蛍光体層5を励起発光させる。この蛍光
体層の発光を利用してセグメント表示やグラフィック表
示をしたり、また、各種光源として利用してきた。
Next, the function of the fluorescent display tube will be explained. When a cathode voltage is applied to the oxide cathode 8, the oxide cathode is heated and emits electrons. The emitted electrons are accelerated and controlled by the control electrode 6 and impinge on the phosphor layer 5 on the anode substrate A, thereby exciting the phosphor layer 5 to emit light. The light emitted from this phosphor layer has been used to display segments and graphics, and has also been used as a variety of light sources.

このように蛍光表示管及び蛍光表示管の原理を応用した
発光素子にはすべて電子源として線状の酸化物陰極8が
使用されている。
As described above, all fluorescent display tubes and light emitting devices to which the principle of a fluorescent display tube is applied use a linear oxide cathode 8 as an electron source.

ここで従来の酸化物陰極について、更に詳しく説明する
。一般に酸化物陰極は、電子放出物質を加熱させる為の
ヒータ部と、陰極電流を流す陰極基体と、加熱により電
子放出物質をコーテングした電子放出物質層と種類によ
っては絶縁層を有する構成になっている。なお、電子放
出物質層は。
Here, the conventional oxide cathode will be explained in more detail. In general, an oxide cathode has a structure that includes a heater part for heating an electron-emitting substance, a cathode substrate through which a cathode current flows, an electron-emitting substance layer coated with an electron-emitting substance by heating, and an insulating layer depending on the type. There is. Note that the electron-emitting material layer is

アルカリ土類金属の酸化物から構成されているので酸化
物層とも称す。
Since it is composed of an oxide of an alkaline earth metal, it is also called an oxide layer.

また、前記酸化物陰極は、ヒータ部と電子放出物質層の
位置関係から、直熱形と傍熱形に分けられる。
Further, the oxide cathode is classified into a directly heated type and an indirectly heated type depending on the positional relationship between the heater part and the electron emitting material layer.

直熱形の酸化物陰極は、高融点金属、例えばタングステ
ンの線状ヒータ部の表面に直接酸化物層をコーテングに
より形成した構造である。したがって、この直熱形の酸
化物陰極は、線状構造をとる場合が多く、構造が簡単で
あるので、その線径を細く形成することが可能であり、
フィラメント状のカソードとも称し、蛍光表示管及び蛍
光表示管の原理を利用した蛍光発光管には多く使用され
てきた。
A directly heated oxide cathode has a structure in which an oxide layer is directly coated on the surface of a linear heater section made of a high melting point metal such as tungsten. Therefore, this directly heated oxide cathode often has a linear structure, and since the structure is simple, it is possible to form the wire with a small diameter.
Also called a filament cathode, it has been widely used in fluorescent display tubes and fluorescent light emitting tubes that utilize the principle of fluorescent display tubes.

一方傍熱形の酸化物陰極はヒータ部と陰極基板の間に絶
縁層を設け、陰極基板が電気的に独立している構造であ
り、ヒータ部にヒータ電位を、陰極基板には゛陰極電位
を別々に印加できる構造である。
On the other hand, indirectly heated oxide cathodes have a structure in which an insulating layer is provided between the heater part and the cathode substrate, and the cathode substrate is electrically independent. It has a structure that can be applied separately.

この傍熱形の酸化物陰極は、筒状の金属基体の上面に電
子放出物質が被着され、筒内にヒータ部を設けたブラウ
ン管用の酸化物陰極と、線状ヒータ部の表面に絶縁層を
介して陰極基体を設け、この表面に電子放出物質を被着
させた。蛍光表示管用の線状の酸化物陰極に分けられる
This indirectly heated oxide cathode consists of an oxide cathode for cathode ray tubes, in which an electron-emitting substance is deposited on the top surface of a cylindrical metal base, and a heater part is provided inside the cylinder. A cathode substrate was provided through the layers, and an electron-emitting substance was deposited on the surface of the cathode substrate. It is divided into linear oxide cathodes for fluorescent display tubes.

本発明は、前述の直熱形及び傍熱形の酸化物陰極中で蛍
光表示管に利用できる線状酸化物陰極に適用できるもの
である。
The present invention can be applied to linear oxide cathodes that can be used in fluorescent display tubes, among the directly heated and indirectly heated oxide cathodes mentioned above.

直熱形の線状酸化物陰極の構造は、実開昭60−527
52号により公知であり、電気泳動の原理を応用した製
造方法も特開昭60−63848号により公知である。
The structure of a directly heated linear oxide cathode is based on Utility Model Application No. 60-527.
52, and a manufacturing method applying the principle of electrophoresis is also known from JP-A-60-63848.

また、傍熱形の線状酸化物陰極の構造は、実開昭58−
193549号で公知のように、ヒータ部となるタング
ステン線の周囲にAll、 O,による絶縁層を設け、
その絶縁層の表面に導電性金属により陰極基体を形成し
、さらに陰極基体の表面に電子放出物質をコーテングし
て酸化物層を形成した構造である。
In addition, the structure of the indirectly heated linear oxide cathode is
As is known from No. 193549, an insulating layer of All, O, is provided around the tungsten wire that becomes the heater part,
It has a structure in which a cathode substrate is formed from a conductive metal on the surface of the insulating layer, and an oxide layer is further formed by coating the surface of the cathode substrate with an electron-emitting substance.

さらに、特開昭61−269832号で示されるように
、陰極基体が細いパイプ状であり、そのパイプ中に表面
を絶縁したヒータを通し、陰極基体の表面に電子放出物
質をコーテングした構造の線状酸化物陰極も公知である
Furthermore, as shown in JP-A No. 61-269832, the cathode substrate is shaped like a thin pipe, a heater with an insulated surface is passed through the pipe, and the surface of the cathode substrate is coated with an electron-emitting substance. Oxide cathodes are also known.

いずれのタイプの線状酸化物陰極に於ても、電子放出物
質を基体上にコーテングにより形成した酸化物層は存在
しており、本発明はすべての線状酸化物陰極に適用でき
る酸化物層の改善に関するものである。
In any type of linear oxide cathode, there is an oxide layer formed by coating an electron-emitting substance on the substrate, and the present invention can be applied to all types of linear oxide cathodes. It is related to the improvement of

従来の酸化物層は、Ba、 Sr、Ca等のアルカリ土
類金属の三元炭酸塩(Ba、Sr、 Ca)Go3を陰
極基体にコーテングした後、乾燥固着させて、蛍光表示
管の陰極支持体上に溶接固定し、排気後高真空状態で通
電加熱し、約1000℃で三元炭酸塩を分解してアルカ
リ土類金属の酸化物固溶体を形成させる。
Conventional oxide layers are made by coating a cathode substrate with ternary carbonate (Ba, Sr, Ca) Go3 of alkaline earth metals such as Ba, Sr, Ca, etc., and then drying and fixing it to support the cathode of a fluorescent display tube. It is welded and fixed on the body, and after being evacuated, it is heated with electricity in a high vacuum state, and the ternary carbonate is decomposed at about 1000°C to form an oxide solid solution of alkaline earth metal.

反応式は下記に示すとおりである。The reaction formula is as shown below.

(Ba、 Sr、Ca)Go3→(Ba、 Sr、 C
a)O+CO。
(Ba, Sr, Ca) Go3 → (Ba, Sr, C
a) O+CO.

また、同゛時に一部のBaOは、ヒータのタングステン
により還元されて、 BaO→Ba+1/202の反応
で遊離Baが生成され、これが電子放出源となる。
At the same time, some BaO is reduced by the tungsten of the heater, and free Ba is generated by the reaction BaO→Ba+1/202, which becomes an electron emission source.

さらにこのBaOの分解反応は、タングステンのヒータ
、に電圧を印加して酸化物固溶体から成る酸化物層を加
熱させることによってもおこることが知られている。
Furthermore, it is known that this decomposition reaction of BaO can also be caused by applying a voltage to a tungsten heater to heat an oxide layer made of an oxide solid solution.

〔発明が解決しようする問題点〕[Problem that the invention aims to solve]

このように構成された従来の酸化物陰極は、蛍光表示管
用として各分野で利用されているが、近年、光プリンタ
用光源や野外用の超大形表示素子や車のインパネ用表示
素子等においては、高輝度化が望まれている。そのため
には陰極においても従来よりもよりエミッション効率が
高く、作動時間が経過してもエミッション効率が低下し
ない長寿命の酸化物陰極が要求されていた。
Conventional oxide cathodes configured in this way are used in various fields for fluorescent display tubes, but in recent years, they have been used in light sources for optical printers, ultra-large display elements for outdoor use, display elements for car instrument panels, etc. , high brightness is desired. To this end, an oxide cathode is required that has higher emission efficiency than conventional cathodes and has a long lifespan in which the emission efficiency does not decrease even after operating time.

〔本発明の目的〕[Object of the present invention]

本発明は、前記問題点に鑑みてなされたものであり、よ
り熱電子放出能力(エミッション効率)が高く、長時間
点灯しても熱電子放出効率が低下しない長寿命の酸化物
陰極を得ることを目的とするものである。
The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to obtain an oxide cathode with a higher thermionic emission ability (emission efficiency) and a long life in which the thermionic emission efficiency does not decrease even when turned on for a long time. The purpose is to

〔問題点を解決するための手段〕[Means for solving problems]

前述の目的を達成するため、本発明は、タングステンを
主成分とする線状の陰極基体の表面に電子放出物質層が
被覆された酸化物陰極において、前記電子放出物質層が
少なくともバリウムを含むアルカリ土類金属酸化物を主
成分とし、9.1〒20重量%の希土類金属酸化物を混
合したこ、とを特1徴とするものである。
In order to achieve the above object, the present invention provides an oxide cathode in which the surface of a linear cathode substrate mainly composed of tungsten is coated with an electron-emitting material layer, wherein the electron-emitting material layer is an alkali material containing at least barium. The main component is an earth metal oxide, and 9.1 to 20% by weight of a rare earth metal oxide is mixed therein.

〔作 用〕[For production]

本発明においては、電子放出物質層(酸化物層)に、バ
リウムを含むアルカリ土類金属酸化物中に希土類金属酸
化物が0.1〜20重量%混合させたので、この希土類
金属酸化物が、エミッション源である遊離バリウムの生
成を促進させる作用があり。
In the present invention, in the electron emitting material layer (oxide layer), 0.1 to 20% by weight of a rare earth metal oxide is mixed in an alkaline earth metal oxide containing barium. , has the effect of promoting the production of free barium, which is a source of emissions.

熱電子放出源の密度を高くさする。Increase the density of thermionic emission sources.

〔実施例〕〔Example〕

従来より周知の方法で作成した。Ba、 Sr、 Ca
のアルカリ土類金属の三元炭酸塩(Ba、 Sr、 C
a)Co。
It was created using a well-known method. Ba, Sr, Ca
Ternary carbonates of alkaline earth metals (Ba, Sr, C
a) Co.

に対し、希土類金属酸化物として、酸化スカンジウム(
SC,03)微粉末を混合して電気泳動の原理を応用し
た電着法でタングステン細線の表面に被着させて、直熱
形の酸化物陰極を形成した。
On the other hand, scandium oxide (
SC, 03) A directly heated oxide cathode was formed by mixing fine powder and depositing it on the surface of a thin tungsten wire using an electrodeposition method applying the principle of electrophoresis.

SC,O,微粉末の混合量は、0〜25重量%中から数
点を選び、炭酸塩中に混合し、溶媒中に分散させて電着
液とした。
The mixed amounts of SC, O, and fine powder were selected from 0 to 25% by weight, mixed in carbonate, and dispersed in a solvent to prepare an electrodeposition liquid.

このように、SC,Osを三元炭酸塩(Ba、 Sr、
 Ca)COlと共にタングステン細線に被着させた後
、乾燥固着して直熱形の線状陰極を形成した。
In this way, SC, Os can be converted into ternary carbonates (Ba, Sr,
After coating a thin tungsten wire with Ca)COl, it was dried and fixed to form a directly heated linear cathode.

この線状陰極を蛍光表示管に実装してエミッション能力
を評価した0本発明の酸化物陰極を配設した蛍光表示管
を連続点灯したときの点灯時間とパルスエミッション値
の関係を第3図に示す、このパルスエミッション値は、
SC,O3の混合量を0%とした従来の酸化物陰極の初
期のパルスエミッション値を100としたときの相対値
である。
This linear cathode was mounted on a fluorescent display tube and its emission ability was evaluated. Figure 3 shows the relationship between lighting time and pulse emission value when a fluorescent display tube equipped with the oxide cathode of the present invention is continuously lit. This pulse emission value, shown, is
This is a relative value when the initial pulse emission value of a conventional oxide cathode with a mixed amount of SC and O3 of 0% is set to 100.

SC,O,を5vt%と10vt%を三元炭酸塩に混合
した酸化物陰極は、いずれも従来の混合してない陰極よ
りもパルスエミッション値が高い。特に初期値は。
Oxide cathodes containing 5 vt% and 10 vt% SC,O, mixed with ternary carbonates both have higher pulse emission values than conventional unmixed cathodes. Especially the initial value.

従来の陰極が100に対し10vt%混合した陰極は1
23であり、5wt%混合した陰極は140と大きい値
であった。500時間点灯後のエミッション値は初期値
より1両方共低下しているが、従来例よりも大であり、
さらに点灯時間が経過してもほぼ500時間の値を変え
ず安定している。
The cathode mixed with 10vt% is 1 compared to 100 of the conventional cathode.
23, and the cathode containing 5 wt% had a large value of 140. The emission values after 500 hours of lighting are both lower than the initial values, but they are still larger than the conventional example.
Furthermore, even after the lighting time elapses, the value remains stable for approximately 500 hours without changing.

第4図は1本発明の酸化物愁極を実装した蛍光表示管を
連続点灯したときの、連続点灯時間と発光輝度の関係を
示すグラフである。蛍光体は、 ZnO: Zn蛍光体
を使用した。輝度は従来のSC,O,の混入していない
酸化物陰極を配設した蛍光表示管の初期輝度を100と
したときの相対値である。
FIG. 4 is a graph showing the relationship between continuous lighting time and luminance when a fluorescent display tube equipped with the oxide fluorescent electrode of the present invention is continuously lit. The phosphor used was ZnO: Zn phosphor. The brightness is a relative value when the initial brightness of a conventional fluorescent display tube equipped with an oxide cathode containing no SC or O is set to 100.

このグラフかられかるようにSC,O3を10vt%混
合した陰極は、従来例の輝度とほとんど同じであったが
、5wt%混合したものは、従来例より10%位輝度が
向上していた。
As can be seen from this graph, the brightness of the cathode containing 10% by weight of SC and O3 was almost the same as that of the conventional example, but the brightness of the cathode containing 5% by weight was improved by about 10% compared to the conventional example.

次に、 SC,O3の混合方法の別の実施例を説明する
。 SCa (NO3)2を三元炭酸塩を作る原料、す
なわちアルカリ土類金属の硝酸塩に所定割合で混合させ
、純水に溶解させる。この溶液に(NH4)iCOaを
加えてBa、 Sr、 Ca、 Scの四元炭酸塩を形
成する。
Next, another example of a method for mixing SC and O3 will be described. SCa (NO3)2 is mixed in a predetermined ratio with a raw material for making a ternary carbonate, that is, an alkaline earth metal nitrate, and then dissolved in pure water. (NH4)iCOa is added to this solution to form a quaternary carbonate of Ba, Sr, Ca, and Sc.

この四元炭酸塩を電着法で陰極基体に被着させることに
より線状の酸化物陰極を作ることも可能である。この酸
化物陰極を蛍光表示管に配設し、排気工程で高真空にし
た状態で通電加熱させて四元炭酸塩を分解させて(+3
a、5r、Ca、 5c)Oで示す酸化物固溶体を形成
する。
It is also possible to produce a linear oxide cathode by depositing this quaternary carbonate on a cathode substrate by electrodeposition. This oxide cathode is placed in a fluorescent display tube, and heated with electricity under a high vacuum during the evacuation process to decompose the quaternary carbonate (+3
a, 5r, Ca, 5c) An oxide solid solution represented by O is formed.

なお、本実施例では直熱形の酸化物陰極の例を説明した
が、線状の傍熱形酸化物陰極にも適用できるものである
。また希土類金属酸化物として5C303以外にY、O
,e Co、O,、La、O,等も同様に混合すること
により同様の効果を奏するものであるン〔本発明の効果
〕 本発明は、タングステンを主成分とする線状の陰極基体
に被覆される電子放出物質中に0.1〜20重量%の希
土類金属酸化物を含有させたので、従来の酸化物陰極よ
りもパルスエミッションが高く゛なり、熱電子放出能力
が高くなるという効果がある。
In this embodiment, an example of a directly heated oxide cathode has been described, but the present invention can also be applied to a linear indirectly heated oxide cathode. In addition to 5C303 as rare earth metal oxides, Y, O
, e Co, O, , La, O, etc. can be similarly mixed to achieve the same effect. Since the coated electron emitting material contains 0.1 to 20% by weight of rare earth metal oxide, it has the effect of higher pulse emission and higher thermionic emission ability than conventional oxide cathodes. be.

また、長時間点灯してもパルスエミッションが低下しな
いので長寿命の酸化物陰極が得られるという効果を有す
るものである。
Furthermore, since the pulse emission does not decrease even when the lamp is lit for a long time, it has the effect that a long-life oxide cathode can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、−膜内な蛍光表示管の分解斜視図。 第2図は、同断面図、第3図は、本発明と従来例の実施
例における連続点灯時間とパルスエミッションの関係を
示すグラフ、第4図は、同実施例における連続点灯時間
と相対輝度の関係を示すグラフである。 8・・・・・・酸化物陰極 特許出願人  双葉電子工業株式会社 °く  余 べ H・・/ へ へ I’11>♀ 胃 戻 徽 麺
FIG. 1 is an exploded perspective view of a fluorescent display tube inside a membrane. Fig. 2 is a cross-sectional view of the same, Fig. 3 is a graph showing the relationship between continuous lighting time and pulse emission in the embodiment of the present invention and the conventional example, and Fig. 4 is a graph showing the relationship between continuous lighting time and relative brightness in the same embodiment. It is a graph showing the relationship between. 8...Oxide cathode patent applicant Futaba Electronics Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)タングステンを主成分とする線状の陰極基体の表
面に電子放出物質層が被覆された酸化物陰極において、
前記電子放出物質層が少なくともバリウムを含むアルカ
リ土類金属酸化物を主成分とし、0.1〜20重量の希
土類金属酸化物を混合したことを特徴とする酸化物陰極
(1) In an oxide cathode in which the surface of a linear cathode substrate mainly composed of tungsten is coated with an electron-emitting material layer,
An oxide cathode, wherein the electron emitting material layer is mainly composed of an alkaline earth metal oxide containing at least barium, and is mixed with 0.1 to 20 weight of a rare earth metal oxide.
(2)前記希土類金属酸化物が酸化スカンジウムである
特許請求の範囲第1項記載の酸化物陰極。
(2) The oxide cathode according to claim 1, wherein the rare earth metal oxide is scandium oxide.
JP62283952A 1987-11-10 1987-11-10 Oxide cathode Pending JPH01124926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62283952A JPH01124926A (en) 1987-11-10 1987-11-10 Oxide cathode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62283952A JPH01124926A (en) 1987-11-10 1987-11-10 Oxide cathode

Publications (1)

Publication Number Publication Date
JPH01124926A true JPH01124926A (en) 1989-05-17

Family

ID=17672348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62283952A Pending JPH01124926A (en) 1987-11-10 1987-11-10 Oxide cathode

Country Status (1)

Country Link
JP (1) JPH01124926A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03216932A (en) * 1989-12-27 1991-09-24 Samsung Electron Devices Co Ltd Method of manufacturing oxide cathode
US5554859A (en) * 1989-09-04 1996-09-10 Canon Kabushiki Kaisha Electron emission element with schottky junction
KR100249477B1 (en) * 1995-09-21 2000-03-15 모리 가즈히로 Emitter material for cathode ray tube and the method for manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5554859A (en) * 1989-09-04 1996-09-10 Canon Kabushiki Kaisha Electron emission element with schottky junction
JPH03216932A (en) * 1989-12-27 1991-09-24 Samsung Electron Devices Co Ltd Method of manufacturing oxide cathode
KR100249477B1 (en) * 1995-09-21 2000-03-15 모리 가즈히로 Emitter material for cathode ray tube and the method for manufacturing the same

Similar Documents

Publication Publication Date Title
US7683530B2 (en) Cathodoluminescent light source having an electron field emitter coated with nanocarbon film material
JPH0146989B2 (en)
CN1007191B (en) Electron tube
US4100454A (en) Low-velocity electron excited fluorescent display device
US3563797A (en) Method of making air stable cathode for discharge device
KR100259704B1 (en) Cathode ray tube
US4904900A (en) Glow discharge lamp
JP4173057B2 (en) Fluorescent substance and fluorescent display device
JPH01124926A (en) Oxide cathode
JP2000357464A (en) Cathode-ray tube
US3837909A (en) Coated coil emissive electrode
US2959702A (en) Lamp and mount
JP2006312695A (en) Blue light-emitting phosphor for display device, and field emission type display device
KR100280999B1 (en) Filament for Vacuum Fluorescent Display and Manufacturing Method of The Same
JP2006316105A (en) Green color-emitting fluorophor for display device and field emission-type display device
KR910001397B1 (en) Hot cathode in wire form
JP4804646B2 (en) Low speed electron beam phosphor and fluorescent display tube
JPH0785395B2 (en) Linear hot cathode
CN100447930C (en) Production of cathode of cold cathode fluorescent tube
JPS61243646A (en) Fluorescent character display tube
JPH07122177A (en) Oxide cathode
JPS6243044A (en) Fluorescent character display tube
JP2007177078A (en) Fluorophor for display device and field emission-type display device
JPS63271843A (en) Oxide cathode
JPH0787068B2 (en) Linear hot cathode