JPH01124915A - High temperature oxide superconductor - Google Patents

High temperature oxide superconductor

Info

Publication number
JPH01124915A
JPH01124915A JP62283737A JP28373787A JPH01124915A JP H01124915 A JPH01124915 A JP H01124915A JP 62283737 A JP62283737 A JP 62283737A JP 28373787 A JP28373787 A JP 28373787A JP H01124915 A JPH01124915 A JP H01124915A
Authority
JP
Japan
Prior art keywords
high temperature
oxide high
superconducting material
cross
current density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62283737A
Other languages
Japanese (ja)
Inventor
Katsuhiko Kojo
勝彦 古城
Yasunobu Ogata
安伸 緒方
Yusuke Iyori
裕介 井寄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP62283737A priority Critical patent/JPH01124915A/en
Publication of JPH01124915A publication Critical patent/JPH01124915A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To elevate orientation degree of crystal axes so as to enable current density to be elevated by specifying the long and short outside dimensions in the direction where cross sections cross at right angles. CONSTITUTION:In an oxide high temperature superconductor which is formed by charging oxide high temperature superconductive material powder into a sheath consisting of metal material, long and short outside dimensions in the direction where cross sections cross at right angles are each (a, b) formed in a > b and a / b=1.5-5.0. As a material, for example, Y2O3+BaO and CuD are used. Hereby, shearing force acts in the process to gradually decrease the cross section by a rolling roll or a die, so the C face of the oxide high temperature superconductive material powder which essentially presents plate-shape can be oriented mechanically and the current density can be elevated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高い臨界温度を有する酸化物高温超電導材に
関するものであり、特に結晶軸配向度の高い酸化物高温
超電導材に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an oxide high temperature superconducting material having a high critical temperature, and particularly to an oxide high temperature superconducting material having a high degree of crystal axis orientation.

〔従来の技術〕[Conventional technology]

電気抵抗がゼロである超電導材は、電力応用面において
省エネルギー、機器のコンパクト化、大容量化が期待で
き、一方エレクトロニクス分野においては素子の高速化
、高出力化、微小信号の検出等が期待できるため、 1
91)年において超電導現象が発見されて以来、研究と
実用化が進められてきている。この間超電導材の臨界温
度は、いわゆるESC理論等から30〜40Kが限界と
されており、現実に金属においてはNb、Qeの23K
が記録されて以来近年まで進展が停止していた。
Superconducting materials, which have zero electrical resistance, can be expected to save energy, make devices more compact, and increase capacity in power applications, while in the electronics field, they can be expected to make devices faster, have higher output, and detect minute signals. For, 1
Since the discovery of superconductivity in 1991, research and practical application have been progressing. Meanwhile, the critical temperature of superconducting materials is said to be limited to 30 to 40K based on the so-called ESC theory, and in reality, in metals, Nb and Qe have a critical temperature of 23K.
Progress has stalled since it was first recorded until recent years.

しかしながら近年に至ってLa−Ba−Cu−0系セラ
ミツクスにより高い臨界温度が得られ、更にその後Y−
Ba−Cu−0系セラミックスにより、液体窒素温度(
77K)をも蟲かに凌駕する臨界温度が報告され、この
分野の研究かにわかに注目されるに至り、基礎研究と共
に実用化技術。
However, in recent years, a high critical temperature has been obtained with La-Ba-Cu-0 ceramics, and later Y-
With Ba-Cu-0 ceramics, liquid nitrogen temperature (
A critical temperature exceeding even 77K (77K) was reported, and research in this field suddenly attracted attention, leading to basic research as well as practical technology.

就中線材化(横断面偏平状の帯材も含む、以下同じ)の
技術開発が強く要望されている。
In particular, there is a strong demand for the development of technology for making wire rods (including strips with flat cross sections; the same applies hereinafter).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記セラミックス系の超を導材は、一般に粉末二含金技
術の応用によって合成される。すなわち例えばY−Ba
−Cu−0系セラミツクス(YBCO)は、原料である
BaCo、、YtO3+  CuOの粉末を混合して、
固相反応を行わせるために900℃で仮焼した後、粉砕
してペレット状にプレス成形し、酸素雰囲気中で焼成す
ることによって得られる。この場合、結晶粒子の配列状
態はランダムであり、規則的な配列状態ではないのが通
常である。一方超電導電流は結晶構造の0面に沿って流
れ、0面と直交するC軸方向には電気的結合がないため
、電流は流れない。従って前記従来のセラミックス系の
超電導材においては、0面がランダムに配向されている
ことから、電流密度は数百ないし数千A/aJに留まっ
ている。すなわち従来の酸化物超電導材においては、結
晶構造若しくは構成要素である微粒子は、超電導電流を
導くべき0面に関係する形状異方性を保有せず、従って
電流密度が前記のような低水準に留まるという問題点が
ある。
The above-mentioned ceramic-based superconducting material is generally synthesized by applying powder metallization technology. That is, for example, Y-Ba
-Cu-0 ceramics (YBCO) is produced by mixing powders of raw materials BaCo, YtO3+CuO,
It is obtained by calcining at 900° C. to carry out a solid phase reaction, then crushing and press-molding into pellets, and firing in an oxygen atmosphere. In this case, the crystal grains are usually arranged randomly and not regularly. On the other hand, superconducting current flows along the 0-plane of the crystal structure, and since there is no electrical connection in the C-axis direction perpendicular to the 0-plane, no current flows. Therefore, in the conventional ceramic-based superconducting material, the current density remains at several hundred to several thousand A/aJ because the zero plane is randomly oriented. In other words, in conventional oxide superconducting materials, the crystal structure or the fine particles that are the constituent elements do not have shape anisotropy related to the zero plane in which superconducting current should be conducted, and therefore the current density does not reach the low level mentioned above. There is a problem with staying.

一方上記セラミックス系の超電導材を線材化する方法と
しては1例えば銅パイプ中に粉末状のセラミックス系超
電導材を充填閉塞し、線引きにより細線化する手段が知
られている。しかしながらこの手段においては、粉末の
充填密度を理論値まで上昇させることが困難であり、細
線化した後における超電導材としての特性が低下し、特
に電流密度が所定の値を大幅に下回るという問題点があ
る。
On the other hand, as a method for forming the ceramic superconducting material into a wire, for example, a method is known in which a copper pipe is filled with a powdered ceramic superconducting material and the pipe is drawn into a thin wire. However, with this method, it is difficult to increase the packing density of the powder to the theoretical value, and the characteristics as a superconducting material after thinning deteriorate, especially the problem that the current density is significantly lower than a predetermined value. There is.

本発明は、上記従来技術に存在する問題点を解決し、結
晶軸配向度を高めることにより、電流密度の高い酸化物
高温超電導材を提供することを目的とする。
An object of the present invention is to provide an oxide high-temperature superconducting material with high current density by solving the problems existing in the above-mentioned prior art and increasing the degree of crystal axis orientation.

〔問題点を解決するための手段〕[Means for solving problems]

上記従来技術に存在する問題点を解決するために9本発
明においては、金属材料からなるシース内に酸化物高温
超電導材料粉末を充填して形成した酸化物高温超電導材
において、横断面の直交する方向の長短外形寸法を各々
a、b (a>b)に形成すると共に、a/b= 1.
5〜5.0とする。という技術的手段を採用したのであ
る。
In order to solve the problems existing in the above-mentioned prior art, the present invention provides an oxide high temperature superconducting material formed by filling an oxide high temperature superconducting material powder into a sheath made of a metal material. The long and short external dimensions in the direction are respectively a and b (a>b), and a/b=1.
5 to 5.0. This technical method was adopted.

〔作用〕[Effect]

上記の構成により、圧延ロール若しくはダイスにより横
断面を漸次縮小する過程においでせん断力が作用し1本
来的に板状を呈する酸化物高温超電導材料粉末の0面を
機械的に配向させ得ることができるのである。
With the above configuration, it is possible to mechanically orient the zero surface of the oxide high temperature superconducting material powder, which is originally plate-shaped, by applying shear force during the process of gradually reducing the cross section using rolling rolls or dies. It can be done.

〔実施例1〕 まず原料として粉末状のYzOz、BaCo3およびC
uOをY:Ba:Cu=l:2:3になるように秤量後
、均一に混合して酸−紫雲囲気中において、900℃、
3時間の仮焼を行い、所定の組成に近い酸化物を生成す
る。次にこの酸化物を解砕した後、5mφ×2Rのペレ
ット状にプレス成形し、酸素雰囲気中で950℃、4時
間の焼成を行ない、酸素欠損三重ペロブスカイト型構造
の YBa2CusOδなる組成の超電導材を生成する
[Example 1] First, powdered YzOz, BaCo3 and C were used as raw materials.
After weighing uO so that Y:Ba:Cu=l:2:3, it was mixed uniformly and heated at 900°C in an acid-Shiun atmosphere.
Calcination is performed for 3 hours to produce an oxide having a composition close to a predetermined composition. Next, after crushing this oxide, it was press-formed into pellets of 5 mφ x 2 R, and fired at 950°C for 4 hours in an oxygen atmosphere to produce a superconducting material with a composition of YBa2CusOδ having an oxygen-deficient triple perovskite structure. generate.

この超電導材の粒子構造を観察したところ、平均粒径5
〜10μmであり、板状化、すなわち外形寸法と厚さと
の比が2〜6であることを確認した。
When we observed the particle structure of this superconducting material, we found that the average particle size was 5.
It was confirmed that the thickness was 10 μm, and that it was plate-shaped, that is, the ratio of external dimension to thickness was 2 to 6.

次に上記超電導材粒子を直径lO■の銀製のシース内に
充填して両端を閉塞し、線引き加工により超電導線材を
作成した。この場合、横断面形状を長辺a、短辺すから
なる長方形とし、a/1)の比を変えて、P!界電流密
度を測定した。
Next, the superconducting material particles were filled into a silver sheath having a diameter of 1O2, both ends of which were closed, and a superconducting wire was produced by wire drawing. In this case, the cross-sectional shape is a rectangle with a long side a and a short side S, and the ratio a/1) is changed so that P! The field current density was measured.

図は臨界電流密度と横断面の寸法比との関係を示す図で
ある。同図に示すように横断面外形寸法の比a / b
が1.0の場合には臨界電流密度が800A/−に留ま
っている。すなわち超電導材粒子が夫々ランダムに存在
するため、超電導電流の導通に寄与すべき0面もまたラ
ンダムに配向されているためである0次に上記a / 
bを次第に増加させると。
The figure is a diagram showing the relationship between the critical current density and the dimension ratio of the cross section. As shown in the figure, the ratio of cross-sectional external dimensions a / b
When is 1.0, the critical current density remains at 800 A/-. That is, since the superconducting material particles exist randomly, the zero planes that should contribute to the conduction of superconducting current are also randomly oriented.
When b is gradually increased.

すなわち横断面の偏平度を増大させると、臨界電流密度
もまた増大し、a/bが5.0以上ではその増大の度合
が小となる。これはa / bが増大するに従って、シ
ース内の超電導材粒子にせん断力が作用する結果、板状
比の大なる超電導材粒子の0面が機械的に配向されるも
のと推定される。なお上記a / bが5.0以上の領
域においては、せん断力によるC面配向が略飽和するた
め、臨界電流密度のそれ以上の増加が期待できないと推
定される。
That is, when the flatness of the cross section is increased, the critical current density also increases, and the degree of increase becomes small when a/b is 5.0 or more. This is presumed to be due to the fact that as a/b increases, shearing force acts on the superconducting material particles within the sheath, and as a result, the zero plane of the superconducting material particles having a large plate ratio becomes mechanically oriented. Note that in the region where a/b is 5.0 or more, the C-plane orientation due to shear force is approximately saturated, so it is presumed that no further increase in the critical current density can be expected.

〔実施例2〕 まず原料としてY2O,とBaOとの混合物を作成する
。この場合Y:Ba=1:2となるように配合して混合
機にて充分に混合する0次に上記混合物30モル%、C
u040モル%、Bzos30モル%を混合機にて充分
に混合し、この混合物を下端にノズルを有する白金製る
つぼに収容し、高周波加熱により1000〜1300℃
で溶解する。溶融物を均質に攪拌後、上記白金製るつぼ
内に空気圧を印加して、溶融物をノズルから直径10c
m、回転数300 rp+nの双ロール上に注湯して急
冷し、厚さ50III1)の非晶質リボンを作製する。
[Example 2] First, a mixture of Y2O and BaO is prepared as a raw material. In this case, mix Y:Ba=1:2 and mix thoroughly with a mixer. Next, 30 mol% of the above mixture, C
40 mol% of u0 and 30 mol% of Bzos are thoroughly mixed in a mixer, this mixture is placed in a platinum crucible with a nozzle at the bottom, and heated to 1000 to 1300°C by high frequency heating.
Dissolve with. After stirring the melt homogeneously, air pressure is applied inside the platinum crucible, and the melt is pumped through the nozzle with a diameter of 10 cm.
The molten metal is poured onto twin rolls with a rotational speed of 300 rp+n and rapidly cooled to produce an amorphous ribbon with a thickness of 50 III 1).

このようにして得た非晶質リボンを電気炉中において。The amorphous ribbon thus obtained was placed in an electric furnace.

800℃、5時間の大気中熱処理を行うと、酸素欠損三
重ペロプスカイト型構造の超電導材微粒子が析出するか
ら、冷却後の上記リボンを醋酸で溶融し、超電導材微粒
子を抽出する。このようにして作製した超電導材微粒子
は、平均粒径0.3μ−であり、Fi、軟化、すなわち
外形寸法と厚さとの比が2〜10であり、超電導電流の
導通に寄与すべき0面を有し、かつ形状巽方性を有する
微粒子であることを確認した。
When heat treatment is performed in the air at 800° C. for 5 hours, superconducting material fine particles having an oxygen-deficient triple perovskite structure are precipitated, so the cooled ribbon is melted with acetic acid to extract the superconducting material fine particles. The superconducting material fine particles produced in this way have an average particle size of 0.3 μ-, Fi, softening, that is, a ratio of external dimensions to thickness of 2 to 10, and 0 faces that should contribute to conduction of superconducting current. It was confirmed that the microparticles had the following characteristics and had shape traversal properties.

上記微粒子を前記実施例と同様に、銀製シース内に充填
して線引きを行ない、電流密度と横断面寸法比との関係
を調査したところ、前記実施例と同様の傾向を示すこと
を確認した。
The above fine particles were filled into a silver sheath and drawn in the same manner as in the previous example, and the relationship between current density and cross-sectional dimension ratio was investigated, and it was confirmed that the same tendency as in the previous example was shown.

本実施例においてはY−Ba−Cu−0系の酸化物高温
超電導材について記述したが、一般に組成式A IB 
z Cs 06 、但し、Aはsc + Y * L 
arCe、Pr、Nd+ Sm、Eu、Gd、Tb、D
y。
In this example, a Y-Ba-Cu-0 based oxide high temperature superconducting material was described, but generally the composition formula A IB
z Cs 06, however, A is sc + Y * L
arCe, Pr, Nd+ Sm, Eu, Gd, Tb, D
y.

Ha、Er、Tm、Yb、Luから選ばれる1種または
これらの中から選ばれる2種以上の混合物。
One type selected from Ha, Er, Tm, Yb, and Lu, or a mixture of two or more types selected from these.

BはBa、Sr、Caから選ばれる1種またはこれらの
中から選ばれる2種以上の混合物、CはCuまたは、C
uとTj、V、Cr、Mn+  Fe、Co。
B is one selected from Ba, Sr, and Ca or a mixture of two or more selected from these; C is Cu or C
u and Tj, V, Cr, Mn+ Fe, Co.

Ni、Znから選ばれる1種またはこれらの中から選ば
れる2種以上の混合物とのC,u主体の混合物、からな
る酸化物高温超電導材についても同一の作用が期待でき
る。
The same effect can be expected for an oxide high temperature superconducting material consisting of a mixture mainly of C and u with one selected from Ni and Zn or a mixture of two or more selected from these.

また本実施例においては、原料としてyzo3+Bad
、およびCuOを使用した例について示したが、一般に
(A)zc)+ + (B)O,(C)0゜8.03 
 ((A)はSc、 Y、 La、 Ce、 Pr。
In addition, in this example, yzo3+Bad
, and an example using CuO, but generally (A)zc)+ + (B)O, (C)0°8.03
((A) is Sc, Y, La, Ce, Pr.

+ Nd、Sm+ Eu、Gd、Tb、Dy、HotE
 r + T m + Y b ) L uから選ばれ
る1種またはこれらの中から選ばれる2種以上の混合物
、(B)はBa、Sr、Caから選ばれる1種またはこ
れらの中から選ばれる2種以上の混合物、(C)はCu
またはCuとTi、V、Cr、Mn、Fe。
+ Nd, Sm+ Eu, Gd, Tb, Dy, HotE
r + T m + Y b ) Lu or a mixture of two or more selected from these; (B) is one selected from Ba, Sr, and Ca or two selected from these; A mixture of more than one species, (C) is Cu
Or Cu and Ti, V, Cr, Mn, Fe.

Co、Ni、 Znから選ばれる1種またはこれらの中
から選ばれる2種以上の混合物とのCu主体の混合物)
を頂点とする三角成分図中にある混合物を使用しても作
用は同一である。
Cu-based mixture with one selected from Co, Ni, and Zn or a mixture of two or more selected from these)
The effect is the same even if a mixture is used in a triangular component diagram with vertices.

更にシース材としては、銀以外の金属若しくは合金を使
用することができ、線引き加工若しくは圧延加工等の塑
性加工時において、充分な展延性゛  を有すると共に
、超電翼材料からなる粉末若しくは微粒子を確実にシー
ス内に保持する強度があればよい。
Furthermore, metals or alloys other than silver can be used as the sheath material, and they have sufficient malleability during plastic processing such as wire drawing or rolling, and are suitable for forming powders or fine particles of the superelectric wing material. It is sufficient as long as it has enough strength to be held securely within the sheath.

なお本実施例においては、横断面形状が長短辺を有する
長方形を呈する線材若しくは帯材について記述したが、
長方形以外に楕円形、小判形、まゆ形等の他の幾何学的
形状としてもよい。
Note that in this example, the wire or strip material whose cross-sectional shape is a rectangle with long and short sides is described.
In addition to the rectangle, other geometric shapes such as an oval, an oval shape, and an eyebrow shape may be used.

(発明の効果〕 本発明は以上記述のような構成および作用であるから、
超電導電流を導くべきC面配向が容易であり、成形によ
って得られるべき酸化物超電導材の電流密度を大幅に向
上させ得るという効果がある。
(Effect of the invention) Since the present invention has the structure and operation as described above,
The C-plane orientation for guiding superconducting current is easy, and there is an effect that the current density of the oxide superconducting material to be obtained by molding can be greatly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

図は臨界電流密度と横断面の寸法比との関係を示す図で
ある。 [)12545 寸5天上し
The figure is a diagram showing the relationship between the critical current density and the dimension ratio of the cross section. [)12545 5 dimensions

Claims (4)

【特許請求の範囲】[Claims] (1)金属材料からなるシース内に酸化物高温超電導材
料粉末を充填して形成した酸化物高温超電導材において
,横断面の直交する方向の長短外形寸法を各々a,b(
a>b)に形成すると共に,a/b=1.5〜5.0と
したことを特徴とする酸化物高温超電導材。
(1) In an oxide high temperature superconducting material formed by filling a sheath made of a metal material with oxide high temperature superconducting material powder, the long and short external dimensions in the orthogonal direction of the cross section are a, b (
An oxide high-temperature superconducting material characterized in that a>b) and a/b=1.5 to 5.0.
(2)酸化物高温超電導材料が, 組成式A_1B_2C_3O_δ, 但し, AはSc,Y,La,Ce,Pr,Nd, Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Y
b,Luから選ばれる1種またはこれらの中から選ばれ
る2種以上の混合物, BはBa,Sr,Caから選ばれる1種またはこれらの
中から選ばれる2種以上の混合物,CはCuまたは,C
uとTi,V,Cr, Mn,Fe,Co,Ni,Znから選ばれる1種または
これらの中から選ばれる2種以上の混合物とのCu主体
の混合物である特許請求の範囲第1項記載の酸化物高温
超電導材。
(2) The oxide high temperature superconducting material has the composition formula A_1B_2C_3O_δ, where A is Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Y
B is one selected from Ba, Sr, Ca or a mixture of two or more selected from these; C is Cu or a mixture of two or more selected from these; ,C
Claim 1, which is a Cu-based mixture of u and one selected from Ti, V, Cr, Mn, Fe, Co, Ni, and Zn, or a mixture of two or more selected from these. oxide high temperature superconducting materials.
(3)組成式がYBa_2Cu_3O_δである特許請
求の範囲第1項若しくは第2項記載の酸化物高温超電導
材。
(3) The oxide high temperature superconducting material according to claim 1 or 2, which has a compositional formula of YBa_2Cu_3O_δ.
(4)横断面が実質的に長方形である特許請求の範囲第
1項ないし第3項記載の酸化物高温超電導材。
(4) The oxide high temperature superconducting material according to any one of claims 1 to 3, which has a substantially rectangular cross section.
JP62283737A 1987-11-10 1987-11-10 High temperature oxide superconductor Pending JPH01124915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62283737A JPH01124915A (en) 1987-11-10 1987-11-10 High temperature oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62283737A JPH01124915A (en) 1987-11-10 1987-11-10 High temperature oxide superconductor

Publications (1)

Publication Number Publication Date
JPH01124915A true JPH01124915A (en) 1989-05-17

Family

ID=17669451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62283737A Pending JPH01124915A (en) 1987-11-10 1987-11-10 High temperature oxide superconductor

Country Status (1)

Country Link
JP (1) JPH01124915A (en)

Similar Documents

Publication Publication Date Title
JPH01124915A (en) High temperature oxide superconductor
JP3034255B2 (en) Superconductor, superconductor wire, and method of manufacturing superconducting wire
JP3219563B2 (en) Metal oxide and method for producing the same
JPH07509686A (en) Superconducting oxides by coprecipitation at constant pH
JPS63256564A (en) Superconductive ceramic of scalelike oxide and its production
JPH01138132A (en) Meltable superconductor and its production
JP3257000B2 (en) Copper oxide superconductor and method of manufacturing the same
JP2678619B2 (en) Oxide superconducting wire and its manufacturing method
JPH0248459A (en) Production of compound oxide superconductor
JP2554658B2 (en) How to connect complex oxide superconductors
JPH02204358A (en) Oxide superconductor and production thereof
JPS63279513A (en) Superconductor wire rod and its manufacture
JP2597579B2 (en) Superconductor manufacturing method
JPH01179719A (en) Oxide superconductor and its production
JPH02199057A (en) Production of bismuth-based oxide superconductor
JPH03261647A (en) Production of sintered y1ba2cu3o7-x oxide superconductor
JPH01126258A (en) Production of oxide high-temperature superconductive material
JPH01224261A (en) Production of superconducting material and superconductor
JPH01270563A (en) Production of oxide superconducting material
JPH01122511A (en) Oxide ceramic superconducting fiber
JPH1059718A (en) Production of thallium-based superconductor
JPH01278458A (en) Production of superconductor
JPH01138122A (en) Production of mixed powder for superconductor
JPH01212227A (en) Oxide superconducting material
JPH01172259A (en) Production of ceramic superconducting molded body