JPH01124279A - Distributed feedback laser - Google Patents

Distributed feedback laser

Info

Publication number
JPH01124279A
JPH01124279A JP62282440A JP28244087A JPH01124279A JP H01124279 A JPH01124279 A JP H01124279A JP 62282440 A JP62282440 A JP 62282440A JP 28244087 A JP28244087 A JP 28244087A JP H01124279 A JPH01124279 A JP H01124279A
Authority
JP
Japan
Prior art keywords
diffraction grating
ingaasp
layer
semiinsulating
inp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62282440A
Other languages
Japanese (ja)
Inventor
Akira Takamori
高森 晃
Naoki Takenaka
直樹 竹中
Nobuyasu Hase
長谷 亘康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62282440A priority Critical patent/JPH01124279A/en
Publication of JPH01124279A publication Critical patent/JPH01124279A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/1228DFB lasers with a complex coupled grating, e.g. gain or loss coupling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To execute a distributed feedback operation of a beam without being influenced by a shape of a diffraction grating by a method wherein, because the diffraction grating of a semiinsulating thin film is formed and a region where an injected electric current flows is limited regularly, the diffraction grating by a change in a composition is not formed. CONSTITUTION:An Fe-doped semiinsulating InGaAsP layer 22 is grown on an n-InP substrate 21; a resist 23 is coated and a diffraction grating pattern 23 is formed; after that, an etching operation reaching the n-InP substrate 21 is executed; a semiinsulating InGaAsP diffraction grating 24 is formed. The resist 23 is removed; after that, an n-InGaAsP guide layer 25, an undoped InGaAsP active layer 26, a p-InP clad layer 27 and a p-InGaAsP cap layer 28 are grown; an n-type electrode 29 and a p-type electrode 30 are evaporated. An electric current injected from the side of the n-type substrate 21 reaches the active layer 26 after a current path 31 has been modulated by the diffraction grating 24; a refractive index corresponding to a cycle of the diffraction grating is distributed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は回折格子を内蔵する分布帰還型レーザ(DFB
レーザ)に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is directed to a distributed feedback laser (DFB) with a built-in diffraction grating.
(laser).

従来の技術 最近、1.3μmおよび1.6μm帯で単一軸モード発
振するDFBレーザが、大容量長距離光伝送あるいはコ
ヒーレント通信用の光源として利用されるようになって
きた。このDFBレーザは例えば第2図に示すような構
造が知られている。DFBレーザでは導波路層を伝播す
るレーザ光を回折格子によって波長選択して帰還するこ
とにより、本来、多軸モードで発振するレーザを単一軸
モードで発振させている。活性層を中心に進行する垂直
横モードにとって結晶組成の異なる凹凸の回折格子は屈
折率の異なる反射体として映る。このためには光導波路
層又は活性層近くに、段差の高低差が1000Å以上の
回折格子を形成しなければならない。
2. Description of the Related Art Recently, DFB lasers that oscillate in a single axis mode in the 1.3 μm and 1.6 μm bands have come to be used as light sources for large-capacity, long-distance optical transmission or coherent communications. This DFB laser has a known structure as shown in FIG. 2, for example. In a DFB laser, a laser beam that propagates through a waveguide layer is wavelength-selected using a diffraction grating and returned to the laser, thereby causing a laser that normally oscillates in a multi-axis mode to oscillate in a single-axis mode. For the vertical transverse mode that propagates around the active layer, a diffraction grating with convexes and convexes having different crystal compositions appears as a reflector with different refractive indexes. For this purpose, a diffraction grating with a height difference of 1000 Å or more must be formed near the optical waveguide layer or the active layer.

発明が解決しようとする問題点 しかしながら、上記のような構成では回折格子の凹凸形
状が結晶成長中に消失しないような成畏法が必要であっ
た。そのために、低温成長を行なうなど、回折格子の保
護法を工夫しなければならないという問題点を有してい
た。
Problems to be Solved by the Invention However, the above configuration requires a growth method that prevents the uneven shape of the diffraction grating from disappearing during crystal growth. Therefore, there was a problem in that it was necessary to devise a method for protecting the diffraction grating, such as by performing low-temperature growth.

本発明は上記問題点を簡単な構成で有効な半導体レーザ
を提供するものである。
The present invention provides a semiconductor laser which has a simple structure and is effective in solving the above problems.

問題点を解決するだめの手段 本発明はかかる点に鑑み、凹凸の回折格子の代わりに、
半絶縁性のエビ層を設け、そこに従来の作製法と同様に
回折格子を形成し、電流の流れを回折格子の周期で制限
することにより、従来のように結晶組成を変化させた段
差形状を必要としないDFBレーザである。
Means for Solving the Problems In view of the above, the present invention provides, in place of the uneven diffraction grating,
A semi-insulating shrimp layer is provided, a diffraction grating is formed on it as in the conventional manufacturing method, and the current flow is restricted by the period of the diffraction grating, thereby creating a step shape in which the crystal composition is changed as in the conventional method. This is a DFB laser that does not require

作  用 本発明は前記した構成により、周期的に基板上に残され
た半絶縁性薄膜の回折格子によって注入電流の流れが変
調される。このため活性層に注入されるキャリア密度も
変調されるので、プラズマ効果により、屈折率の周期的
変化が生じる。プラズマ効果とはキャリア密度が大きい
程、屈折率が小さくなる現象である。レーザ発振状態で
は注入キャリア密度はn=1〜2×10 α であるの
で、このプラズマ効果によって屈折率は10−6〜1o
−2程度電流が注入されない領域に比較して下がること
になる。その結果、結晶組成に変化をもだせて屈折率変
化を備えだ凹凸形状の従来のDFBレーザと同等の効果
を得ることができる。
Operation According to the present invention, the flow of the injected current is modulated by the diffraction grating of the semi-insulating thin film periodically left on the substrate with the above-described configuration. For this reason, the carrier density injected into the active layer is also modulated, resulting in periodic changes in the refractive index due to the plasma effect. The plasma effect is a phenomenon in which the higher the carrier density, the lower the refractive index. In the laser oscillation state, the injected carrier density is n=1~2×10α, so the refractive index is 10−6~1o due to this plasma effect.
This is a decrease of about -2 compared to the region where no current is injected. As a result, it is possible to obtain an effect equivalent to that of a conventional DFB laser having a concavo-convex shape, which has a change in crystal composition and a change in refractive index.

実施例 第1図は本発明の実施例におけるDFBレーザの構造図
を示すものである。図において、10はn−InP基板
、11ばFe  ドープした半絶縁性InGaAsP回
折格子、12はn −I nGaA s Pガイド層、
13はアンドープInGaAsP活性層、14はp−I
nPクラッド層、15はp−InGaAsPキャップ層
である。
Embodiment FIG. 1 shows a structural diagram of a DFB laser in an embodiment of the present invention. In the figure, 10 is an n-InP substrate, 11 is an Fe-doped semi-insulating InGaAsP diffraction grating, 12 is an n-InGaAsP guide layer,
13 is an undoped InGaAsP active layer, 14 is a p-I
An nP cladding layer and 15 a p-InGaAsP cap layer.

以上のように構成された本実施例のDFBレーザの半絶
縁性InGaAsP回折格子11の作製法および動作に
ついて第2図を用いて説明する。第2図においてn−I
nP基板21の上に液相成長法又は気相成長法によりF
eをドープした半絶縁性のInGaAsP層22を0.
1〜0.2 μm程度成長させる。
The method of manufacturing and operation of the semi-insulating InGaAsP diffraction grating 11 of the DFB laser of this embodiment configured as described above will be explained with reference to FIG. In Figure 2, n-I
F is deposited on the nP substrate 21 by liquid phase growth or vapor phase growth.
The semi-insulating InGaAsP layer 22 doped with e is 0.0.
Grow approximately 1 to 0.2 μm.

C^) その後、レジスト25を塗布し従来のレーザ光源^゛ を用いた2光束干渉露光法によって回折格子パターン2
3を形成してから、n−InP基板21に達するまでエ
ツチングして、半絶縁性InGaAsPの(k)ン 回折格子24を形成する。レジスト25を除去してから
n −I nGaAsPガイド層25、アンドープIn
GaAsP活性層26、p−InPクラッド層27.1
)−InGaAsPキャップ層28を成長させる。n型
電極29、n型電極3oを蒸着し素子構造とする。レー
ザ構造としては第1図に示したようなりC−PBH構造
をとってもよい。第3図aにおいてn型基板側21から
注入された電流は、半絶縁性のInGaAsP回折格子
24によって、電流通路31は矢印で示すように変調さ
れた活性層26に達する。この結果、第3図すに示すよ
うな回折格子周期に対応した屈折率分布ができるため、
従来の組成変化によって屈折率変化を持たせた回折格子
と同様の効果を発揮することができる。
C^) After that, a resist 25 is applied and a diffraction grating pattern 2 is formed by a two-beam interference exposure method using a conventional laser light source.
3 is formed and then etched until reaching the n-InP substrate 21 to form a (k)-n diffraction grating 24 of semi-insulating InGaAsP. After removing the resist 25, the n-I nGaAsP guide layer 25 and the undoped In
GaAsP active layer 26, p-InP cladding layer 27.1
)--InGaAsP cap layer 28 is grown. An n-type electrode 29 and an n-type electrode 3o are deposited to form an element structure. The laser structure may be a C-PBH structure as shown in FIG. In FIG. 3a, the current injected from the n-type substrate side 21 reaches the active layer 26, where the current path 31 is modulated by the semi-insulating InGaAsP diffraction grating 24 as shown by the arrows. As a result, a refractive index distribution corresponding to the period of the diffraction grating as shown in Figure 3 is created.
It can exhibit the same effect as a conventional diffraction grating in which the refractive index is changed by changing the composition.

なお、実施例では、半絶縁性回折格子、およびガイド層
をInGaAsPとしだが、半絶縁性InPおよびn−
InPクラッド層としてもよい。しかし、半絶縁性回折
格子とその上の層はInP−InP又はInGaAsP
−InGaAsPの組み合せにする必要がある。
In the example, the semi-insulating diffraction grating and the guide layer were made of InGaAsP, but semi-insulating InP and n-
It may also be an InP cladding layer. However, the semi-insulating grating and the layer above it are InP-InP or InGaAsP.
- It is necessary to use a combination of InGaAsP.

発明の詳細 な説明したように、本発明によれば、組成変化による回
折格子を形成しないため、回折格子形状に左右されない
で、光の分布帰還を行なわせることができるので、その
実用的効果は大きい。
As described in detail, according to the present invention, since a diffraction grating is not formed due to compositional changes, distributed feedback of light can be performed without being influenced by the shape of the diffraction grating. big.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のDFBレーザの構造図、第
2図a、bは同実施例における半絶縁性InGaAsP
回折格子の作製法の説明図、第3図a。 bは動作説明図である。 10・・・・・・n−InP基板、11・・・・・・F
e  ドープInGaAsP回折格子、12−・−・−
n−InGaAsPガイド層、13・・・・・・アンド
ープInGaAsP活性層、14 =−−−n 、−I
 nGaAs P 7 ンチメ/L’ドパツク層、15
・・・・・・p−InPクラッド層、16・・・・・・
p −InGaAsPキャップ層、21 ・・・−n 
−InP基板、22・・・・・・半絶縁性InGaAs
P、23・・・・・・レジスト、24・・・・・・半絶
縁性InGaAsP回折格子、25・・・・・・ニーI
nGaAsP回折格子、26・・・・・・アンドープI
nGaAsP活性層、27 ・−・・−P −InPク
ラッド層、28・・・・・・p −I n G a A
 s Pキャップ層、29・旧・・n型電極、3o・・
・・・・n型電極。
Figure 1 is a structural diagram of a DFB laser according to an embodiment of the present invention, and Figures 2a and b are semi-insulating InGaAsP lasers in the same embodiment.
An explanatory diagram of a method for manufacturing a diffraction grating, FIG. 3a. b is an explanatory diagram of the operation. 10...n-InP substrate, 11...F
e Doped InGaAsP diffraction grating, 12-・-・-
n-InGaAsP guide layer, 13... Undoped InGaAsP active layer, 14 =---n, -I
nGaAs P7 bottom/L' dopak layer, 15
......p-InP cladding layer, 16...
p-InGaAsP cap layer, 21...-n
-InP substrate, 22...Semi-insulating InGaAs
P, 23...Resist, 24...Semi-insulating InGaAsP diffraction grating, 25...Nie I
nGaAsP diffraction grating, 26...undoped I
nGaAsP active layer, 27...-P-InP cladding layer, 28...p-I n Ga A
s P cap layer, 29・old・・n type electrode, 3o・・
...N-type electrode.

Claims (1)

【特許請求の範囲】[Claims] 半絶縁性薄膜の回折格子を形成することにより、注入電
流の流れる領域を規則正しく制限することを特徴とする
分布帰還型レーザ。
A distributed feedback laser characterized by regularly restricting the region through which an injection current flows by forming a semi-insulating thin film diffraction grating.
JP62282440A 1987-11-09 1987-11-09 Distributed feedback laser Pending JPH01124279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62282440A JPH01124279A (en) 1987-11-09 1987-11-09 Distributed feedback laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62282440A JPH01124279A (en) 1987-11-09 1987-11-09 Distributed feedback laser

Publications (1)

Publication Number Publication Date
JPH01124279A true JPH01124279A (en) 1989-05-17

Family

ID=17652443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62282440A Pending JPH01124279A (en) 1987-11-09 1987-11-09 Distributed feedback laser

Country Status (1)

Country Link
JP (1) JPH01124279A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0614254A1 (en) * 1993-03-01 1994-09-07 Canon Kabushiki Kaisha Gain-coupling distributed feedback semiconductor laser and method of producing the same
FR2715251A1 (en) * 1994-01-20 1995-07-21 Christophe Kazmierski Semiconductor structure with a virtual diffraction grating
EP0667660A1 (en) * 1994-02-11 1995-08-16 France Telecom Wavelength tunable distributed Bragg reflectionlaser with a virtual diffraction grating that can be selectively operated
US5553091A (en) * 1993-12-06 1996-09-03 France Telecom Etablissement Autonome De Droit Public Optical component having a plurality of bragg gratings and process for the production of said components
EP1172907A1 (en) * 2000-07-11 2002-01-16 Corning Incorporated A tunable gain-clamped semiconductor optical amplifier

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0614254A1 (en) * 1993-03-01 1994-09-07 Canon Kabushiki Kaisha Gain-coupling distributed feedback semiconductor laser and method of producing the same
US5553091A (en) * 1993-12-06 1996-09-03 France Telecom Etablissement Autonome De Droit Public Optical component having a plurality of bragg gratings and process for the production of said components
FR2715251A1 (en) * 1994-01-20 1995-07-21 Christophe Kazmierski Semiconductor structure with a virtual diffraction grating
EP0664588A1 (en) * 1994-01-20 1995-07-26 France Telecom Semiconductor structure with virtual diffraction lattice
US5821570A (en) * 1994-01-20 1998-10-13 France Telecom Etablissement Autonome De Droit Public Semiconductor structure having a virtual diffraction grating
EP0667660A1 (en) * 1994-02-11 1995-08-16 France Telecom Wavelength tunable distributed Bragg reflectionlaser with a virtual diffraction grating that can be selectively operated
FR2716303A1 (en) * 1994-02-11 1995-08-18 Delorme Franck Bragg reflector laser distributed, wavelength tunable, with selectively activated virtual diffraction gratings.
US5581572A (en) * 1994-02-11 1996-12-03 France Telecom Wavelength-tunable, distributed bragg reflector laser having selectively activated, virtual diffraction gratings
EP1172907A1 (en) * 2000-07-11 2002-01-16 Corning Incorporated A tunable gain-clamped semiconductor optical amplifier

Similar Documents

Publication Publication Date Title
US5436195A (en) Method of fabricating an integrated semiconductor light modulator and laser
JPH05183236A (en) Gain coupled distributed feedback type semiconductor laser
JPH01124279A (en) Distributed feedback laser
JP7277825B2 (en) semiconductor optical device
JP3264369B2 (en) Optical modulator integrated semiconductor laser and method of manufacturing the same
JP3681693B2 (en) Semiconductor laser and semiconductor optical integrated circuit including this element
JP2932868B2 (en) Semiconductor optical integrated device
JPS63166281A (en) Distributed feedback semiconductor laser
JPH11150324A (en) Semiconductor laser
JP2804502B2 (en) Semiconductor laser device and method of manufacturing the same
JPS61202487A (en) Distributed feedback type semiconductor laser
JPS6317356B2 (en)
KR100324203B1 (en) Gain-coupled distributed feedback laser diode and fabrication method for the same
KR102400522B1 (en) Wavelength tunable laser device
JPH09307179A (en) Phase shift type distributed feedback semiconductor laser
JPH0642583B2 (en) Semiconductor laser device
JPS59127892A (en) Semiconductor laser and manufacture thereof
JPS63137496A (en) Semiconductor laser device
JPH06268325A (en) Optical semiconductor device
JPH0461183A (en) Variable wavelength semiconductor laser
JPS63246884A (en) Single-wavelength semiconductor laser
JPS59171187A (en) Semiconductor laser device
JPH03268380A (en) Semiconductor laser device
JPS60187080A (en) Semiconductor laser
JPH0198287A (en) Semiconductor laser array device