JPH01123694A - Back-contamination preventing device and back-contamination preventing method using said device - Google Patents

Back-contamination preventing device and back-contamination preventing method using said device

Info

Publication number
JPH01123694A
JPH01123694A JP62283790A JP28379087A JPH01123694A JP H01123694 A JPH01123694 A JP H01123694A JP 62283790 A JP62283790 A JP 62283790A JP 28379087 A JP28379087 A JP 28379087A JP H01123694 A JPH01123694 A JP H01123694A
Authority
JP
Japan
Prior art keywords
water
electrolytic chamber
sterile
sterile water
water intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62283790A
Other languages
Japanese (ja)
Other versions
JP2548243B2 (en
Inventor
Atsushi Kawai
厚 河合
Taikichi Yanagihara
泰吉 柳原
Kazuo Shimizu
一夫 清水
Masahiro Morita
昌宏 盛田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOME SANGYO KK
DAIKEN IKO KK
Original Assignee
TOME SANGYO KK
DAIKEN IKO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOME SANGYO KK, DAIKEN IKO KK filed Critical TOME SANGYO KK
Priority to JP62283790A priority Critical patent/JP2548243B2/en
Publication of JPH01123694A publication Critical patent/JPH01123694A/en
Application granted granted Critical
Publication of JP2548243B2 publication Critical patent/JP2548243B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To surely sterilize the inside of a water introducing pipe from a germ-free water producing device to an intake port so as to prevent back-contamination by supplying an inorg. halide to the electrolytic chamber of an electrolyzing device while germ-free water is kept stored in the electrolytic chamber and utilizing the hypohalogenite generated by effecting an electrolysis. CONSTITUTION:The supply of the germ-free water is stopped by closing water-stop valves 4, 5 provided on the intake port 6 side of the germ-free water producing device 1 and/or the side opposite thereto after the end of using the germ-free water. The inorg. halide is then supplied from a supplying device 2 into the electrolytic chamber of the electrolyzing device 13 provided between the intake port and the germ-free water producing device while the germ-free water is kept stored in said electrolytic chamber. The storage water contg. the aq. halide soln. is then electrolyzed by energization of the electrolyzing device to form the hypohalogenite. The stored water in the electrolytic chamber is sterilized by this hypohalogenite and the inside of the water conduit pipe 10 is sterilized as well. The hypohalogenite-contg. water is further gradually passed to the intake port by the pressure of the gaseous hydrogen generated from the electrode by the electrolysis to disinfect the intake port and to prevent the back-contamination from the intake port.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は病院などの医療機関、製薬メーカー、食品製造
メーカーなどで用いられる各種無菌水製造装置の取水口
から微生物が侵入するのを完全に防止する逆汚染防止装
置及びそれを用いた逆汚染防止方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention completely prevents microorganisms from entering through the water intake ports of various sterile water production devices used in medical institutions such as hospitals, pharmaceutical manufacturers, food manufacturers, etc. The present invention relates to a back-contamination prevention device and a back-contamination prevention method using the same.

〔従来の技術及びその問題点〕[Conventional technology and its problems]

微粒子などの不純物及び菌などの微生物が含有されない
無菌水は、病院などの医療機関や医療品製造メーカーを
はじめ食品製造メーカーなどにとって必要不可欠なもの
であることは周知のとおりである。
It is well known that sterile water, which does not contain impurities such as particulates and microorganisms such as bacteria, is essential for medical institutions such as hospitals, medical product manufacturers, and food manufacturers.

近年、菌などの微生物を除去しうる濾過膜が開発され、
比較的簡便に無菌水を製造することができるとともにそ
の信頼性が高い無菌水製造装置の実用化がなされている
。しかしながら無菌水製造装置と取水口までの導水管内
は、空気中に浮遊した菌などの微生物によって汚染され
ることがあり、かかる微生物による汚染を防除すること
は、かねてからの課題とされていた。
In recent years, filtration membranes that can remove microorganisms such as bacteria have been developed.
BACKGROUND ART A sterile water production device that can produce sterile water relatively easily and has high reliability has been put into practical use. However, the inside of the water conduit between the sterile water production device and the water intake can be contaminated by microorganisms such as bacteria floating in the air, and preventing contamination caused by such microorganisms has been an issue for some time.

従来より無菌水製造装置と取水口までの導水管内が微生
物によって汚染されるのを防除するための方法として、
主に次の4つの方法が提案されている。
Conventionally, as a method to prevent contamination by microorganisms in the water pipes leading to the sterile water production equipment and the water intake,
The following four methods have been mainly proposed.

(1)  無菌水製造装置からの無菌水の通水が停止す
ると同時に導水管に設けられたヒーターに通電し、導水
管内部の水を加熱して水蒸気として外部へ放出し、菌の
侵入経路である導水管内を乾燥することにより、菌の繁
殖を阻止し、さらにタイマーにより所定の時間が経過し
た後にヒーターのスイッチを切り、導水管内の温度が下
がるにつれて導水管内が防圧となるのを利用して設けら
れた逆止弁を自重と加圧によって密閉し、菌の侵入を阻
止する、加熱消毒方式。
(1) At the same time as the flow of sterile water from the sterile water production equipment stops, the heater installed in the water pipe is energized to heat the water inside the water pipe and release it as steam to the outside, thereby preventing bacteria from entering. By drying the inside of a water pipe, we prevent the growth of bacteria. Furthermore, we turn off the heater after a predetermined time has passed using a timer, and take advantage of the fact that the inside of the water pipe becomes pressure-proof as the temperature inside the pipe falls. A heating sterilization method that uses its own weight and pressure to seal the check valve installed in the container, preventing bacteria from entering.

(2)円筒形状をしたシリコーンゴム製チューブの内側
に傾斜した楕円形状のリブを一体成形したバルブであっ
て、前記リブを一方向または両方向から押圧することに
よって外部と遮断する機能を有する弾性ピンチバルブを
用いる、弾性ピンチバルブ方式。
(2) An elastic pinch valve that is an integrally molded cylindrical silicone rubber tube with slanted elliptical ribs on the inside, and has the function of isolating the rib from the outside by pressing the rib from one or both directions. Elastic pinch valve method using a valve.

(3)  銀蒸着物を蛇口に充填し、銀イオンの殺菌効
果を利用して蛇口からの菌の侵入を防ぐ、銀蒸着物充填
方式。
(3) Silver vapor deposit filling method, in which the faucet is filled with silver vapor deposit and the sterilizing effect of silver ions is used to prevent bacteria from entering through the faucet.

(4)  次亜塩素酸ナトリウム水などの殺菌剤による
消毒方法。
(4) Disinfection method using disinfectant such as sodium hypochlorite water.

しかしながらこれらの方法では、導水管から無菌水製造
装置への微生物の侵入を防止出来たとしても、蛇口の先
端の微生物汚染を避けることは困難である。このため、
少なくとも蛇口から最初に流出する水は完全な無菌水と
はなり得ない。
However, with these methods, even if it is possible to prevent microorganisms from entering the sterile water production device from the water conduit, it is difficult to avoid microbial contamination at the tip of the faucet. For this reason,
At least the water that initially flows out of the faucet cannot be completely sterile.

本発明者らは、先に無機ハロゲン化物供給装置、電解装
置および取水口に設けられた止水弁からなり、原水を無
菌水製造装置内に通水することによりえられた無菌水を
、止水弁を閉じて電解装置の電解室内に貯水させたのち
、該電解室内に無機ハロゲン化物供給装置から無機ハロ
ゲン化物を供給し、電気分解することにより電解室内お
よび導水管内が殺菌されるように構成されてなる逆汚染
防止装置を新規に開発し、特願昭61−107340号
として提案した。
The present inventors previously discovered that the sterile water produced by passing raw water into a sterile water production device, which consists of an inorganic halide supply device, an electrolysis device, and a water stop valve installed at a water intake, can be stopped. After the water valve is closed and water is stored in the electrolytic chamber of the electrolyzer, inorganic halide is supplied from an inorganic halide supply device into the electrolytic chamber and electrolyzed, thereby sterilizing the electrolytic chamber and the water pipe. We developed a new reverse contamination prevention device and proposed it in Japanese Patent Application No. 107340/1983.

この装置は、電解によって次亜ハロゲン酸塩を発生させ
、更にこの次亜ハロゲン酸塩を含有する水を蛇口から流
出せしめることにより、導水管から取水口まで消毒する
ことを可能としたものである。
This device generates hypohalite through electrolysis, and then allows water containing this hypohalite to flow out of the faucet, making it possible to disinfect everything from water pipes to water intakes. .

本発明者らはその後さらに研究を重ねた結果、無菌水製
造装置の取水口側及び/又はその反対側に止水弁を設け
ることにより、取水口に止水弁を設けなくとも簡単に同
様の効果を得ることを見出し本発明に到達した。
As a result of further research, the inventors of the present invention found that by providing a water stop valve on the water intake side of the sterile water production device and/or the opposite side, a similar method can be easily achieved without providing a water stop valve on the water intake. The inventors have found that this effect can be obtained and have arrived at the present invention.

〔問題を解決するための手段〕[Means to solve the problem]

すなわち本発明は、取水口と無菌水製造装置との間に電
解装置を設けた無菌水製造装置の逆汚染防止装置におい
て、無菌水製造装置の取水口側及び/又はその反対側に
設けた止水弁を閉じて無菌水の供給を停止せしめた後、
無菌水が電解装置の電解室に貯水された状態で該電解室
内に無機ハロゲン化物を供給し、電気分解することによ
り電解室内及び導水管内が殺菌される点を特徴とする逆
汚染防止装置であり、さらに第2の発明は、取水口と無
菌水製造装置との間に電解装置を設けて、無菌水製造装
置の取水口側及び/又はその反対側に設けた止水弁を閉
じて無菌水の供給を停止せしめた後、無菌水が電解装置
の電解室に貯水された状態で該電解室内に無機ハロゲン
化物を供給し、電気分解することにより発生する次亜ハ
ロゲン酸塩によって電解室内及び導水管内を殺菌し、さ
らに電解室内の電極から発生するガスの圧力によって、
次亜ハロゲン酸塩含有水を取水口に向かって流し、取水
口までの導水管と取水口を殺菌する点を特徴とする逆汚
染防止方法である。
That is, the present invention provides a back contamination prevention device for a sterile water production device in which an electrolytic device is provided between a water intake and a sterile water production device, in which a stop is provided on the water intake side of the sterile water production device and/or on the opposite side. After closing the water valve and stopping the supply of sterile water,
This is a reverse contamination prevention device characterized by supplying an inorganic halide into the electrolytic chamber of an electrolytic device while sterile water is stored in the electrolytic chamber, and sterilizing the electrolytic chamber and the water pipe by electrolysis. Furthermore, the second invention provides an electrolytic device between the water intake and the sterile water production device, and closes the water stop valve provided on the water intake side of the sterile water production device and/or the opposite side to produce sterile water. After stopping the supply of sterile water, an inorganic halide is supplied into the electrolytic chamber of the electrolytic device while sterile water is stored in the electrolytic chamber, and the hypohalite generated by electrolysis causes water to flow inside the electrolytic chamber. The inside of the tube is sterilized, and the pressure of the gas generated from the electrodes in the electrolytic chamber is used to sterilize the inside of the tube.
This is a reverse contamination prevention method characterized by flowing hypohalite-containing water toward the water intake and sterilizing the water pipe and water intake up to the water intake.

〔作用〕[Effect]

本発明の逆汚染防止装置は、ハロゲン化物供給装置、電
解装置及び無菌水製造装置の側及び/又はその反対側に
設けた止水弁から構成される。
The back contamination prevention device of the present invention is comprised of a water stop valve provided on the side of the halide supply device, the electrolysis device, and the sterile water production device and/or on the opposite side thereof.

無菌水で満゛たされた導水管内部は、このままの状態で
は取水口などから侵入した微生物により二次汚染の可能
性がある。本発明の逆汚染防止装置においては、この二
次汚染を防止するために、無菌水の使用終了後に無菌水
製造装置の取水口側及び/又はその反対側に設けた止水
弁を閉じて無菌水の供給を停止せしめた後、無菌水が電
解装置の電解室に貯水された状態で、この導水管内に次
亜ハロゲン酸塩を発生させるかまたは注入する。次亜ハ
ロゲン酸塩の発生はたとえば導水管の貯水中に無機ハロ
ゲン化物供給装置から無機ハロゲン化物を注入したのち
、電解装置に通電し、ハロゲン化物水溶液を含有した貯
水は電気分解される。貯水は電気分解されると貯水中に
含有されたハロゲンイオンが陽極酸化によってハロゲン
分子となり、このハロゲン分子はさらに水酸化物と反応
して次亜ハロゲン酸塩が生成される。
If the interior of the water conduit filled with sterile water remains as it is, there is a possibility of secondary contamination due to microorganisms entering from the water intake. In the reverse contamination prevention device of the present invention, in order to prevent this secondary contamination, after the use of sterile water is finished, the water stop valve provided on the water intake side and/or the opposite side of the sterile water production device is closed to sterilize the water. After the water supply is stopped, hypohalite is generated or injected into the water conduit while sterile water is stored in the electrolysis chamber of the electrolyzer. To generate hypohalite, for example, an inorganic halide is injected from an inorganic halide supply device into the water stored in a water conduit, and then electricity is applied to an electrolyzer to electrolyze the water containing the aqueous halide solution. When stored water is electrolyzed, the halogen ions contained in the stored water become halogen molecules through anodic oxidation, and these halogen molecules further react with hydroxide to produce hypohalite.

無機ハロゲン化物として、たとえば塩化ナトリウムを用
いたばあい、この一連の反応を反応式で示すとつぎのと
おりである。
When sodium chloride, for example, is used as the inorganic halide, the reaction formula for this series of reactions is as follows.

Na1l + HzO→Na0B + ’41 Hzi
十IL ↑CL +2NaOH−NaCJJO+NaC
u+HzOかくして生成された次亜塩素酸塩はウィルス
、一般無胞子細菌、抗酸性細菌、細菌胞子、糸状菌、藻
類、原虫類などほとんどの微生物に対して有効であり、
通常約10ppmの濃度において短時間のうちに殺菌を
完了させることができる能力を有するものである。
Na1l + HzO→Na0B + '41 Hzi
10IL ↑CL +2NaOH-NaCJJO+NaC
u+HzO The hypochlorite thus produced is effective against most microorganisms such as viruses, general nonspore-forming bacteria, acid-fast bacteria, bacterial spores, filamentous fungi, algae, and protozoa.
Usually, it has the ability to complete sterilization in a short time at a concentration of about 10 ppm.

この次亜塩素酸ナトリウムは電解室内の貯水を殺菌する
と同時に導水管をも殺菌する。
This sodium hypochlorite sterilizes the water stored in the electrolysis chamber and at the same time sterilizes the water pipes.

さらに、電気分解によって電極からは水素ガス等のガス
が発生し、無菌水製造装置と電解室の間に充満する。こ
の充満したガス圧によって、次亜ハロゲン酸塩含有水が
徐々に取水口へ流れ、これによって取水口が消毒され、
逆汚染防止効果が高められる。
Furthermore, gas such as hydrogen gas is generated from the electrodes due to electrolysis, and the space between the sterile water production device and the electrolytic chamber is filled. This filled gas pressure causes hypohalite-containing water to gradually flow into the water intake, which disinfects the water intake.
The effect of preventing back contamination is enhanced.

また、取水口が直径2.5mm以下の細孔より成る場合
に限り導水管内の防圧との関係で消毒剤含有水が貯留さ
れる。このため夜間など装置未使用時に導水管内が微生
物により汚染されるおそれがないだけでなく、取水口も
取水口に貯留された消毒剤含有水の作用により微生物の
二次汚染を防止することができるためより好ましい。
Also, only when the water intake is composed of pores with a diameter of 2.5 mm or less, disinfectant-containing water is stored due to the pressure-proofing inside the water pipe. Therefore, not only is there no risk of contamination of the water pipes with microorganisms when the equipment is not in use, such as at night, but the water intake can also prevent secondary contamination of microorganisms due to the action of disinfectant-containing water stored in the water intake. more preferable.

〔実施例〕〔Example〕

本発明の一実施態様を第1図に基づいて説明する。第1
図において、(1)は無菌水製造装置、(2)は無機ハ
ロゲン化物供給装置、(3)は電解装置、(4)は取水
口と反対側の止水弁、(5)は取水口側の止水弁、(6
)は取水口、(10)は導水管である。 無菌水製造装
置(1)としては、通常使用されている蒸留水製造装置
、純水製造装置、紫外線殺菌装置、限界濾過装置、逆浸
透装置、加熱滅菌装置などがあげられるが、これらのみ
ならず中空糸繊維の表面にたてIM、よこ0.1Mスリ
ット状の超微細孔を有するポリエチレン多孔質中空糸膜
からなるモジュール、たとえばステラボアー(登録商標
、三菱レイヨン■製)などを用いることができる。
One embodiment of the present invention will be described based on FIG. 1st
In the figure, (1) is a sterile water production device, (2) is an inorganic halide supply device, (3) is an electrolysis device, (4) is a water stop valve on the opposite side of the water intake, and (5) is on the water intake side. water stop valve, (6
) is the water intake, and (10) is the water pipe. Examples of sterile water production equipment (1) include commonly used distilled water production equipment, pure water production equipment, ultraviolet sterilization equipment, ultrafiltration equipment, reverse osmosis equipment, heat sterilization equipment, etc., but not only these. A module consisting of a polyethylene porous hollow fiber membrane having vertical IM and 0.1 M slit-like ultrafine pores on the surface of the hollow fiber, such as Stellabore (registered trademark, manufactured by Mitsubishi Rayon ■), can be used.

なお、これ以外のポリアクリロニトリル、ポリスルフォ
ン、ポリビニルアルコール、ポリメチルメタクリレート
等の中空糸膜又は平膜を用いた濾過モジュールも使用可
能であることはもちろんである。
It goes without saying that filtration modules using hollow fiber membranes or flat membranes other than these, such as polyacrylonitrile, polysulfone, polyvinyl alcohol, polymethyl methacrylate, etc., can also be used.

無菌水製造装W(1)としては、なかでも多孔質中空糸
を用いた装置が構造が簡単で、コストも安いためにより
好ましい。
As the sterile water production device W(1), a device using porous hollow fibers is particularly preferable because of its simple structure and low cost.

止水弁は、原水を止める働きと共に、電気分解により発
生するガスを充満させるために無菌水製−造装置を封鎖
する働きを有するが、無菌水製造装置の種類によってそ
の設置場所が異なる。例えば多孔質中空糸モジュールか
らなる無菌水製造装置を用いる場合は、少なくとも取水
口と反対側の止水弁(4)を設ける。その他の無菌水製
造装置を用いる場合は、少なくとも取水口側の止水弁(
5)を設ける。但し、無菌水製造装置が大型になる場合
は、止水弁(4)及び(5)の両方を設けてもよい。
The water stop valve has the function of shutting off the raw water as well as the function of sealing off the sterile water production device to fill it with gas generated by electrolysis, but its installation location differs depending on the type of sterile water production device. For example, when using a sterile water production device made of a porous hollow fiber module, at least a water stop valve (4) is provided on the opposite side of the water intake. When using other sterile water production equipment, at least the water stop valve on the water intake side (
5). However, if the sterile water production apparatus becomes large-sized, both the water stop valves (4) and (5) may be provided.

第2図は、ポリエチレン多孔質中空糸を用いた無菌水製
造装置を示したもので(7)は電極、(8)は多孔質中
空糸、(9)は空気抜きである。
FIG. 2 shows a sterile water production device using polyethylene porous hollow fibers, in which (7) is an electrode, (8) is a porous hollow fiber, and (9) is an air vent.

ポリエチレン・多孔質中空糸はあらかじめ親水化処理を
施すが、これ以外の上記膜は特に親水化処理を施さなく
とも親水性を保っている。これら親水性の膜は、水は透
過するが、水不溶性の気体は透過しない性質を有する。
Although the polyethylene porous hollow fiber is subjected to a hydrophilic treatment in advance, the other membranes mentioned above maintain their hydrophilicity even without any particular hydrophilic treatment. These hydrophilic membranes have the property of allowing water to pass through them but not allowing water-insoluble gases to pass therethrough.

  ・ 無菌水製造装置(1)で製造された無菌水は取水口(6
)から取水されるが、無菌水の使用を終了すると止水弁
(4)を閉じて供給を止める。この時無菌水製造装置(
1)内の原水は、空気抜き(9)から侵入する空気の大
気圧によって中空糸膜(8)をとおって濾過され、取水
口(6)から徐々に滴下される。これに伴って無菌水製
造装置(1)内の原水の水面は徐々に下がるが、中空糸
(8)は空気を透過しないため、防圧により一定量の無
菌水が滴下した後は電解室(31)内及び無菌水製造装
置(1)と電解室(3)との間の導水管内に残留する。
- The sterile water produced by the sterile water production device (1) is
), but when the use of sterile water is finished, the water stop valve (4) is closed to stop the supply. At this time, the sterile water production equipment (
The raw water in 1) is filtered through the hollow fiber membrane (8) by the atmospheric pressure of the air entering from the air vent (9), and is gradually dripped from the water intake (6). Along with this, the water level of the raw water in the sterile water production device (1) gradually lowers, but since the hollow fibers (8) do not allow air to pass through, after a certain amount of sterile water has dripped due to the pressure barrier, the electrolytic chamber ( 31) and the water conduit between the sterile water production device (1) and the electrolysis chamber (3).

ここで取水口(6)の位置を電解室(31)より高位置
におく場合は、電解室(31)及びその前後の導水管中
の貯水量が増すのでより好ましい。
It is more preferable to place the water intake (6) at a higher position than the electrolytic chamber (31) because this increases the amount of water stored in the electrolytic chamber (31) and the water pipes before and after the electrolytic chamber (31).

電解室(31)内の無菌水には、無機ハロゲン化物供給
装置(2)より無機ハロゲン化物が供給される。
An inorganic halide is supplied to the sterile water in the electrolysis chamber (31) from an inorganic halide supply device (2).

無機ハロゲン化物供給装置(2)としてはたとえば第3
図に示すような構造を有する無機ハロゲン化物水溶液供
給装置を使用することができる。
As the inorganic halide supply device (2), for example, the third
An inorganic halide aqueous solution supply device having a structure as shown in the figure can be used.

すなわち、容器安定棒(21)により安定に設置された
蛇腹式の無機ハロゲン化物水溶液容器(22)が、無機
ハロゲン化物水溶液を供給装置本体内に装着されており
、無機ハロゲン化物水溶液供給送りハンドル(23)を
まわすことにより送りネジ(25)によって押さえ板(
26)が一定の距離だけ移動する。この動作により無機
ハロゲン化物水溶液容器(22)内の無機ハロゲン化物
水溶液が第4図に示した電解室(31)内に開口部(3
6)より一定量注入される。また、電解室(31)内の
溶液が無機ハロゲン化物水溶液容器(22)内に逆流し
、該無機ハロゲン化物水溶液容器(22)内の無機ハロ
ゲン化物水溶液の濃度が変化するのを防ぐとともに発生
するガスの侵入を防ぐために、電解室(31)と無機ハ
ロゲン化物水溶液容器(22)との境界には逆止弁(2
4)等を設けてもよい。
That is, a bellows-type inorganic halide aqueous solution container (22), which is stably installed by a container stabilizing rod (21), is installed in the main body of the device for supplying the inorganic halide aqueous solution, and the inorganic halide aqueous solution supply feed handle ( 23), the feed screw (25) is used to release the presser plate (
26) moves a certain distance. Through this operation, the inorganic halide aqueous solution in the inorganic halide aqueous solution container (22) flows into the opening (3) in the electrolytic chamber (31) shown in FIG.
6) A more constant amount is injected. It also prevents the solution in the electrolytic chamber (31) from flowing back into the inorganic halide aqueous solution container (22) and changing the concentration of the inorganic halide aqueous solution in the inorganic halide aqueous solution container (22). In order to prevent gas from entering, a check valve (2) is installed at the boundary between the electrolytic chamber (31) and the inorganic halide aqueous solution container (22).
4) etc. may be provided.

前記無機ハロゲン化物水溶液容器(22)としては、蛇
腹形状の他に種々の形状を有するプラスチック製容器な
どを適用させることができる。その−例として挟圧可能
なポリエチレン製ボトルなどを適用させることができる
が、この場合は無機ハロゲン化物水溶液供給後、容器形
状がもとの形状に復元するようにするために空気弁を設
けるのが好ましい。また注射器のような機構の容器を用
い、ピストンを一定の長さだけ押すことにより無機ハロ
ゲン化物水溶液を一定量注入する方法を採用してもよい
As the inorganic halide aqueous solution container (22), plastic containers having various shapes other than the bellows shape can be used. For example, a polyethylene bottle that can be compressed can be used; in this case, an air valve should be provided to ensure that the container returns to its original shape after supplying the inorganic halide aqueous solution. is preferred. Alternatively, a method may be adopted in which a fixed amount of the inorganic halide aqueous solution is injected by using a container with a syringe-like mechanism and pushing a piston a fixed length.

電解装置(3)内に注入する無機ハロゲン化物水溶液の
濃度及びその量は、電解装置(3)内の電解室(31)
の無菌水の貯水量などによって異なるので、−概に決定
することはできないが、通常電解室及び導水管内の無菌
水約10〜40m1に対して濃度が約0.1〜約30%
の無機ハロゲン化物水溶液を約0.1〜5.Qml注入
して用いられる。
The concentration and amount of the inorganic halide aqueous solution to be injected into the electrolytic device (3) are determined in the electrolytic chamber (31) in the electrolytic device (3).
Although it cannot be determined generally, the concentration is usually about 0.1 to about 30% for about 10 to 40 ml of sterile water in the electrolytic chamber and water pipe.
of an inorganic halide aqueous solution of about 0.1 to 5. It is used by injecting Qml.

本発明において、使用しうる無機ハロゲン化物水溶液と
しては、NaC1、KCI、LiC#、A N CII
 3−、 N Ha CIl % Ca C122など
電気分解することによって塩素イオンを生成する無機塩
化物の水溶液、Na1K1などの無機ヨウ化物の水溶液
、N a B r % K B r、などの無機臭化物
の水溶液などがあげられるが、これらのなかでもとりわ
け入手の容易さなどの点からNaCAは好適に使用され
る。
In the present invention, the inorganic halide aqueous solution that can be used includes NaCl, KCI, LiC#, A N CII
3-, aqueous solutions of inorganic chlorides that generate chloride ions by electrolysis, such as N Ha CIl % Ca C122, aqueous solutions of inorganic iodides, such as Na1K1, and aqueous solutions of inorganic bromides, such as Na B r % K Br, etc. Among these, NaCA is preferably used because of its ease of availability.

また無機ハロゲン化物水溶液の注入は、無機ハロゲン化
物水溶液容器から定量ポンプを用いて電解室内に注入し
てもよい。
Further, the inorganic halide aqueous solution may be injected into the electrolytic chamber from an inorganic halide aqueous solution container using a metering pump.

また、本発明においては、上記のように無機ハロゲン化
物水溶液を電解室(31)に注入する方法のみならず、
たとえば所定量をペレット状に成形された錠剤やカプセ
ルなどの徐放性を呈する無機ハロゲン化物を用いて電解
室(31)に供給する方法を採用することも可能である
。前記錠剤などは、その成分が徐々に溶出するようにす
るために、その成分がヒドロゲルなどでコーティングさ
れた徐放性の錠剤を用いてもよい。前記ヒドロゲルとし
ては架橋された2−ヒドロキシエチルメタクリレート重
合体または共重合体などが好ましく用いられる。
Moreover, in the present invention, in addition to the method of injecting an inorganic halide aqueous solution into the electrolytic chamber (31) as described above,
For example, it is also possible to adopt a method of supplying a predetermined amount to the electrolytic chamber (31) using an inorganic halide exhibiting sustained release properties such as tablets or capsules formed into pellets. The above-mentioned tablets may be sustained-release tablets coated with hydrogel or the like so that the ingredients gradually dissolve. As the hydrogel, a crosslinked 2-hydroxyethyl methacrylate polymer or copolymer is preferably used.

また徐放性の錠剤を電極の近傍にセットし、錠剤の寿命
により定期的に交換するようなシステムとしてもよい。
Alternatively, a system may be used in which sustained-release tablets are set near the electrodes and the tablets are replaced periodically depending on the lifespan of the tablets.

前記電解室(31)に供給された無機ハロゲン化物は該
電解室(31)内の無菌水と混じり合い、ついで電極に
通電することにより、電気分解される。
The inorganic halide supplied to the electrolytic chamber (31) is mixed with sterile water in the electrolytic chamber (31), and then electrolyzed by applying electricity to the electrodes.

すなわち第4図において、電解室(31)下部には陽極
(32)および陰極(33)が設けられており、電源(
34)から直流の電気が通電される。
That is, in FIG. 4, an anode (32) and a cathode (33) are provided at the bottom of the electrolytic chamber (31), and the power source (
DC electricity is applied from 34).

陽極(32)および陰極(33)に使用される電極とし
ては通常、長期間水中に浸漬されても腐蝕などの変化を
生じない白金電極をはじめ、銅、ニッケルなどの金属ま
たは合成樹脂、セラミックなどに金や白金などをメツキ
処理や蒸着処理などを施した電極なども使用される。ま
たこれら電極を容易に交換することができるようにする
ために第3図に示されるように電極が設けられたキャッ
プ(35)をネジにより固定することができるようにし
てもよい。
The electrodes used for the anode (32) and cathode (33) are usually platinum electrodes that do not undergo corrosion or other changes even when immersed in water for long periods of time, metals such as copper and nickel, synthetic resins, ceramics, etc. Electrodes that are plated or vapor-deposited with gold or platinum are also used. Further, in order to easily replace these electrodes, the cap (35) provided with the electrodes may be fixed with screws, as shown in FIG. 3.

電源(34)としては、通常家庭用交流電気(100■
)をトランスにより変圧、直流としたものや、乾電池な
どのバッテリーなどを使用することができる。また、電
源(34)と電極とのあいだには、所定の時間に通電さ
れるようにするためにタイマーを設置してもよい。
The power source (34) is usually household AC electricity (100cm
) can be transformed into direct current using a transformer, or batteries such as dry cells can be used. Further, a timer may be installed between the power source (34) and the electrodes to ensure that the power is turned on at a predetermined time.

前記陽極(32)および陰極(33)にかけられる電圧
および電流ならびに通電時間は、電解室(31)内の無
機ハロゲン化物水溶液の種類、濃度およびその量などに
よって変わるので一部には決定することはできないが、
たとえば無機ハロゲン化物がNaC−1であるばあい、
通常、該電解室(31)内の有効塩素濃度は0.5〜5
00ppm1とくに黴などの微生物を殺菌するためには
約10ppm以上となるように調整される。また塩化ナ
トリウム水溶液による電解時間は塩化ナトリウム水溶液
の濃度、供給量および電流量などによって異なるが、好
ましくは10〜120分間である。
The voltage and current applied to the anode (32) and the cathode (33) as well as the current application time vary depending on the type, concentration, amount, etc. of the inorganic halide aqueous solution in the electrolytic chamber (31), and therefore cannot be determined in part. I can't, but
For example, if the inorganic halide is NaC-1,
Usually, the effective chlorine concentration in the electrolytic chamber (31) is 0.5 to 5.
00ppm1 In particular, in order to sterilize microorganisms such as mold, it is adjusted to about 10ppm or more. Further, the electrolysis time using the sodium chloride aqueous solution varies depending on the concentration of the sodium chloride aqueous solution, the amount of supply, the amount of current, etc., but is preferably 10 to 120 minutes.

第2図の装置において、電解装置(3)内に無機ハロゲ
ン化物を注入後電気分解することにより、次亜ハロゲン
酸塩が生成すると共に、電極からは水素などのガスが発
生する。
In the apparatus shown in FIG. 2, by injecting an inorganic halide into the electrolyzer (3) and electrolyzing it, hypohalite is produced and gas such as hydrogen is generated from the electrodes.

すると多孔質中空糸(8)は水に難溶性のガスをとおさ
ないので、発生する水に難溶性のガスは無菌水製造装置
(1)の方向に封鎖されて充満するため、このガス圧に
よって電解装置(3)内の次亜ハロゲン酸塩含有水は取
水口(6)の方向へ押されて徐々に流出する。このよう
なガス圧による次亜ハロゲン酸塩含有水の流れの生成に
より電解室と取水口との間を消毒することができる。
Then, since the porous hollow fiber (8) does not allow gases that are poorly soluble in water to pass through, the gas that is sparingly soluble in water that is generated is blocked and filled in the direction of the sterile water production device (1). The hypohalite-containing water in the electrolyzer (3) is pushed toward the water intake (6) and gradually flows out. By generating a flow of hypohalite-containing water using such gas pressure, the space between the electrolysis chamber and the water intake can be disinfected.

また取水口(6)が、第5図に示すように蛇口ノズル(
60)に直径2.5 m m以下の単数または複数の細
孔(61)を設けたものから構成される場合、ガス圧に
よって電解装置から取水口に流れる次亜ハロゲン酸塩含
有水の一部は取水口に貯留され、これによって取水口か
らの微生物逆汚染を完全に防止することができる。
In addition, the water intake (6) is connected to the faucet nozzle (as shown in Figure 5).
60) with one or more pores (61) with a diameter of 2.5 mm or less, part of the hypohalite-containing water flowing from the electrolyzer to the water intake by gas pressure. is stored in the water intake, thereby completely preventing microbial back contamination from the water intake.

蛇口ノズル(60)は導水管(5)とネジ、嵌合手段等
により着脱可能となっており、蛇口ノズルの洗浄又は交
換が簡単にできる。
The faucet nozzle (60) is removable from the water conduit (5) using screws, fitting means, etc., and the faucet nozzle can be easily cleaned or replaced.

又、細孔(61)は、直径が2.5mm以下であり、単
数又は複数設けられている。直径が2.5mmより大き
いと消毒剤含有水は取水口から全部流出して全く貯留さ
れないか、又は僅かにしか貯留されないので本発明の目
的を十分に達成することが出来ない。
Moreover, the diameter of the pore (61) is 2.5 mm or less, and one or more pores are provided. If the diameter is larger than 2.5 mm, all of the disinfectant-containing water will flow out from the water intake and will not be stored at all, or only a small amount will be stored, making it impossible to fully achieve the object of the present invention.

第6図は、多孔質中空糸モジュール(4B)  (49
)を用いた無菌水製造装置による本発明の実施態様を示
したものである。水道水を(411)から電磁弁(41
0)を開いて供給し、多孔質中空糸モジュール(4B)
  (49)により濾過し、取水口(41)から無菌水
が流出する。無菌水の使用終了時、電磁弁(410”)
を閉じる。この時導水管(43)、電解室(44)は無
菌水で充たされている。次にハンドル(47)を廻して
無機ハロゲン化物含有水(46)を電解室・(44)に
供給した後、電極(45)に通電して一定時間電気分解
を行う。これにより、電解室内およびその周辺の導水管
(43)に次亜ハロゲン酸塩が溶解する。電解中から終
了後にわたって電解室(44)内および導水管(43)
内の水は、電解により発生したガスの圧力によって少し
づつ取水口(41)から流出する。取水口(41)は、
孔径2.5 m m以下の細孔から成り、次亜ハロゲン
酸塩含有水は、導水管(43)及び取水口(41)の両
者に貯水され、微生物による二次汚染を完全に防止する
Figure 6 shows the porous hollow fiber module (4B) (49
) shows an embodiment of the present invention using a sterile water production device. Tap water from (411) to solenoid valve (41)
0) and supply the porous hollow fiber module (4B).
(49), and sterile water flows out from the water intake (41). Solenoid valve (410”) when finished using sterile water
Close. At this time, the water conduit (43) and the electrolysis chamber (44) are filled with sterile water. Next, the handle (47) is turned to supply inorganic halide-containing water (46) to the electrolysis chamber (44), and then electricity is applied to the electrode (45) to perform electrolysis for a certain period of time. As a result, the hypohalite is dissolved in the water conduit (43) in and around the electrolytic chamber. Inside the electrolysis chamber (44) and the water pipe (43) during and after electrolysis
The water inside flows out little by little from the water intake port (41) due to the pressure of gas generated by electrolysis. The water intake (41) is
It consists of pores with a pore diameter of 2.5 mm or less, and hypohalite-containing water is stored in both the water conduit (43) and the water intake (41), completely preventing secondary contamination by microorganisms.

なお、(412)は上記の操作を自動的に行うための制
御ユニットであり、(50)は制御ユニット(412)
と電磁弁(410)及び制御ユニット(412)と電極
(45)とをつなぐ電気コードである。
In addition, (412) is a control unit for automatically performing the above operation, and (50) is a control unit (412).
An electric cord connects the solenoid valve (410) and the control unit (412) to the electrode (45).

水口、(54)は逆浸透膜による無菌水製造装置である
。逆浸透膜による無菌水製造装置は微生物による二次汚
染を受けやすいため、第7図に示すように小型除菌フィ
ルター(52)を設けであるが、第8図に示すように設
けなくてもよい。操作および効果は第6図の装置とほぼ
同様である。
The water outlet (54) is a sterile water production device using a reverse osmosis membrane. Since sterile water production equipment using reverse osmosis membranes is susceptible to secondary contamination by microorganisms, a small sterilization filter (52) is installed as shown in Figure 7, but it is not necessary as shown in Figure 8. good. The operation and effect are substantially similar to the device of FIG.

次に、第1図において無菌水製造装置(1)として逆浸
透膜装置を用いた例を示す。この場合は止水弁(5)を
設けて無菌水使用終了時に止水弁(5)を閉じる。この
時止水弁(5)と取水口(6)との間の一部の無菌水は
取水口(6)から流出するが、止水弁(5)と電解室の
間の導水管内に生じる防圧のため、全部が流出すること
なく電解室内に残留する。そこで無機ハロゲン化物供給
装置(2)より無機ハロゲン化物を注入し電気分解を行
うことにより、中空糸モジュールの場合と同様の効果を
生じることができる。また止水弁(5)によって封鎖さ
れるため、発生するガス圧によって次亜ハロゲン酸塩含
有水が取水口(6)に流れて二次汚染を防止する。
Next, FIG. 1 shows an example in which a reverse osmosis membrane device is used as the sterile water production device (1). In this case, a water stop valve (5) is provided and the water stop valve (5) is closed when the use of the sterile water is finished. At this time, some of the sterile water between the water stop valve (5) and the water intake (6) flows out from the water intake (6), but is generated in the water conduit between the water stop valve (5) and the electrolysis chamber. Because it is pressure-proof, all of it remains inside the electrolytic chamber without leaking out. Therefore, by injecting an inorganic halide from the inorganic halide supply device (2) and performing electrolysis, the same effect as in the case of the hollow fiber module can be produced. Moreover, since it is closed by the water stop valve (5), hypohalite-containing water flows into the water intake (6) due to the generated gas pressure, thereby preventing secondary contamination.

なおこの場合でも取水口を電解室より高位置に、おくと
、特に止水弁(3)より高位置におくと、しい。
Even in this case, it is best to place the water intake at a higher position than the electrolysis chamber, especially higher than the water stop valve (3).

〔実施例1〕 第1図に示す装置において、無菌水製造装置としてステ
ラポアー(三菱レイヨン側型)を用いた。
[Example 1] In the apparatus shown in FIG. 1, Stellapore (Mitsubishi Rayon side type) was used as a sterile water production apparatus.

そして、以下に詳述する方法によって培養された接種菌
液を管路内の無菌水30mlに対して0゜5 m l接
種し、注射器(l m It用)により電解室に接種菌
数が10’〜106個/mlとなるように接種した。つ
いで濃度10%の塩化ナトリウム水溶液0.5mlを無
機ハロゲン化物供給装置により電解室内に注入し、2つ
の電極に直流電流10mAを流し、60分間電気分解を
施した。
Then, 0.5 ml of the inoculum solution cultured by the method detailed below was inoculated into 30 ml of sterile water in the pipe, and the number of inoculated bacteria was 10 in the electrolytic chamber using a syringe (for lm It). The cells were inoculated at ~106 cells/ml. Then, 0.5 ml of a 10% aqueous sodium chloride solution was injected into the electrolytic chamber using an inorganic halide supply device, and a direct current of 10 mA was applied to the two electrodes to perform electrolysis for 60 minutes.

電気分解終了後、次亜塩素酸ナトリウム含有水を流出さ
せた後に無菌水製造装置から無菌水を通水し、蛇口から
採水し、第十改正日本薬局方「−般試験法37.無菌試
験法」に基づいて無菌試験を行った。判定は最近試験の
場合30°Cで7日間、真菌試験の場合20℃で10日
間培養して行った。
After the electrolysis is completed, after draining the sodium hypochlorite-containing water, sterile water is passed through the sterile water production equipment, water is sampled from the faucet, and the test is carried out according to the 10th edition of the Japanese Pharmacopoeia, General Test Method 37. Sterility Test. A sterility test was conducted in accordance with the Act. Judgments were made by incubating at 30°C for 7 days for recent tests and 10 days at 20°C for fungal tests.

その結果を第2表に示す。The results are shown in Table 2.

なお、接種菌の調整は、以下の方法で行った。The inoculum was prepared using the following method.

(接種菌の調整) 接種菌として大腸菌、黄色ブドウ球菌、緑膿菌、カンジ
ダ・アルビカンス、アスペルギルス・ニガーを用い、大
腸菌、黄色ブドウ球菌、緑膿菌は35℃で24時間培養
したのち3日連続の3代継代、カンジダ・アルビカンス
は25℃で48時間培養したのち2日おきに2代継代、
アスペルギルス・ニガーは25℃で1週間培養した。
(Preparation of inoculated bacteria) Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans, and Aspergillus niger were used as inoculated bacteria.Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa were cultured at 35°C for 24 hours and then incubated for 3 consecutive days. Candida albicans was cultured for 48 hours at 25°C and then passaged for 2nd generation every 2 days.
Aspergillus niger was cultured at 25°C for one week.

なお、大腸菌、黄色ブドウ球菌、緑膿菌、カンシダ・ア
ルビカンスについては滅菌生理食塩水を用いて遠心分離
機にて3000rpmlO分間3回洗浄後、菌数が10
8個/mβの菌液とした。
For Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Cansida albicans, the number of bacteria is 10 after washing with sterile physiological saline in a centrifuge for 3 times at 3000 rpm.
A bacterial solution containing 8 cells/mβ was prepared.

また、アスペルギルス・ニガーについては、0゜05%
ポリソルベート80を加えた滅菌生理食塩水を用いて胞
子浮遊液を作製し、遠心分離機にて3000rpmlO
分間3回洗浄後滅菌生理食水を用いて再浮遊させ、10
7個/ m lの菌液とした。
In addition, for Aspergillus niger, 0°05%
A spore suspension was prepared using sterile physiological saline containing polysorbate 80, and the suspension was centrifuged at 3000 rpm.
After washing 3 times for 3 minutes, resuspend using sterile saline and 10 minutes.
A bacterial solution containing 7 bacteria/ml was prepared.

〔以下余白〕[Margin below]

以上の結果から無菌水製造装置の出水口と取水口の間の
2次汚染は本発明の逆汚染防止装置によって完全に阻止
されることがわかった。
From the above results, it was found that secondary contamination between the water outlet and the water intake of the sterile water production device is completely prevented by the reverse contamination prevention device of the present invention.

〔実施例2〕 第7図に示した装置において、電磁弁(410)を開放
し、水道水を無菌水製造装置に注入して無菌水を製造し
、内容fi 30 m 12の電解室に送入し電解室内
に無菌水を貯留した。
[Example 2] In the apparatus shown in FIG. 7, the solenoid valve (410) was opened, tap water was injected into the sterile water production device to produce sterile water, and the water was sent to an electrolytic chamber with a content fi 30 m 12. Sterile water was stored in the electrolysis chamber.

つぎに10%塩化ナトリウム水溶液1mlを電解室内に
注入し、2つの電極に通電し、60分間経過後の電解室
内の塩素濃度を測定したところ有効塩素濃度194pp
mであった。電解によって発生したガス圧によって電解
室内の次亜塩素酸ナトリウム含有水が取水口から僅かず
つ流出した。
Next, 1 ml of 10% sodium chloride aqueous solution was injected into the electrolytic chamber, electricity was applied to the two electrodes, and the chlorine concentration in the electrolytic chamber was measured after 60 minutes. The effective chlorine concentration was 194 pp.
It was m. The sodium hypochlorite-containing water in the electrolysis chamber gradually flowed out from the water intake due to the gas pressure generated by electrolysis.

電解終了後120分経過したとき取水口(41)に貯留
された水の有効塩素濃度を測定したところ4ppmであ
った。
When 120 minutes had passed after the end of electrolysis, the effective chlorine concentration of the water stored in the water intake (41) was measured and found to be 4 ppm.

〔実施例3〕 試験菌としてHscherichia colt  I
 F O3972% 5erratia marces
cens  I FO12648を35℃で24時間培
養し、3日連続の3伏縫代を行った。ついで滅菌生理食
塩水を用いて遠心分離機にて3000rpmlO分間3
回洗浄後108cells/mlの菌液を作成する。
[Example 3] Hscherichia colt I as a test bacterium
F O3972% 5erratia marces
cens I FO12648 was cultured at 35°C for 24 hours, and 3 bales were carried out for 3 consecutive days. Then, using sterile physiological saline, centrifuge at 3000 rpm mlO for 3 minutes.
After washing twice, a bacterial solution of 108 cells/ml is prepared.

試験菌液(10’ cells 7m1l)を調整後、
滅菌生理食塩水300mfに対して試験菌液を1m!接
種し生理食塩水中の生菌数が10 ” cells/ 
m lとした。
After adjusting the test bacterial solution (10' cells 7ml),
1 m of test bacteria solution to 300 mf of sterile physiological saline! After inoculation, the number of viable bacteria in physiological saline was 10” cells/
ml.

実施例1と同様の装置で無菌水使用後実施例1と同様に
して電気分解を行い、取水口(41)に次亜直後、取水
口に貯留された水20m1中の生菌数を測定したところ
、E、 Co11. S、 marcescensとも
にOであった。この結果から取水口からの微生物汚染を
完全に防止できることがあきらかである。
After using sterile water, electrolysis was performed in the same manner as in Example 1 using the same equipment as in Example 1, and the number of viable bacteria in 20 ml of water stored in the water intake (41) was measured immediately after hypoxia. By the way, E, Co11. Both S. and marcescens were O. From these results, it is clear that microbial contamination from the water intake can be completely prevented.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明の逆汚染防止装置によれば、無菌水
製造装置から取水口までの黒水管内を確実に殺菌して逆
汚染を防止することができ、さらにその構造が簡単であ
るとともに取り扱いがきわめて簡便である。特に電解装
置と取水口の間に止水弁を必要としないためコストが低
く、自動化のためのシステムも簡略化できる。
As described above, according to the reverse contamination prevention device of the present invention, the inside of the black water pipe from the sterile water production device to the water intake can be reliably sterilized and reverse contamination can be prevented. It is extremely easy to handle. In particular, since there is no need for a water stop valve between the electrolyzer and the water intake, the cost is low and the automation system can be simplified.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の逆汚染防止装置の説明図、第2図は多
孔質中空糸モジュールからなる無菌水製造装置に本発明
を適用した例を示したもの、第3図は無機ハロゲン化物
供給装置の概略説明図、第4図は電解装置の概略説明図
、第5図は取水口の斜視図、第6図は多孔質中空糸モジ
ュールからなる無菌水製造装置に本発明を適用した例を
示したもの、第7図及び第8図は逆浸透膜無菌水製造装
置に本発明を適用した例を示したものである。 (図面の主要符号) 1:無菌水製造装置 2;無機ハロゲン化物供給装置 3:電解装置 4:止水弁 5:止水弁 6:取水口 10;導水管 特許出願人  トーメー産業株式会社 はか1名 LL 26図 bす
Fig. 1 is an explanatory diagram of the reverse contamination prevention device of the present invention, Fig. 2 shows an example in which the present invention is applied to a sterile water production device consisting of a porous hollow fiber module, and Fig. 3 shows an inorganic halide supply. 4 is a schematic illustration of the electrolyzer, FIG. 5 is a perspective view of the water intake, and FIG. 6 is an example in which the present invention is applied to a sterile water production device consisting of a porous hollow fiber module. 7 and 8 show an example in which the present invention is applied to a reverse osmosis membrane sterile water production apparatus. (Main symbols in the drawings) 1: Sterile water production device 2; Inorganic halide supply device 3: Electrolyzer 4: Water stop valve 5: Water stop valve 6: Water intake 10; Water pipe patent applicant Tomey Sangyo Co., Ltd. Haka 1 person LL 26 figure b

Claims (4)

【特許請求の範囲】[Claims] (1)取水口と無菌水製造装置との間に電解装置を設け
た無菌水製造装置の逆汚染防止装置において、無菌水製
造装置の取水口側及び/又はその反対側に設けた止水弁
を閉じて無菌水の供給を停止せしめた後、無菌水が電解
装置の電解室に貯水された状態で該電解室内に無機ハロ
ゲン化物を供給し、電気分解することにより電解室内及
び導水管内が殺菌される点を特徴とする逆汚染防止装置
(1) In a back-contamination prevention device for a sterile water production device that has an electrolyzer installed between the water intake and the sterile water production device, a water stop valve is provided on the water intake side of the sterile water production device and/or on the opposite side. After the sterile water is closed and the supply of sterile water is stopped, an inorganic halide is supplied into the electrolytic chamber of the electrolyzer while the sterile water is stored in the electrolytic chamber, and the inside of the electrolytic chamber and the water pipe are sterilized by electrolysis. A device for preventing back contamination.
(2)取水口が電解室より高位置にある点を特徴とする
特許請求の範囲第1項記載の逆汚染防止装置。
(2) The reverse contamination prevention device according to claim 1, wherein the water intake port is located at a higher position than the electrolysis chamber.
(3)取水口に直径2.5mm以下の単数又は複数の細
孔を設けることにより、電解室内の電極から発生するガ
スの圧力によって、次亜ハロゲン酸塩含有水を取水口に
向かって流し、該次亜ハロゲン酸塩含有水が取水口に貯
留される事を特徴とする特許請求の範囲第1項記載の逆
汚染防止装置。
(3) By providing one or more pores with a diameter of 2.5 mm or less in the water intake, hypohalite-containing water flows toward the water intake by the pressure of the gas generated from the electrode in the electrolytic chamber. 2. The reverse contamination prevention device according to claim 1, wherein the hypohalite-containing water is stored in a water intake port.
(4)取水口と無菌水製造装置との間に電解装置を設け
て、無菌水製造装置の取水口側及び/又はその反対側に
設けた止水弁を閉じて無菌水の供給を停止せしめた後、
無菌水が電解装置の電解室に貯水された状態で該電解室
内に無機ハロゲン化物を供給し、電気分解することによ
り発生する次亜ハロゲン酸塩によって電解室内及び導水
管内を殺菌し、さらに電解室内の電極から発生するガス
の圧力によって、次亜ハロゲン酸塩含有水を取水口に向
かって流し、取水口までの導水管内と取水口を殺菌する
点を特徴とする逆汚染防止方法。
(4) An electrolytic device is installed between the water intake and the sterile water production device, and the water stop valve provided on the water intake side and/or the opposite side of the sterile water production device is closed to stop the supply of sterile water. After
While sterile water is stored in the electrolytic chamber of the electrolytic device, inorganic halides are supplied into the electrolytic chamber, the hypohalite generated by electrolysis sterilizes the electrolytic chamber and the water pipe, and then the electrolytic chamber and water pipes are sterilized. A reverse contamination prevention method characterized by flowing hypohalite-containing water toward the water intake using the pressure of the gas generated from the electrode, and sterilizing the inside of the water pipe leading to the water intake and the water intake.
JP62283790A 1987-11-10 1987-11-10 Reverse pollution prevention device and reverse pollution prevention method using the same Expired - Fee Related JP2548243B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62283790A JP2548243B2 (en) 1987-11-10 1987-11-10 Reverse pollution prevention device and reverse pollution prevention method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62283790A JP2548243B2 (en) 1987-11-10 1987-11-10 Reverse pollution prevention device and reverse pollution prevention method using the same

Publications (2)

Publication Number Publication Date
JPH01123694A true JPH01123694A (en) 1989-05-16
JP2548243B2 JP2548243B2 (en) 1996-10-30

Family

ID=17670173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62283790A Expired - Fee Related JP2548243B2 (en) 1987-11-10 1987-11-10 Reverse pollution prevention device and reverse pollution prevention method using the same

Country Status (1)

Country Link
JP (1) JP2548243B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007070710A (en) * 2005-09-09 2007-03-22 Fuji Electric Retail Systems Co Ltd Electrode for electrolysis and method of manufacturing the same
JP2007285863A (en) * 2006-04-17 2007-11-01 Technical Research & Development Institute Ministry Of Defence Structure for preventing organism on electric field detector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007070710A (en) * 2005-09-09 2007-03-22 Fuji Electric Retail Systems Co Ltd Electrode for electrolysis and method of manufacturing the same
JP2007285863A (en) * 2006-04-17 2007-11-01 Technical Research & Development Institute Ministry Of Defence Structure for preventing organism on electric field detector
JP4502215B2 (en) * 2006-04-17 2010-07-14 株式会社島津製作所 Prevention structure for electric field detector

Also Published As

Publication number Publication date
JP2548243B2 (en) 1996-10-30

Similar Documents

Publication Publication Date Title
AU2005217634B2 (en) Gas drive electrolytic cell
US6555055B1 (en) System for preventing and remediating biofilms in dental equipment
JPH08252310A (en) Washing and disinfecting method of artificial dialyzing device using electrolytically generated acidic water, and device therefor
JPH10151464A (en) Drinking water supplying apparatus
ZA200300009B (en) Method and equipment for washing, disinfecting and/or sterilizing health care devices.
CN206127025U (en) Water purifier
US6217741B1 (en) Method for manufacturing bactericide
AU2007273928A1 (en) Methods and systems for contact lens sterilization
JP2000226680A (en) Production of sterilizing electrolytic water and device therefor
JPH01123694A (en) Back-contamination preventing device and back-contamination preventing method using said device
WO2023082899A1 (en) Hydrogen generator having self-disinfection function
JPS63166491A (en) Pipeline sterilizing system
JP2002052074A (en) Sterilizing and washing spray product and method of manufacturing it
JPH0437757B2 (en)
CN212293140U (en) Pipe network circulating sterilization and bacteriostasis system for pipeline water purification
JPS63197598A (en) Counter contamination preventing system
KR101849076B1 (en) Water treatment apparatus for functioning as a sterilizer
US20170036926A1 (en) Water Sanitizing System
CN111689627A (en) Pipe network circulating sterilization and bacteriostasis system for pipeline water purification
JPS6336892A (en) Pipeline sterilizing device
EP0802164A1 (en) Process for producing bactericide, apparatus therefor, and bactericide
JP2000246251A (en) Electrolyzed water forming apparatus, medical care tool, sterilizing agent and method for sterilization
CN215855276U (en) Disinfection system based on sodium hypochlorite
CN214937855U (en) Portable disinfectant generator
CN216191302U (en) Antibacterial silver ion degassing unit that uses

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees