JPH01123614A - Method for removing organic sulfur compound in gas - Google Patents

Method for removing organic sulfur compound in gas

Info

Publication number
JPH01123614A
JPH01123614A JP62282517A JP28251787A JPH01123614A JP H01123614 A JPH01123614 A JP H01123614A JP 62282517 A JP62282517 A JP 62282517A JP 28251787 A JP28251787 A JP 28251787A JP H01123614 A JPH01123614 A JP H01123614A
Authority
JP
Japan
Prior art keywords
gas
organic sulfur
absorbent
sulfur compounds
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62282517A
Other languages
Japanese (ja)
Other versions
JPH0722672B2 (en
Inventor
Susumu Nakajima
晋 中島
Yukio Asami
幸雄 浅見
Yoshiaki Wakitani
脇谷 吉昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP62282517A priority Critical patent/JPH0722672B2/en
Publication of JPH01123614A publication Critical patent/JPH01123614A/en
Publication of JPH0722672B2 publication Critical patent/JPH0722672B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)
  • Industrial Gases (AREA)

Abstract

PURPOSE:To carry out efficient desulfurization by bringing a gas contg. org. sulfur compds. into contact with an absorbent obtained by depositing a secondary amine or an org. solvent contg. the amine on a porous carrier having specified pore volume, mean pore diameter, and solid acid content. CONSTITUTION:The secondary amine such as dioleylamine or an org. solvent contg. the amine is deposited on the porous carrier of calcium silicate, magnesium silicate, silica, etc., having >=0.3cc/g pore volume, >=0.02mum mean pore diameter, and <=0.2mmol./g solid acid content to obtain an absorbent, and the absorbent is packed in a tower 1. A gas 5 contg. org. sulfur compds. such as CS2 is passed through the packed tower 1, and the sulfur compds. are absorbed by the absorbent. A gas 6 such as N2 heated by a heater 3 is then passed through the absorbent, hence the org. sulfur compds. are desorbed, and the compds. are treated in a sulfur compd. treating device 4.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、製鉄業におけるコークス炉・高炉ガス、石油
精製業における種々の発生ガス、さらに種々の産業にお
ける煙道ガス等のガス中の有機硫黄化合物の除去方法に
関し、特に乾式法による除去方法に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention is applicable to coke oven/blast furnace gas in the steel industry, various generated gases in the oil refining industry, and organic gases such as flue gas in various industries. The present invention relates to a method for removing sulfur compounds, and particularly to a method for removing sulfur compounds using a dry method.

〈従来技術とその問題点〉 コークス炉ガス等のガス中の有機硫黄化合物の除去する
方法には、乾式法と湿式法がある。
<Prior art and its problems> Methods for removing organic sulfur compounds from gases such as coke oven gas include dry methods and wet methods.

湿式法としては、実用に適しているものとして米国特許
第2490840号がある。
As a wet method, one suitable for practical use is US Pat. No. 2,490,840.

この方法では、アミンを含む溶液とガスを向流接触させ
てガス中の硫黄化合物を除去する方法であるが、ガス中
に炭酸ガスを含有する場合、炭酸ガスとの反応生成物か
ら第2級アミンを回収するためにも酸及びアルカリ水溶
液を必要とするので、有機硫黄化合物の除去率を向上す
る目的で吸収液中の第2級アミン濃度を高めると、炭酸
ガス吸収量に従って酸及びアルカリ消費量も増加する欠
点がある。
In this method, sulfur compounds in the gas are removed by countercurrently contacting the gas with a solution containing an amine. However, when the gas contains carbon dioxide, secondary Since acid and alkali aqueous solutions are also required to recover amines, increasing the secondary amine concentration in the absorption liquid for the purpose of improving the removal rate of organic sulfur compounds reduces acid and alkali consumption according to the amount of carbon dioxide absorbed. The disadvantage is that the amount also increases.

これを改善した方法には、特公昭58−43132号公
報がある。
A method that improves this problem is disclosed in Japanese Patent Publication No. 58-43132.

この方法によると、吸収反応液の処理に、酸およびアル
カリ水溶液を用いない第2級アミン回収法を行っている
。 いずれにしろ、これら湿式法はプロセスが複雑で、
経済的に非常に不利である。
According to this method, a secondary amine recovery method that does not use an acid or alkaline aqueous solution is performed to treat the absorption reaction liquid. In any case, these wet methods have complicated processes,
It is economically very disadvantageous.

乾式法については、金属硫化物、金属酸化物、モレキュ
ラーシーブ等を用いて直接吸着除去するか、あるいはガ
ス中の水素、水蒸気、酸素等により除去容易な化合物に
転化してから吸収・吸着除去するものであるが、この方
法は特に100〜450℃程度の比較的高温又は加圧下
という処理を必要とし、さらに共存ガスの影響が大きく
、完全吸着や吸収材の再生が困難であり、吸着量が少な
いという大きな問題がある。 この乾式法の中でも、比
較的良い方法として特開昭49−22375号公報があ
る。
In the dry method, metal sulfides, metal oxides, molecular sieves, etc. are used to directly adsorb and remove, or hydrogen, water vapor, oxygen, etc. in the gas are used to convert them into easily removed compounds, which are then absorbed and adsorbed. However, this method requires treatment at a relatively high temperature of about 100 to 450°C or under pressure, and the influence of coexisting gases is large, making complete adsorption and regeneration of the absorbent difficult, and the adsorption amount is low. The big problem is that there aren't many. Among these dry methods, Japanese Patent Application Laid-Open No. 49-22375 is a relatively good method.

この方法は、多孔質な担体に第2級アミン又は、その有
機溶剤溶液を担持させたものを吸収材として、有機硫黄
化合物の除去を行うことを提示している。 これによる
と、なるべく多孔質の担体を用いることとなっており、
実施例の活性炭を用いた有機硫黄化合物の吸収量をみる
と、実用上吸収材のライフが短かく、再生を適用したと
しても、その再生サイクルが多くなり現実のプロセスと
しては適応しにくい問題がある。 さらに再生方法にお
いても減圧下、常温〜150℃下で、第2級アミン含有
溶液により吸収材を洗浄するという方法で、廃液処理等
の問題があり、現実のプロセスとして行うには、容易と
はいえない問題がある。
This method proposes that organic sulfur compounds are removed using a porous carrier carrying a secondary amine or its organic solvent solution as an absorbent. According to this, a porous carrier should be used as much as possible,
Looking at the amount of organic sulfur compounds absorbed using the activated carbon in the example, we found that the life of the absorbent material is short in practical terms, and even if regeneration is applied, the number of regeneration cycles is large, making it difficult to apply as an actual process. be. Furthermore, in the regeneration method, the absorbent material is washed with a secondary amine-containing solution under reduced pressure and at room temperature to 150°C, but there are problems such as waste liquid treatment, and it is difficult to carry out as an actual process. There is a problem that cannot be answered.

〈発明の目的〉 本発明は、前述の従来技術の問題点を解決することを目
的とするものであり、活性・物質である第2級アミンを
できるだけ多く吸液でき、かつ長く活性を保持できる、
すなわちライフの長い担体を用い、さらに平衡吸収状態
となフた吸収材を容易に再生することのできるガス吊の
有機硫黄化合物の除去方法を提供しようとするものであ
る。
<Object of the invention> The present invention aims to solve the problems of the prior art described above, and is capable of absorbing as much secondary amine as an active substance as possible and retaining its activity for a long time. ,
That is, the present invention aims to provide a method for removing organic sulfur compounds from gas suspensions, which uses a carrier with a long life and can easily regenerate a lid absorbent material that is in an equilibrium absorption state.

〈発明の構成〉 本発明者は、担体に第2級アミン等を担持させた吸収材
を用いるガス中の有機硫黄化合物の除去方法において、
有機硫黄化合物の吸収量を高め、吸収材のライフを長く
するためには、特定の物理特性の多孔質担体を用いるこ
とが有効であることを知見し、本発明に至った。
<Structure of the Invention> The present inventor has proposed a method for removing organic sulfur compounds in a gas using an absorbent in which a carrier supports a secondary amine, etc.
In order to increase the absorption amount of organic sulfur compounds and extend the life of the absorbent material, it was found that it is effective to use a porous carrier with specific physical properties, and the present invention was developed based on this finding.

すなわち本発明の第1の態様は、多孔質の担体として細
孔容積0.3cc/g以上、平均細孔径0.02−以上
および固体酸量0.2mmof/g以下の担体に、第2
級アミンまたは第2級アミンを含む有機溶剤溶液を担持
させた吸収材を用い、 有機硫黄化合物を含有するガスを前記吸収材に接触させ
て有機硫黄化合物を選択的に吸収させることを特徴とす
るガス中の有機硫黄化合物の除去方法を提供する。
That is, the first aspect of the present invention is a porous carrier having a pore volume of 0.3 cc/g or more, an average pore diameter of 0.02 or more, and a solid acid content of 0.2 mmof/g or less;
The method is characterized by using an absorbent supporting a primary amine or an organic solvent solution containing a secondary amine, and bringing a gas containing an organic sulfur compound into contact with the absorbent to selectively absorb the organic sulfur compound. A method for removing organic sulfur compounds in gas is provided.

本発明の第2の態様は、多孔質の担体として細孔容積0
.3cc/g以上、平均細孔径0.02戸以上および固
体酸量0.2mmo℃/g以下の担体に、第2級アミン
または第2級アミンを含む有機溶剤溶液を担持させた吸
収材を用い、有機硫黄化合物を含有するガスを前記吸収
材に接触させて有機硫黄化合物を選択的に吸収させた後
、有機硫黄化合物を含有していない50℃以上のガスを
流通させることにより、前記吸収材に吸収された硫黄化
合物を脱離させて該吸収材を再使用することを特徴とす
るガス中の有機硫黄化合物の除去方法を提供する。
A second aspect of the present invention provides a porous carrier with a pore volume of 0.
.. Using an absorbent material in which a secondary amine or an organic solvent solution containing a secondary amine is supported on a carrier with an average pore diameter of 3 cc/g or more, an average pore diameter of 0.02 or more, and a solid acid amount of 0.2 mmo C/g or less. , by bringing a gas containing an organic sulfur compound into contact with the absorbent material to selectively absorb the organic sulfur compound, and then passing a gas containing no organic sulfur compound at a temperature of 50° C. or higher to the absorbent material. Provided is a method for removing organic sulfur compounds from a gas, which comprises removing the sulfur compounds absorbed by the absorbent material and reusing the absorbent material.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

従来ガス精製に用いられていた第2級アミン等を担持さ
せた多孔質吸収材が、有機硫黄化合物の吸収量が少なく
ライフが短かいという問題を解決するためには、以下の
特徴を同時に満足する担体を用いる必要がある。
In order to solve the problem that the porous absorbent material supported with secondary amines, which has been conventionally used for gas purification, has a low absorption amount of organic sulfur compounds and has a short lifespan, it is necessary to simultaneously satisfy the following characteristics: It is necessary to use a carrier that supports

(1)細孔容積の大きいこと (2)平均細孔径が小さくないこと (3)固体酸量(固体酸性度)が大きくないことしかも
、これ゛ら(1)〜(3) の特徴が、ある特定の数値
範囲にある多孔質担体を用いる必要がある。
(1) The pore volume is large, (2) the average pore diameter is not small, and (3) the amount of solid acid (solid acidity) is not large. It is necessary to use a porous carrier within a certain numerical range.

上記の特徴を説明すると、まず細孔容積の大きいことは
、ガス中の有機硫黄化合物を反応吸収する活性がある第
2級アミンを多く吸液する可能性のあることにつながる
。 つまり吸液性の大きいことは、有機硫黄化合物の吸
収量が多くなる可能性があり、従ってライフは長くなる
ことにつながる。
To explain the above characteristics, first, the large pore volume leads to the possibility of absorbing a large amount of secondary amine, which has the activity of reacting and absorbing organic sulfur compounds in gas. In other words, a high liquid absorption property may lead to a large amount of organic sulfur compounds being absorbed, and therefore a long life.

細孔容積については、0.3cc/g以上、好ましくは
3 cc/g以上である。0.3cc/g未満であると
、当然活性物質であるアミンの担持量が少なくなり、理
論的な有機硫黄化合物の吸収量も少なくなり不利となる
The pore volume is 0.3 cc/g or more, preferably 3 cc/g or more. If it is less than 0.3 cc/g, the amount of amine that is an active substance supported will naturally decrease, and the theoretical amount of organic sulfur compounds absorbed will also decrease, which is disadvantageous.

次に、平均細孔径が小さくないことは、仮に細孔径が小
さいと活性物質である第2級アミンが細孔内に担持され
にくいことが考えられる。
Next, the reason why the average pore diameter is not small is that if the pore diameter is small, it is difficult for the secondary amine, which is an active substance, to be supported in the pores.

また、たとえ担持されたとしても有機硫黄化合物が細孔
径の小さい細孔内に拡散して入る際に拡散速度が遅くな
り、有効に活性物質が有機硫黄化合物と反応しにくいと
考えられる。
Further, even if the organic sulfur compound is supported, when the organic sulfur compound diffuses into the pores having a small pore diameter, the diffusion rate becomes slow, and it is considered that the active substance is difficult to effectively react with the organic sulfur compound.

平均細孔径については、0.02p以上好ま硫くけ0.
05μ以上である。 0.02pm未満であると、前述
したとおり、アミンの担持量が少なくなるばかりでなく
、有機硫黄化合物との反応性が低くなる。
The average pore diameter is preferably 0.02p or more and sulfur content 0.02p or more.
05μ or more. If it is less than 0.02 pm, as described above, not only the amount of amine supported will decrease, but also the reactivity with organic sulfur compounds will decrease.

最後に、固体酸量(固体酸性度)が大きくないことは、
活性物質である第2級アミンが塩基性であるので、担持
する担体の酸量(酸性度)が大きいと、活性なアミンが
担持したとき担体と反応してしまい、細孔内での分散状
態も不均一となり、その結果有機硫黄化合物との反応性
が著しく低下する可能性が一十分ある。従って、担体の
固体酸量(固体酸性度)は大きくないことが大切である
Finally, the amount of solid acid (solid acidity) is not large.
Since the secondary amine, which is an active substance, is basic, if the amount of acid (acidity) in the supported carrier is large, the active amine will react with the carrier when supported, resulting in the dispersion state within the pores. There is a good possibility that the reactivity with organic sulfur compounds will decrease significantly as a result. Therefore, it is important that the solid acid amount (solid acidity) of the carrier is not large.

固体酸量(固体酸性度)については、0.2mmoj2
/g以下である。  o、2mmoft/g超であると
前述したとおり担体とアミンとの反応性が強くなり、固
体酸量が大きくなるにつれてその傾向は強くなり、有機
硫黄化合物との反応性は逆に低下することになる。
Regarding solid acid amount (solid acidity), 0.2 mmoj2
/g or less. o. If it exceeds 2 mmof/g, as mentioned above, the reactivity between the carrier and the amine becomes strong, and as the amount of solid acid increases, this tendency becomes stronger, and the reactivity with the organic sulfur compound decreases. Become.

ここで、固体酸量(固体酸性度)は、以下の条件で測定
した値あるいはこれに相当する値をいう。
Here, the amount of solid acid (solid acidity) refers to a value measured under the following conditions or a value equivalent thereto.

(1)測定装置:東京理工製 マルチパーパスカロリメ
ーター (2)測定方法:NH3吸着熱測定 (3)前処理条件:排気処理400℃(7時間)処理真
空度1.OX 10−’ Torr(4)酸点の定義:
 80 kJ/+oj!以上の吸着熱を示すところを酸
点と定義 (5)酸   量:上記(4)の吸着熱80 kJ/m
ob以上を示す量を酸量 (IIIIIOJZ/g) 
として表わす。
(1) Measuring device: Multipurpose calorimeter manufactured by Tokyo Riko (2) Measuring method: NH3 adsorption heat measurement (3) Pretreatment conditions: Exhaust treatment at 400°C (7 hours) Treatment vacuum degree: 1. OX 10-' Torr (4) Definition of acid site:
80 kJ/+oj! A point showing the above heat of adsorption is defined as an acid site (5) Acid amount: Heat of adsorption in (4) above 80 kJ/m
Acid amount is the amount showing ob or more (IIIIOJZ/g)
Expressed as

本発明に用いる担体は、以上の条件を満足するものであ
ればいかなるものでもよいが、ケイ酸カルシウム、ケイ
酸マグネシウム、シリカ等のうち上記の条件を充すもの
を選択するのが好ましい。
The carrier used in the present invention may be any carrier as long as it satisfies the above conditions, but it is preferable to select one among calcium silicate, magnesium silicate, silica, etc. that satisfies the above conditions.

また多孔質担体に担持させる第二級アミンは、例えばピ
ペリジン、モルフォリン、ピロリジン、ヘキサメチレン
イミン、N−メチルアミノエタノール、N−アミノエチ
ルピペラジン、N−(2−アミノエチル)−1,3−プ
ロパンジアミン、ジェタノールアミン、ジイソプロパツ
ールアミン、ジブチルアミン、ジフェニルアミン、ジイ
ソブチルアミン、ジベンジルアミンが例示される。
Examples of secondary amines supported on the porous carrier include piperidine, morpholine, pyrrolidine, hexamethyleneimine, N-methylaminoethanol, N-aminoethylpiperazine, N-(2-aminoethyl)-1,3- Examples include propanediamine, jetanolamine, diisopropanolamine, dibutylamine, diphenylamine, diisobutylamine, and dibenzylamine.

これらの第二級アミンは担体に対し、好ましくは全重量
の0.1〜70%となる如く、直接にあるいは溶媒溶液
として加えられる。
These secondary amines are added to the carrier directly or as a solution in a solvent, preferably in an amount of 0.1 to 70% of the total weight.

用いる溶媒としては、例えばクレオソート液、ペンゾー
ル、ナフサ等の炭化水素液や炭素数1〜10程度の脂肪
族、脂環族、もしくは芳香族アルコール類やケトン類で
ある。
Examples of the solvent used include hydrocarbon liquids such as creosote liquid, penzole, and naphtha, and aliphatic, alicyclic, or aromatic alcohols and ketones having about 1 to 10 carbon atoms.

その用量は担体に対し1〜10倍容程度が適当である。The appropriate dose is about 1 to 10 times the volume of the carrier.

ガス中の有機硫黄化合物が、第2級アミンを含む吸収材
で、吸収・離脱される際の反応は、下記の反応であると
考えられる。
The reaction when organic sulfur compounds in gas are absorbed and desorbed by an absorbent containing a secondary amine is considered to be the following reaction.

く吸収反応〉 2R2NH+CS2→R2NC5H2NR2く再生反応
〉 (分解すると思われる) 分解後のアミンの形体は不明であるが、一部Sを含んだ
第2級又は第3級アミンと思われる。
Absorption reaction> 2R2NH+CS2→R2NC5H2NR2 Regeneration reaction> (It seems to be decomposed) The form of the amine after decomposition is unknown, but it is thought to be a secondary or tertiary amine containing some S.

本発明のガス中の有機硫黄化合物の除去方法は、上記の
吸収材を用いて以下の工程で行う。
The method for removing organic sulfur compounds from gas according to the present invention is carried out in the following steps using the above-mentioned absorbent.

第1図に示す、好適実施例のフローチャートを用いて説
明する。
This will be explained using the flowchart of the preferred embodiment shown in FIG.

まず、担体として細孔容積0.3cc/g以上、平均細
孔径0.021m以上固体酸量0,2m mol/g以
下のもの、たとえばケイ酸カルシウム、ケイ酸マグネシ
ウム、シリカ等の担体に第2級アミン又はその有機溶剤
溶液を適宜、公知手段にて担持させて吸収材とする。 
吸収材は、充填塔1に充填する。
First, a carrier having a pore volume of 0.3 cc/g or more, an average pore diameter of 0.021 m or more and a solid acid amount of 0.2 m mol/g or less, such as calcium silicate, magnesium silicate, or silica, is used as a second carrier. An absorbent material is prepared by appropriately supporting a class amine or an organic solvent solution thereof using known means.
The absorbent material is packed into a packed tower 1.

次に、有機硫黄化合物を含んだガス5を適宜、ガス加温
装置2にて常温〜60℃とし、充填塔1に導入する。 
ガス中の有機硫黄化合物は、充填塔1内で該吸収材で吸
収除去される。
Next, the gas 5 containing the organic sulfur compound is brought to room temperature to 60° C. using the gas heating device 2 and introduced into the packed tower 1 .
Organic sulfur compounds in the gas are absorbed and removed by the absorbent in the packed tower 1.

さて、該吸収材が、平衡吸収量まで有機硫黄化合物を吸
収したとき、破線の別ラインから有機硫黄化合物を含ま
ないガス6例えばN2、空気等を加温装置3で50℃以
上にし、充填塔1に導入する。 この時、吸収材から吸
収されていた有機硫黄化合物が脱離する。
Now, when the absorbent absorbs organic sulfur compounds up to the equilibrium absorption amount, a gas 6 that does not contain organic sulfur compounds (for example, N2, air, etc.) is heated to 50°C or higher using a heating device 3, and then 1. At this time, the organic sulfur compounds absorbed from the absorbent material are released.

次に、充填塔1から出たガスは、硫黄化合物処理装置4
に導入して処理する。 脱離した硫黄化合物は、後述の
実施例で記述しているが、はとんどが、硫化水素の形で
あるので処理装置4は適宜、公知手段の装置、たとえば
燃焼処理、硫化水素吸収材充填装置等であればよい。
Next, the gas discharged from the packed tower 1 is transferred to a sulfur compound treatment device 4.
and process it. The desorbed sulfur compounds will be described in the examples below, but since most of them are in the form of hydrogen sulfide, the treatment device 4 may be appropriately equipped with known means such as combustion treatment, hydrogen sulfide absorbing material, etc. Any filling device or the like may be used.

〈実施例〉 以下に実施例により、更に具体的に説明する。<Example> A more specific explanation will be given below with reference to Examples.

〈実施例1.および比較例〉 担体として細孔容積、平均細孔径、固体酸量の異ったも
のを選んで、有機硫黄化合物の二硫化炭素(C32)の
吸収性能の比較検討を行った。
<Example 1. and Comparative Example> Carriers with different pore volumes, average pore diameters, and amounts of solid acid were selected to compare the absorption performance of carbon disulfide (C32), an organic sulfur compound.

使用した担体、その細孔容積、平均細孔径、固体酸量は
第1表に示した。 これらの担体に、第2級アミンとし
てジオレイルアミン(R2NH; R=C+yl(3s
co)を含浸させた。
The carrier used, its pore volume, average pore diameter, and amount of solid acid are shown in Table 1. Dioleylamine (R2NH; R=C+yl(3s
co) was impregnated.

を第1表に示した。are shown in Table 1.

試験に用いたガス組成は第2表に示した。The gas composition used in the test is shown in Table 2.

第2表の組成のガス中に、有機硫黄化合物である二硫化
炭素50 mg/Nrr?を含有させて用いた。
50 mg/Nrr of carbon disulfide, which is an organic sulfur compound, in the gas having the composition shown in Table 2? was used.

二硫化炭素吸収試験条件は以下のとおりとした。The carbon disulfide absorption test conditions were as follows.

(1)吸収材平均粒径:0.7mm (2)ガス流通量: 0 、  I It/win(3
)吸収材充填量:2叔 (4)SV(空間速度):3000H−’(5)温度:
25℃ (6)圧カニ常圧 試験結果は、第2図に示した。
(1) Absorbent average particle size: 0.7 mm (2) Gas flow rate: 0, I It/win (3
) Absorbent filling amount: 2 degrees (4) SV (space velocity): 3000H-' (5) Temperature:
25°C (6) Pressure Crab The normal pressure test results are shown in Figure 2.

破過点(破過時間)とは、吸着材を詰めた固定層に吸着
質を含むガスを一定速度で通ずるとき、流体を流しはじ
めてから吸着質が初めてこの層から出てくるまでの時間
をいい、破過率とは入口濃度に対しての出口濃度の割合
をいう。
Breakthrough point (breakthrough time) is the time from when the fluid starts flowing until the adsorbate first emerges from this layer when gas containing adsorbate is passed through a fixed bed filled with adsorbent at a constant speed. The breakthrough rate is the ratio of the outlet concentration to the inlet concentration.

第2図では、明らかにシリカ、ケイ酸カルシウムの反応
性が良いことを示している。 この試験では、SV値の
高い条件で行っているので、破過率O%になっていない
が、低いSV値で行うと当然cs2除去率100%、破
過率0%となる。 用いたシリカ、ケイ酸カルシウムの
性質は、第1表に示したとおり細孔容積、平均細孔径、
固体酸量ともに前述した本発明に用いる担体の条件に入
っており本発明のすぐれていることが実証された。
Figure 2 clearly shows that silica and calcium silicate have good reactivity. In this test, the breakthrough rate was not 0% because it was conducted under conditions of a high SV value, but if it was conducted under a low SV value, the CS2 removal rate would naturally be 100% and the breakthrough rate would be 0%. The properties of the silica and calcium silicate used are as shown in Table 1, including pore volume, average pore diameter,
Both the amounts of solid acid were within the conditions for the carrier used in the present invention described above, demonstrating the superiority of the present invention.

〈実施例2.および比較例〉 上記実施例1にてすぐれた担体であることが実証された
ケイ酸カルシウムを用いて、低Sv値の条件で吸収試験
を行フた。 比較の担体として、第1表に示した酸化鉄
を用いた。
<Example 2. and Comparative Example> Using calcium silicate, which was proven to be an excellent carrier in Example 1, an absorption test was conducted under conditions of a low Sv value. Iron oxides shown in Table 1 were used as carriers for comparison.

試験条件は以下のとおりとし、結果を第3図に示した。The test conditions were as follows, and the results are shown in Figure 3.

(1)処理ガス:第2表に示したガス (2)ガス中のCS2濃度: 50 mg/Nrn’(
3)吸収材平均粒径:8mm (4)ガス流通量:1427m1n (5)吸収材充填量:0.5J:L (6)SV(空間速度):120H−1(7)温度=2
5℃ (8)圧カニ常圧 なお、担体の含浸物は実施例1と同じジオレイルアミン
で、含浸率は第1表に示した。
(1) Processing gas: gas shown in Table 2 (2) CS2 concentration in gas: 50 mg/Nrn'(
3) Absorbent average particle size: 8mm (4) Gas flow rate: 1427mln (5) Absorbent filling amount: 0.5J:L (6) SV (space velocity): 120H-1 (7) Temperature = 2
5° C. (8) Normal pressure The carrier was impregnated with the same dioleylamine as in Example 1, and the impregnation rate is shown in Table 1.

第3図中(1)−のプロットがケイ酸カルシウムで、(
2)のプロットが比較のための酸化鉄である。
The plot (1)- in Figure 3 is calcium silicate;
Plot 2) shows iron oxide for comparison.

第3図から担体にケイ酸カルシウムを用いると、30日
間C52は完全に除去された。
As shown in FIG. 3, when calcium silicate was used as a carrier, C52 was completely removed for 30 days.

一方、酸化鉄の方は、初期の間は90%除去率であった
が、25日後陣去率は約50%まで低、下した。 以上
より、本発明によるケイ酸カルシウムはC52吸収寿命
の長いことが実証された。
On the other hand, for iron oxide, the removal rate was 90% during the initial period, but the removal rate after the 25th day decreased to about 50%. From the above, it was demonstrated that the calcium silicate according to the present invention has a long C52 absorption life.

〈実施例3.〉 上記実施例2にてcs2吸収寿命の長いことが実証され
たケイ酸カルシウムを用いて、再生を行い、繰り返し使
用できることがわかった。
<Example 3. > It was found that calcium silicate, which was proven to have a long cs2 absorption life in Example 2 above, could be regenerated and used repeatedly.

試験条件は以下のとおりである。The test conditions are as follows.

(1)吸収試験条件 ■ 吸収材平均粒径:o、7mm ■ ガス流通量: 0 、3 f/mi、n■ 吸収材
充填量:2戚 ■ sv(空間速度):3000H−’■ 温度:25
℃ ■ 圧カニ常圧 ■ ガス中のCS2濃度: 50 mg/Nm’(2)
再生試験条件 100tN2を吸収材に流通させ、50mu/min、
 6hrfi理した。 この時の出口ガス中の硫黄化合
物濃度は H2S : 1.4 vo1%C32: 1300mg
/Nrn’、CO5:30mg/Nrdであった。 吸
収材に吸収した硫黄化合物のトータル−硫黄分(T−3
)を100%としたとき、上記再生により75%T−S
分は脱離した。
(1) Absorption test conditions ■ Absorbent average particle size: o, 7 mm ■ Gas flow rate: 0, 3 f/mi, n ■ Absorbent filling amount: 2 relatives ■ sv (space velocity): 3000H-' ■ Temperature: 25
℃ ■ Normal pressure ■ CS2 concentration in gas: 50 mg/Nm' (2)
Regeneration test conditions 100tN2 was distributed through the absorbent material, 50mu/min,
I worked for 6hrfi. The concentration of sulfur compounds in the outlet gas at this time is H2S: 1.4 vo1%C32: 1300mg
/Nrn', CO5: 30mg/Nrd. Total sulfur content of sulfur compounds absorbed in the absorbent material (T-3
) is taken as 100%, the above regeneration results in 75%T-S
Minutes left.

以上の条件により試験した結果を、第4図に示した。 
第4図により、再生後の2回使用時には、少しC32吸
収速度は遅くなっているが、繰り返し再生使用が可能で
あることが実証された。
The results of the test under the above conditions are shown in FIG.
As shown in FIG. 4, the C32 absorption rate was slightly slower when used twice after regeneration, but it was demonstrated that repeated reuse was possible.

〈発明の効果〉 本発明のガス中の有機硫黄化合物の・除去方法によれば
、特定の数値形状の担体を用いるので、乾式低温で有機
硫黄化合物を長い担体寿命で除去でき、さらに吸収材を
容易な再生方法により再生でき、繰り返し使用できる効
果かある。
<Effects of the Invention> According to the method for removing organic sulfur compounds from gas of the present invention, since a carrier with a specific numerical shape is used, organic sulfur compounds can be removed in a dry low temperature manner with a long carrier life. It can be recycled using easy recycling methods and has the effect of being able to be used repeatedly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例を示すフローチャート図で
ある。 第2図は、担体による二硫化炭素吸収能を示すグラフで
ある。 第3図は、担体にケイ酸カルシウム、酸化鉄を使用した
場合の吸収能を示すグラフである。 第4図は、再生による吸収能を示すグラフである。 彦 FIG、3 経過 日 数(日) C52)=J1遍’?(シー) O″′TI
FIG. 1 is a flowchart showing one embodiment of the present invention. FIG. 2 is a graph showing the carbon disulfide absorption ability of the carrier. FIG. 3 is a graph showing the absorption capacity when calcium silicate and iron oxide are used as carriers. FIG. 4 is a graph showing absorption capacity due to regeneration. HikoFIG, 3 Number of days elapsed (days) C52) = J1 '? (Shi) O″′TI

Claims (2)

【特許請求の範囲】[Claims] (1)多孔質の担体として細孔容積0.3cc/g以上
、平均細孔径0.02μm以上および固体酸量0.2m
mol/g以下の担体に、第2級アミンまたは第2級ア
ミンを含む有機溶剤溶液を担持させた吸収材を用い、 有機硫黄化合物を含有するガスを前記吸収材に接触させ
て有機硫黄化合物を選択的に吸収させることを特徴とす
るガス中の有機硫黄化合物の除去方法。
(1) As a porous carrier, the pore volume is 0.3 cc/g or more, the average pore diameter is 0.02 μm or more, and the amount of solid acid is 0.2 m.
Using an absorbent material in which a secondary amine or an organic solvent solution containing a secondary amine is supported on a carrier of mol/g or less, a gas containing an organic sulfur compound is brought into contact with the absorbent material to remove the organic sulfur compound. A method for removing organic sulfur compounds in a gas, characterized by selective absorption.
(2)多孔質の担体として細孔容積0.3cc/g以上
、平均細孔径0.02μm以上および固体酸量0.2m
mol/g以下の担体に、第2級アミンまたは第2級ア
ミンを含む有機溶剤溶液を担持させた吸収材を用い、 有機硫黄化合物を含有するガスを前記吸収材に接触させ
て有機硫黄化合物を選択的に吸収させた後、有機硫黄化
合物を含有していない50℃以上のガスを流通させるこ
とにより、前記吸収材に吸収された硫黄化合物を脱離さ
せて該吸収材を再使用することを特徴とするガス中の有
機硫黄化合物の除去方法。
(2) As a porous carrier, the pore volume is 0.3 cc/g or more, the average pore diameter is 0.02 μm or more, and the amount of solid acid is 0.2 m.
Using an absorbent material in which a secondary amine or an organic solvent solution containing a secondary amine is supported on a carrier of mol/g or less, a gas containing an organic sulfur compound is brought into contact with the absorbent material to remove the organic sulfur compound. After selective absorption, the sulfur compounds absorbed in the absorbent are desorbed by passing a gas at 50°C or higher that does not contain organic sulfur compounds, and the absorbent can be reused. Characteristic method for removing organic sulfur compounds from gas.
JP62282517A 1987-11-09 1987-11-09 Method for removing organic sulfur compounds in gas Expired - Lifetime JPH0722672B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62282517A JPH0722672B2 (en) 1987-11-09 1987-11-09 Method for removing organic sulfur compounds in gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62282517A JPH0722672B2 (en) 1987-11-09 1987-11-09 Method for removing organic sulfur compounds in gas

Publications (2)

Publication Number Publication Date
JPH01123614A true JPH01123614A (en) 1989-05-16
JPH0722672B2 JPH0722672B2 (en) 1995-03-15

Family

ID=17653482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62282517A Expired - Lifetime JPH0722672B2 (en) 1987-11-09 1987-11-09 Method for removing organic sulfur compounds in gas

Country Status (1)

Country Link
JP (1) JPH0722672B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109516465A (en) * 2018-12-10 2019-03-26 濮阳天泓实业有限公司 The environment-friendly type carbon disulfide reacting furnace of quantitative continuous plus charcoal continuous production

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4922375A (en) * 1972-06-22 1974-02-27

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4922375A (en) * 1972-06-22 1974-02-27

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109516465A (en) * 2018-12-10 2019-03-26 濮阳天泓实业有限公司 The environment-friendly type carbon disulfide reacting furnace of quantitative continuous plus charcoal continuous production

Also Published As

Publication number Publication date
JPH0722672B2 (en) 1995-03-15

Similar Documents

Publication Publication Date Title
JP2785870B2 (en) Pressure swing adsorption method
US4874525A (en) Purification of fluid streams containing mercury
SU1722210A3 (en) Method of cleaning humid gas from hydrogen sulfide
US5421860A (en) Sorption of organic compounds from fluids
US4999175A (en) Process for selective adsorption of sulfur compounds from gaseous mixtures containing mercaptans
JPH04200742A (en) Carbon dioxide adsorbent
JPH08266851A (en) Method for desulfurization of gas flow and absorbent being suitable for said method
US3363401A (en) Process for the recovery of gaseous sulphuric compounds present in small quantities in residual gases
JP5089171B2 (en) Regeneration and removal of trace amounts of carbon monoxide
US3790659A (en) Activated carbon catalyst impregnated with sio2
JP2009167233A (en) Process for recovery and purification of methane from biofermentation gas utilizing adsorbent
JPH01123614A (en) Method for removing organic sulfur compound in gas
JP3526892B2 (en) Method for purifying formaldehyde-containing gas
TW201540348A (en) Improved adsorption of acid gases
JPH0214714A (en) Removal of organic sulfur compound in gas by dry process
JPS5511020A (en) Denitration method of combustion exhaust gas
CN111068642B (en) Catalyst for removing mercaptan in natural gas and preparation method thereof
US2762452A (en) Removal of organic sulfur compounds from gases
JPH02276891A (en) Removal of carbonyl sulfide in gas
JPH06296858A (en) Acid gas absorbent
US5030437A (en) Catalytic removal of sulphur-containing compounds from fluid streams by decomposition
KR102671784B1 (en) Method of reusing chemical filter
CA1337905C (en) Catalytic removal of sulphur-containing compounds from fluid streams by decomposition
JP2796754B2 (en) Mercury removal from liquid hydrocarbons
JPH0947628A (en) Absorbent for nitrogen oxide and sulfur oxide and its preparation

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080315

Year of fee payment: 13