JPH01122943A - Polypropylene film fiber-reinforced cement formed product - Google Patents

Polypropylene film fiber-reinforced cement formed product

Info

Publication number
JPH01122943A
JPH01122943A JP28039287A JP28039287A JPH01122943A JP H01122943 A JPH01122943 A JP H01122943A JP 28039287 A JP28039287 A JP 28039287A JP 28039287 A JP28039287 A JP 28039287A JP H01122943 A JPH01122943 A JP H01122943A
Authority
JP
Japan
Prior art keywords
fiber
fibers
cement
film
trunk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28039287A
Other languages
Japanese (ja)
Other versions
JPH0587460B2 (en
Inventor
Tsuguo Horigome
堀米 嗣男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TEZATSUKU KK
Original Assignee
TEZATSUKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TEZATSUKU KK filed Critical TEZATSUKU KK
Priority to JP28039287A priority Critical patent/JPH01122943A/en
Publication of JPH01122943A publication Critical patent/JPH01122943A/en
Publication of JPH0587460B2 publication Critical patent/JPH0587460B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/04Macromolecular compounds
    • C04B16/06Macromolecular compounds fibrous
    • C04B16/0616Macromolecular compounds fibrous from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B16/0625Polyalkenes, e.g. polyethylene
    • C04B16/0633Polypropylene

Abstract

PURPOSE:To obtain a PP fiber-reinforced cement formed article having improved dispersibility and strength, by blending trunk-shaped and chopped strand filament type PP film fiber having each specified average fineness of trunk fiber and aspect ratio into a cement matrix and forming the blend. CONSTITUTION:PP film having 25-35mu thickness is cleaved and divided and cut to provide a trunk shaped and chopped strand filament type PP film fiber having 40-60 denier average fineness of trunk fiber and 40-200 aspect ratio. As the above-mentioned fiber, the trunk fiber having 3-18mm length is preferably used. Then the PP film fiber is blended with a cement matrix as usual to form the cement formed product. The blend of the PP film fiber is carried out in a blend amount of 0.3-5.0vol.% based on total amount of the PP film fiber and cement matrix.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は幹枝形状のチョツプドフィラメントタイプのポ
リプロピレン(PP) フィルム繊維で強化されたセメ
ント成形物、特に抄造、押出または注形成形法で製造さ
れた厚さ20票以下のセメント成形物に閃するものであ
る。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to cement moldings reinforced with trunk-branch shaped chopped filament type polypropylene (PP) film fibers, particularly by papermaking, extrusion or cast molding methods. This applies to manufactured cement moldings with a thickness of 20 mm or less.

〔従来の技術〕[Conventional technology]

従来より厚さの薄い例えば厚さ20m+a以下のセメン
ト成形物の強化用繊維としてPpm維が多く使用されて
いるが、従来より使用されているPP繊維はその断面が
円形または円形に近く、シかも表面が平滑であり、通常
アスペクト比が300以上の繊維である(特開昭57−
129861号公報参照)。
Conventionally, Ppm fibers have been widely used as reinforcing fibers for cement moldings that are thinner than 20 m+a thick, for example, but the PP fibers that have been used conventionally have circular or nearly circular cross sections, and may These fibers have a smooth surface and usually have an aspect ratio of 300 or more.
(See Publication No. 129861).

このような繊維は表面が平滑であるためにセメント成形
物形成中に滑脱し易く、またアスペクト比が大きいため
にセメントマトリックス中に均一に分散させることが非
常に困難である。
Because such fibers have a smooth surface, they easily slip off during the formation of a cement molding, and because of their large aspect ratio, it is very difficult to uniformly disperse them in the cement matrix.

このような従来のPPv4維に代るものとして軸方向に
延伸したPPフィルムを開裂(fibrillate)
し、適当な長さに幹繊維を切断した幹枝形状のチョツプ
ドフィラメントタイプのPPフィルム繊維が報告されて
いる(英国特許第1130612号参照)、また更に上
記PPフィルムの表面を予めコロナ放電処理し、更に界
面活性剤を施して作られたチョツプドフィラメントタイ
プのPPフィルム繊維が報告されている(米国特許第4
261754号および第4310475号参照)。
As an alternative to such conventional PPv4 fibers, axially stretched PP films can be fibrillated.
However, chopped filament-type PP film fibers in the form of trunks and branches, in which the trunk fibers are cut into appropriate lengths, have been reported (see British Patent No. 1130612). Furthermore, chopped filament type PP film fibers made by adding a surfactant have been reported (U.S. Patent No. 4).
261754 and 4310475).

しかしながら上記英国特許第1130612号に記載さ
れているフィルム繊維はセメントマトリックスとの密着
性が充分でなく、米国特許第4261754号および第
4310475号に記載されたフィルム繊維は上記英国
特許のフィルム繊維を改良しているが、これらに記載さ
れているフィルム繊維は何れも幹繊維の繊度が2〜35
dtax(1,8〜31.5デニール)であり、アスペ
クト比がやはり300以上である。かかるフィルム繊維
の大きな特長は側面に枝毛(fray)が存在すること
であり、この枝毛が強化繊維として大きな効果を発揮す
るものであるが、かかる形状のフィルム繊維では、繊度
が2〜35atex、アスペクト比が300以上である
ためセメントマトリックス中に均一に分散させることが
容易でなく、その分散性に問題があり、特殊な混和材あ
るいは分散剤例えばメチルセルロースまたはシリコーン
オイル等の助けを借りなければ上記フィルム繊維の特長
を充分に発揮させることが難しい。即ちこのような繊度
およびアスペクト比のフィルム繊維を用いて作ったセメ
ント成形物の諸強度はバラツキが大きくなり、特に薄い
セメント成形物の場合均一強度のセメント成形物を得る
ことが困難である。
However, the film fibers described in UK Patent No. 1,130,612 do not have sufficient adhesion to the cement matrix, and the film fibers described in US Pat. However, the film fibers described in these documents all have a main fiber fineness of 2 to 35.
dtax (1.8 to 31.5 deniers), and the aspect ratio is also 300 or more. A major feature of such film fibers is the presence of split ends (fray) on the side surfaces, and these split ends exhibit a great effect as reinforcing fibers. Since the aspect ratio is more than 300, it is difficult to uniformly disperse it in the cement matrix, and there are problems with its dispersibility, and it is necessary to use special admixtures or dispersants such as methyl cellulose or silicone oil. It is difficult to fully utilize the features of the film fibers mentioned above. That is, the strengths of cement molded products made using film fibers having such fineness and aspect ratio vary widely, and it is difficult to obtain cement molded products with uniform strength, especially in the case of thin cement molded products.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

セメント成形物に対する繊維の強化効果は、一般に使用
する繊維自体の物理的および化学的特性(例えば強伸度
、弾性係数、セメントマトリックスとの密着性、耐アル
カリ性)にもよるが、セメントマトリックスの全容積に
占める繊維の容積分率に大きく依存することは知られて
いる、しかしながら同一容積分率でもセメントマトリッ
クス中への繊維の分散の均一性と、分散したta維の全
表面積の大きさに大きく依存する0 従って同一容積分率で繊維の全表面積を大きくして繊維
の強化効果を図るため、一般に使用繊維のアスペクト比
を大きくすることが通念になっており、このため前述し
た如く、アスペクト比が300以上の繊維が使用されて
いる。
The reinforcing effect of fibers on cement molded articles generally depends on the physical and chemical properties of the fibers themselves (e.g., strength and elongation, elastic modulus, adhesion to the cement matrix, alkali resistance), but it also depends on the overall strength of the cement matrix. It is known that it is highly dependent on the volume fraction of fibers in the volume, but even at the same volume fraction, the uniformity of fiber dispersion in the cement matrix and the size of the total surface area of the dispersed TA fibers are significantly affected. 0 Therefore, in order to increase the total surface area of fibers at the same volume fraction and strengthen the fibers, it is generally accepted that the aspect ratio of the fibers used is increased. Fibers with more than 300 are used.

しかしながらアスペクト比が大きくなればなる程繊維は
からみ易くなり、セメントマトリックスとの捏混工程で
塊即ちファイバーボールが発生し易くなり、セメントマ
トリックス中での分散が不均一になってしまい、このた
め充分な容積分率としてもセメント成形物に対する充分
な強化効果が得られず、またセメント成形物の諸強度の
バラツキも大きくなる問題点を有していた。特に厚さの
薄いセメント成形物においては上記7アイパーボールの
生成および存在はセメント成形物の諸強度を劣化させる
However, the larger the aspect ratio, the more easily the fibers become entangled, and the more likely it is that lumps or fiber balls are generated during the mixing process with the cement matrix, resulting in uneven dispersion in the cement matrix. Even with a small volume fraction, a sufficient strengthening effect on the cement molded product cannot be obtained, and furthermore, there has been a problem that variations in the various strengths of the cement molded product become large. Particularly in a cement molded product having a small thickness, the formation and presence of the above-mentioned 7 eyeper balls deteriorates the various strengths of the cement molded product.

本発明の目的は厚さの薄い例えば厚さ20咽以下のセメ
ント成形物をフィルム繊維で補強するに当って、幹枝形
状のチョツプドフィラメントタイプのPPフィルム繊維
の形状、特に繊度およびアスペクト比を適切な範囲にす
ることによって、上述した分散性の改良を計り、セメン
ト成形物の強度を向上させることにある。
The purpose of the present invention is to improve the shape, especially the fineness and aspect ratio, of chopped filament type PP film fibers in the trunk and branch shape when reinforcing thin cement molded products with a thickness of 20 mm or less, for example, with film fibers. By adjusting the content within an appropriate range, the above-mentioned dispersibility can be improved and the strength of the cement molded product can be improved.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は強化繊維として、形状特性が 幹繊維の平均繊度:40〜60デニール幹繊維のアスペ
クト比:40〜200 である幹枝形状のチョツプドフィラメントタイプのPP
フィルム繊維を0.3〜5.0容積%セメントに配合し
て成形したセメント成形物にある◇本発明で使用する幹
枝形状のチョツプドフィラメントタイプのPPフィルム
繊維を製造するに肖っては、公知の方法でPPフィルム
を製造し、このフィルムを軸方向に高度に熱延伸して厚
さ25〜35μのフィルムとし、これをポーキュパイン
ローラ−を通して開裂させ、次いで切断することによっ
て作ることができる。
The present invention uses chopped filament type PP as a reinforcing fiber in a trunk and branch shape, which has a shape characteristic of average fineness of trunk fiber: 40 to 60 denier, and aspect ratio of trunk fiber: 40 to 200.
It is a cement molded product made by blending film fibers with 0.3 to 5.0% by volume of cement. It can be made by manufacturing a PP film by a known method, highly hot stretching the film in the axial direction to form a film with a thickness of 25 to 35μ, which is split by passing it through a porcupine roller, and then cut. .

かかる繊維の製造法自体は前述した英国特許および米国
特許に記載されている。
Methods for producing such fibers are themselves described in the UK and US patents mentioned above.

本発明によれば、上述した幹枝形状のチョツプドフィラ
メントタイプのPPフィルム繊維を作るための高度に延
伸されたフィルムは、切断強度:50Kt/−以上 切断伸度:8%以下 弾性係数:120.OKf/−以上 の特性を有するフィルムを使用するとよい。
According to the present invention, the highly stretched film for making the above-mentioned chopped filament type PP film fibers having a trunk and branch shape has a cutting strength of 50 Kt/- or more and a cutting elongation of 8% or less and an elastic modulus of 120 .. It is preferable to use a film having characteristics of OKf/- or more.

そもそもセメント成形物は、それに荷重が加わるとその
応力がセメントマトリックスを通して強化繊維に伝達さ
れるが、このとき上記PPフィルム繊維の切断強度が5
0Kg/−未満であると通常セメント成形物、特に薄い
セメント成形物に要求される強度に達しないうちにセメ
ント成形物が破断してしまうことがあり好ましくない。
In the first place, when a load is applied to a cement molded product, the stress is transmitted to the reinforcing fibers through the cement matrix, but at this time, the cutting strength of the PP film fibers is 5.
If it is less than 0 kg/-, the cement molded product may break before it reaches the strength required for a cement molded product, especially a thin cement molded product, which is not preferable.

またPPフィルム繊維の切断強度が50Kg/−以上で
あっても、切断伸度が8%を越えると、ppフィルム繊
維自体は切断しなくても伸びが大きいために製品強度以
下の低荷重で亀裂が発生し、事実上セメント成形物の破
壊に至ることがあり好ましくない。
In addition, even if the cutting strength of the PP film fiber is 50 kg/- or more, if the cutting elongation exceeds 8%, the PP film fiber itself will elongate significantly even without cutting, so it will crack under a low load below the product strength. This is undesirable as it may actually lead to the destruction of the cement molded product.

また切断強度50Kf/−以上、切断伸度8%以下でも
、弾性係数が1200Kg/−以上でないと、負荷にお
ける初期段階でのひび割れの防止が充分でなく成形品の
破断強度は向上しない。
Further, even if the cutting strength is 50 Kf/- or more and the cutting elongation is 8% or less, unless the elastic modulus is 1200 Kg/- or more, cracking in the initial stage under load will not be sufficiently prevented and the breaking strength of the molded product will not improve.

本発明によれば上述した緒特性を有し、がっ厚さが25
〜35μのPPフィルムを次にy−4ユバインローラー
に通して開裂分繊し、切断して幹繊維の平均繊度:40
〜60デニール幹繊維のアスペクト比:40〜200 の幹枝状のチョツプドフィラメントタイプのPPフィル
ム繊維にする。
According to the present invention, it has the above-mentioned characteristics and has a thickness of 25 mm.
~35μ PP film is then passed through a Y-4 Yubain roller to split and split, and cut to obtain an average fineness of main fibers: 40
~60 denier Aspect ratio of trunk fiber: 40 to 200 A chopped filament type PP film fiber with a trunk and branch shape is made.

上記PPフィラメント繊維の長さは用途に最も適した長
さにすればよく、通常抄造成形では3〜9m、好ましく
は約68%押出成形では通常3〜151111.好まし
くは9〜12W1注形成形では6〜18m、好ましくは
12〜15■が使用される。このため、本発明において
も上記PPフィラメント繊維としてはその幹繊維の長さ
が3〜18mのものを使用するとよい。
The length of the above-mentioned PP filament fibers may be set to the most suitable length for the purpose, usually 3 to 9 m for paper forming, preferably 3 to 151111 m for approximately 68% extrusion molding. Preferably, 6 to 18 m, preferably 12 to 15 cm, is used for a 9 to 12 W one-cast molding. For this reason, also in the present invention, it is preferable to use PP filament fibers whose main fibers have a length of 3 to 18 m.

次に幹繊維の平均繊度とアスペクト比については、その
繊維の分散性が良好であれば一般にアスペクト比が大き
い方が強化性能は高くなる。
Next, regarding the average fineness and aspect ratio of the main fibers, if the fibers have good dispersibility, generally the larger the aspect ratio, the higher the reinforcing performance.

しかしながら実際にはアスペクト比が大きくなればなる
程その分散性は悪くなり、結果としてそれを用いて作ら
れたセメント成形物の所望の強度は得られないことがあ
る。
However, in reality, the larger the aspect ratio, the worse the dispersibility, and as a result, the desired strength of a cement molded product made using it may not be obtained.

このため繊度が40デニールより小さい場合、アスペク
ト比が200を越えるようになると、繊維長が20mを
越えてしまい通常の捏混作用で均一な分散を得ることが
できない、また繊度が大きくアスペクト比が小さくなる
と分散は良くなるがPPフィルム繊維の強化性能が劣る
ようになる。また繊度が60デニールよりも大きい場合
、アスペクト比が40より小さくなると繊維長は2m以
下になってしまい実質的な強化性能が得られなくなる。
For this reason, if the fineness is less than 40 deniers and the aspect ratio exceeds 200, the fiber length will exceed 20m, making it impossible to obtain uniform dispersion with normal kneading. When it becomes smaller, the dispersion becomes better, but the reinforcing performance of the PP film fiber becomes inferior. Further, when the fineness is greater than 60 deniers and the aspect ratio is less than 40, the fiber length becomes 2 m or less, making it impossible to obtain substantial reinforcing performance.

このため本発明では繊維長との関係から繊度40〜60
デニール、アスペクト比40〜200が好ましい範囲で
ある。
Therefore, in the present invention, the fineness is 40 to 60 in relation to the fiber length.
Preferred ranges are denier and aspect ratio of 40 to 200.

本発明によれば上述した幹枝形状のチョツプドフィラメ
ントタイプのPPフィルム繊維を通常の如くセメントマ
トリックスと混合してセメント成形物を形成する。この
とき上記PPフィルム繊維はセメントマトリックスとの
合計量に対して0.3〜5.0容量%となるように配合
する。配合方法は周知の方法で行なうことが、できる。
According to the present invention, the above-mentioned chopped filament type PP film fibers having a trunk-branch shape are mixed with a cement matrix in a conventional manner to form a cement molded product. At this time, the PP film fibers are mixed in an amount of 0.3 to 5.0% by volume based on the total amount with the cement matrix. The compounding method can be carried out by a well-known method.

上記配合割合が0.3容積%より少ないと実質的な強化
効果が得られず、また5、0容積%より多くなると分散
が極めて困難になり、従って捏混時間も長くなって実用
的でない。また完成したセメント成形物が多孔質になっ
てセメント成形物の曲げ強度あるいは寸法安定性も低下
することがあるので好ましくない。
If the above-mentioned blending ratio is less than 0.3% by volume, no substantial reinforcing effect can be obtained, and if it is more than 5.0% by volume, dispersion becomes extremely difficult and the kneading time becomes long, which is not practical. Further, the completed cement molded product becomes porous, which may reduce the bending strength or dimensional stability of the cement molded product, which is undesirable.

本発明において使用するPPフィルム繊維は、前述した
開裂分繊する前のフィルムの状態で常法に従ってコロナ
放電処理すると、セメントマトリックスとの密着性が向
上するので好ましい。
The PP film fibers used in the present invention are preferably subjected to a corona discharge treatment according to a conventional method in the film state before being split and split as described above, since this improves the adhesion with the cement matrix.

またPPフィルム繊維とした後で界面活性剤例えばポリ
エチレングリフールアルキルエステル系のアニオン界面
活性剤で処理すると、セメントマトリックス中へのPP
フィルム繊維の分散性を良くするので好ましい。
Furthermore, when treated with a surfactant such as an anionic surfactant such as polyethylene glyfur alkyl ester after forming into PP film fibers, PP can be absorbed into the cement matrix.
This is preferred because it improves the dispersibility of film fibers.

本発明に従い、上述したPPフィルム繊維とセメントマ
トリックスの混合物からセメント成形物を製造するに当
・つては抄造成形法、押出成形法または注形成形法を使
用できる。
According to the invention, paper molding, extrusion or casting methods can be used to produce cement moldings from the above-described mixture of PP film fibers and cement matrix.

なお上記PPフィルム繊維の外にセメント成形物製造に
通常使用される添加剤例えばパルプ等のセルロース繊維
、メチルセルロース、マイティーM−150(花王製品
)等の硫動化剤を加えてもよい。
In addition to the above-mentioned PP film fibers, additives commonly used in the production of cement moldings, such as cellulose fibers such as pulp, methyl cellulose, and sulfurizing agents such as Mighty M-150 (Kao products) may be added.

〔作用〕[Effect]

厚さが通常20■以下の薄いセメント成形物において、
前述した本発明による幹枝形状のチョツプドフィラメン
トタイプのPPフィルム繊維を用いると、通常の押混作
用によって上記PPフィルム繊維はセメントマトリック
ス中に短時間で極めて容易に均一分散する。また桿混作
用が行なわれている間に上記PPフイラメンHamは再
解裂されて表面積が増大する。このため強度特性の非常
にすぐれたセメント成形品が得られるようになる。
In thin cement moldings whose thickness is usually 20 cm or less,
When the above-mentioned chopped filament type PP film fibers of the present invention are used, the PP film fibers can be uniformly dispersed in the cement matrix in a short period of time by the usual pressing and mixing action. Further, during the rod mixing action, the PP filament Ham is re-cleaved and its surface area increases. This makes it possible to obtain cement molded products with extremely excellent strength properties.

〔実施例〕〔Example〕

以下に実施例を挙げて本発明を説明する。 The present invention will be explained below with reference to Examples.

供試用の幹枝形状のチョツプドフィラメントタイプのP
Pフィルム繊維の製造ニ 一般グレードのPP樹脂(M工:3.O)を、通常のエ
クストルーダーのリングダイスを通して濡度約220℃
、ブロー比1:1のインフレーション法で押し出し、空
冷後180℃のホットエアオープンを通して20倍に一
軸延伸し、次に160℃のホットエアオープンを通して
アニーリングをして厚さ30μのフィルムを作った。
Chopped filament type P with trunk and branch shape for testing
Production of P film fiber General grade PP resin (M process: 3.0) is passed through a ring die of a normal extruder at a wetness of approximately 220°C.
The film was extruded by an inflation method with a blow ratio of 1:1, and after air cooling, it was uniaxially stretched 20 times through a hot air opening at 180°C, and then annealed through a hot air opening at 160°C to produce a film with a thickness of 30 μm.

次に上記フィルムの表面に12KWの高電圧でコロナ放
電処理を施した後、ニー゛ドル密度が170本/C4、
表面速度がフィルム速度の3倍、5倍および7倍のポー
キュパインローラ−を1段、3段および5段通しするこ
とによって開裂分繊し、最後にポリオキシエチレングリ
コールエステル系界面活性剤を付与したのち、カットし
てそれぞれ幹繊維の長さが9m、12mおよび15m+
のPPフィルム繊維とした。かくして作ったPPフィル
ム繊維のそれぞれの繊度およびアスペクト比は各実施例
の表に示す。なおボーキュパインマーラーの表面速度お
よび通し回数(段数)が増える程開裂分繊度は細くなる
Next, the surface of the above film was subjected to corona discharge treatment at a high voltage of 12KW, and the needle density was 170/C4.
The film was split and split by passing it through 1, 3, and 5 stages of porcupine rollers whose surface speed was 3 times, 5 times, and 7 times the film speed, and finally a polyoxyethylene glycol ester surfactant was applied. Afterwards, the lengths of the main fibers are 9m, 12m and 15m+ after cutting.
It was made into PP film fiber. The fineness and aspect ratio of each of the PP film fibers thus produced are shown in the table for each example. Note that as the surface speed and number of passes (number of stages) of the vorcupine muller increase, the degree of cleavage becomes finer.

実施例 1および比較例 1〜3 本実施例および比較例は抄造成形法によって行なった。Example 1 and Comparative Examples 1 to 3 The present Examples and Comparative Examples were carried out by a paper forming method.

使用材料を下記に示す。The materials used are shown below.

石      綿    5.4   2.25   
    2.4バ   ル   プ    1.4  
 1.4         1.0セ   メ   ン
   ト   114.7     3.3     
      34.8マイクロシリカ  10.8  
2.2      4.9計     585.0  
        496.1通常の抄造成形法で使用さ
れる離解機(パルパー)と全く同型の約5001容量の
実験用パルパーを用いて、ローター/ステーター:0.
8閣、ローター回転数: a o o rpmなる条件
のもとで、まずパルパーに450に4の水を入れ強化繊
維の2,7匂を混ぜて8分間攪拌した。次いで5、4 
Kgの石綿と1.4匂のパルプを混合して引続き7分間
攪拌した。最後に114.7?のセメン1:10.8に
9のマイクロシリカを投入してさらに5分間攪拌した。
Asbestos 5.4 2.25
2.4 valve 1.4
1.4 1.0 cement 114.7 3.3
34.8 micro silica 10.8
2.2 4.9 total 585.0
496.1 Using an experimental pulper with a capacity of approximately 5001, which is exactly the same type as the disintegrating machine (pulper) used in normal papermaking and molding methods, a rotor/stator: 0.
Under the conditions of 8 degrees, rotor rotation speed: a o o rpm, first, 450 to 4 parts water was put into a pulper, 2.7 parts of reinforcing fiber was mixed, and the mixture was stirred for 8 minutes. then 5, 4
Kg of asbestos and 1.4 kg of pulp were mixed and subsequently stirred for 7 minutes. Finally 114.7? Micro silica (9) was added to 1:10.8 of cement (1:10.8), and the mixture was further stirred for 5 minutes.

このようにして出来たスラリーを通常使用されるハチニ
ック式抄造機と全く同型の実験用抄造機で厚さ6111
%幅?2C11%長さ182C11の成形物(平板)に
抄き上げた。
The slurry produced in this way was processed into a 6111mm thick experimental papermaking machine, which is exactly the same type as the commonly used Hachnik-type papermaking machine.
%width? A molded product (flat plate) of 2C11% and length 182C11 was formed.

このときの成形物の容積に対する強化フィルム繊維の容
積分率は2%であった。この抄造作業中、パルパーと抄
造槽の間でスラリーを循環させた。
At this time, the volume fraction of the reinforcing film fibers to the volume of the molded product was 2%. During this papermaking operation, slurry was circulated between the pulper and the papermaking tank.

抄き上げられた成形物を28日間自然養生したのち物性
テストに供した。
After the molded product was naturally cured for 28 days, it was subjected to a physical property test.

上記セメント成形物の試験結果を表1に示す。Table 1 shows the test results for the cement molded product.

なお表1中比較例3は紡糸した一般pPm維で繊維長が
6CIl+のものを使用した。
In Comparative Example 3 in Table 1, spun general pPm fibers with a fiber length of 6CIl+ were used.

表       1 強イし繊維(7)7Xゝ′ 70〜60 215〜12
5 50〜40 300ト比 曲げ強度(KII/cd)”   256    24
2   224  238(1) : 7アイバーボー
ル(繊維のかたまり)の個数は次の如くして測定した。
Table 1 Strong fiber (7) 7X'' 70~60 215~12
5 50-40 300 specific bending strength (KII/cd)” 256 24
2 224 238 (1): 7 The number of eyeball balls (clumps of fibers) was measured as follows.

抄き上げ直後の生板を316wX316tm (0,1
rye )の大きさに裁断し、これと同じ大きさで底に
10メツシユのスクリーンを設けた箱に入れ、水中で静
かに振動させながらセメントおよびマイクロシリカを水
中に流し出し、スクリーン上に残った繊維−石綿−バル
ブのシートを目視で観察しファイバーボールの数を数え
、1i当りに換算した。
The raw board immediately after cutting is 316w x 316tm (0,1
rye) and placed in a box of the same size with a 10-mesh screen on the bottom, and while gently vibrating in water, the cement and microsilica were poured out into the water, leaving nothing on the screen. The fiber-asbestos-bulb sheet was visually observed, the number of fiber balls was counted, and the number was calculated per 1 i.

(2):曲げ強度には5 am X 25 Ca1の大
きさに裁断した試験片を用いた。
(2): For bending strength, a test piece cut into a size of 5 am x 25 Ca1 was used.

(3):衝撃試験には4 am X 8 Ca+の大き
さに裁断した試験片を用いた。
(3): A test piece cut into a size of 4 am x 8 Ca+ was used for the impact test.

実施例 2および比較例 4〜6 本実施例および比較例は押出成形法によって行なった。Example 2 and Comparative Examples 4 to 6 The present examples and comparative examples were carried out by extrusion molding.

使用材料を下記に示す。The materials used are shown below.

セ   メ   ン   ト    15.0    
    3.3          4.55マイクロ
シリカ  4.5   2.2    2.05マイテ
イー150   0.3     1.0      
0.3バ   ル   プ   0.21    1.
4       0.15ケイ砂#B  7.5  2
.2  3.41計      32.28     
      14.96定量約30/の実験用オムニミ
キサー(千代田技研工業製)を用い、まず七メン)15
Kl、マイクロシリカ4.5 Kq 、水4.5 Kg
、マイティー150 0、3 Kqを投入し300 r
pmで1分間練りこんだ。次にパルプ0.21 Kgを
投入して1分間ねり込んだ。次に強化繊維0.27 K
gを投入して5分間ねりこみ、最後にケイ砂#8を投入
して2分間ねりこんでモルタルとした。次に、該モルタ
ルを、通常使用されている押出機と同型の実験用押出t
!lA(宮崎鉄工部)に投入し、さらにねり込みながら
厚さ10嘔、幅316rfaのプレート状(平板)に押
出し、長さ316順に裁断し、室内に24時間放置して
硬化させた。このときの成形物の容積に対する強化フィ
ルム繊維の容積分率は2%であった。このようにして成
形したプレートを28日間自然養生したのち物性テスト
に供した。
Cement 15.0
3.3 4.55 Micro Silica 4.5 2.2 2.05 Mighty 150 0.3 1.0
0.3 valve 0.21 1.
4 0.15 silica sand #B 7.5 2
.. 2 3.41 total 32.28
14. Using an experimental omnimixer (manufactured by Chiyoda Giken Kogyo Co., Ltd.) with a quantitative determination of approximately 30%, first 7 minutes) 15
Kl, micro silica 4.5 Kq, water 4.5 Kg
, Mighty 150 0. Inject 3 Kq and 300 r
Kneaded at pm for 1 minute. Next, 0.21 kg of pulp was added and kneaded for 1 minute. Next, reinforcing fiber 0.27K
g was added and kneaded for 5 minutes, and finally silica sand #8 was added and kneaded for 2 minutes to obtain a mortar. Next, the mortar was extruded into an experimental extruder of the same type as a commonly used extruder.
! 1A (Miyazaki Iron Works Department), and was extruded into a plate shape (flat plate) with a thickness of 10 mm and a width of 316 rfa while being further kneaded, cut into lengths of 316 mm, and left indoors for 24 hours to harden. At this time, the volume fraction of the reinforcing film fibers to the volume of the molded product was 2%. The plates thus formed were naturally cured for 28 days and then subjected to physical property tests.

上記セメント成形物の試験結果を表2に示す。Table 2 shows the test results for the cement molded product.

なお表2中比較例6は紡糸した一般PP繊維で長さが9
CI+のものを使用した。
In addition, Comparative Example 6 in Table 2 is a spun general PP fiber with a length of 9
CI+ was used.

へへへへへ− 表      2 曲げ強度(K4/cj)   97.8   94.6
   90.9  98.0衝撃強度(h・am/aj
)   13.9   12.5   12.1   
12.6実施例 3および比較例 7〜9 本実施例および比較例は注形成形法によって行なった。
Hehehehehe Table 2 Bending strength (K4/cj) 97.8 94.6
90.9 98.0 Impact strength (h・am/aj
) 13.9 12.5 12.1
12.6 Example 3 and Comparative Examples 7 to 9 This Example and Comparative Examples were carried out by the casting method.

使用材料を下記に示す。The materials used are shown below.

セ  メ   ン   ト   15.0      
   3.3          4.54ケイ砂$6
 9.0  2.2  4.09強強化フィルム繊 維15m)    0.27    0.91    
 0.3水       6.0     1.0  
    6.0容量約301の実験用オムニミキサーを
用い、まずセメン)15Kp、ケイ砂$6 9に9、マ
イティー1500.15にf1水6 Kgを投入し30
0rpmで3分30秒間ねりこんだ。次に強化繊維0、
27 Kgを投入しさらに1分30秒間ねりこんだ。次
に、該モルタルを深さ10朋、タテ316綱、ヨコ31
6mの形わくに流しこみ、バイブレータ−(林バイブレ
ーター製)で約3000回/分の振動を与えて振動成形
したのち24時間室内放置して硬化させた。このときの
成形物の容積に対する強化フィルム繊維の容積分率は2
%であった。その後形わくから取り出し、このようにし
て成形した平板を28日間自然養生したのち、物性テス
トに供した。
Cement 15.0
3.3 4.54 Silica sand $6
9.0 2.2 4.09 Strong reinforced film fiber 15m) 0.27 0.91
0.3 water 6.0 1.0
6.0 Using an experimental omnimixer with a capacity of about 301, first add 15 Kp of cement, silica sand $6 to 9, and 6 Kg of f1 water to Mighty 1500.15.
Knead for 3 minutes and 30 seconds at 0 rpm. Next, reinforcing fiber 0,
27 kg was added and kneaded for another 1 minute and 30 seconds. Next, the mortar is 10 mm deep, 316 mm vertically, and 31 mm horizontally.
The mixture was poured into a 6 m frame, subjected to vibration molding using a vibrator (manufactured by Hayashi Vibrator) at approximately 3,000 vibrations per minute, and then left indoors for 24 hours to harden. At this time, the volume fraction of the reinforcing film fibers to the volume of the molded product is 2
%Met. Thereafter, it was removed from the mold frame, and the thus formed flat plate was naturally cured for 28 days, and then subjected to physical property tests.

上記セメント成形物の試験結果を表3に示す。Table 3 shows the test results for the cement molded product.

なお比較例9は紡糸した一般PPmmで長さが12園の
ものを使用した。
In addition, in Comparative Example 9, a spun general PP material having a length of 12 mm was used.

表      3 実施例     比 較 例 発生数(個/d)      7    27    
 0   43曲げ強度(K4/d)   81.5 
  78.8   73.0  76.5衝撃強度(K
f−cm/af)  12.7   11.5   1
0.8   9.6〔発明の効果〕 上記各実施例および比較例のデータから明らかなように
本発明によるセメント成形品はファイバーボール発生数
が少なく、曲げ強度および衝撃強度においてすぐれてい
る。
Table 3 Example Comparison Number of cases occurring (pieces/d) 7 27
0 43 Bending strength (K4/d) 81.5
78.8 73.0 76.5 Impact strength (K
f-cm/af) 12.7 11.5 1
0.8 9.6 [Effects of the Invention] As is clear from the data of the above-mentioned Examples and Comparative Examples, the cement molded product according to the present invention generates fewer fiber balls and is excellent in bending strength and impact strength.

Claims (1)

【特許請求の範囲】 1、強化繊維として、形状特性が 幹繊維の平均繊度:40〜60デニール 幹繊維のアスペクト比:40〜200 である幹枝形状のチヨツプドフイラメントタイプのポリ
プロピレンフィルム繊維を0.3〜5.0容積%セメン
トマトリックスに配合して成形したことを特徴とするセ
メント成形物。 2、ポリプロピレンフィルム繊維の幹繊維の長さが3〜
18mmである特許請求の範囲第1項記載のセメント成
形物。 3、ポリプロピレンフィルム繊維の厚さが25〜35μ
である特許請求の範囲第1項記載のセメント成形物。 4、ポリプロピレンフィルム繊維が、軸方向に延伸され
、コロナ放電処理および界面活性剤処理された下記特性 切断強度:50Kg/mm^2以上 切断伸度:8%以下 弾性係数:1200kg/mm^2以上 を有するポリプロピレンフィルムから作られた特許請求
の範囲第1項、第2項または第3項記載のセメント成形
物。 5、セメント成形物の厚さが20mm以下である特許請
求の範囲第1項〜第4項の何れかに記載のセメント成形
物。
[Claims] 1. As the reinforcing fibers, chopped filament type polypropylene film fibers with a trunk and branch shape having a shape characteristic of average fineness of trunk fibers: 40 to 60 denier and aspect ratio of trunk fibers: 40 to 200 are used. 1. A cement molded article, characterized in that it is blended with a cement matrix of 0.3 to 5.0 volume % and molded. 2. The length of the main fiber of polypropylene film fiber is 3~
The cement molded article according to claim 1, which has a diameter of 18 mm. 3. The thickness of polypropylene film fiber is 25-35μ
A cement molded article according to claim 1. 4. Polypropylene film fibers are axially stretched, corona discharge treated and surfactant treated. Cutting strength: 50 kg/mm^2 or more Cutting elongation: 8% or less Elastic modulus: 1200 kg/mm^2 or more A cement molded article according to claim 1, 2 or 3 made from a polypropylene film having: 5. The cement molded product according to any one of claims 1 to 4, wherein the cement molded product has a thickness of 20 mm or less.
JP28039287A 1987-11-06 1987-11-06 Polypropylene film fiber-reinforced cement formed product Granted JPH01122943A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28039287A JPH01122943A (en) 1987-11-06 1987-11-06 Polypropylene film fiber-reinforced cement formed product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28039287A JPH01122943A (en) 1987-11-06 1987-11-06 Polypropylene film fiber-reinforced cement formed product

Publications (2)

Publication Number Publication Date
JPH01122943A true JPH01122943A (en) 1989-05-16
JPH0587460B2 JPH0587460B2 (en) 1993-12-16

Family

ID=17624385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28039287A Granted JPH01122943A (en) 1987-11-06 1987-11-06 Polypropylene film fiber-reinforced cement formed product

Country Status (1)

Country Link
JP (1) JPH01122943A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0950645A1 (en) * 1998-04-13 1999-10-20 Kuraray Co., Ltd. Reinforcing material for kneaded and formed hydraulic material, and kneaded and formed article
JP2005502577A (en) * 2001-09-10 2005-01-27 スリーエム イノベイティブ プロパティズ カンパニー Reinforced fiber reinforced cement composite
JP2010031642A (en) * 2009-11-04 2010-02-12 Kurabo Ind Ltd Building accessory

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1130612A (en) * 1966-08-15 1968-10-16 Shell Int Research The manufacture of a water-hardenable mass; the manufacture of articles therefrom; and the resulting articles and use thereof
JPS5230968A (en) * 1975-08-26 1977-03-09 Hosokawa Funtai Kogaku Kenkyusho:Kk Continous mixing apparatus of particulate body
US4261754A (en) * 1977-05-05 1981-04-14 Dansk Eternit-Fabrik A/S Fiber reinforced building products and method of producing same
JPS62223046A (en) * 1986-03-20 1987-10-01 松下電工株式会社 Manufacture of cementitious hardened body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1130612A (en) * 1966-08-15 1968-10-16 Shell Int Research The manufacture of a water-hardenable mass; the manufacture of articles therefrom; and the resulting articles and use thereof
JPS5230968A (en) * 1975-08-26 1977-03-09 Hosokawa Funtai Kogaku Kenkyusho:Kk Continous mixing apparatus of particulate body
US4261754A (en) * 1977-05-05 1981-04-14 Dansk Eternit-Fabrik A/S Fiber reinforced building products and method of producing same
JPS62223046A (en) * 1986-03-20 1987-10-01 松下電工株式会社 Manufacture of cementitious hardened body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0950645A1 (en) * 1998-04-13 1999-10-20 Kuraray Co., Ltd. Reinforcing material for kneaded and formed hydraulic material, and kneaded and formed article
JP2005502577A (en) * 2001-09-10 2005-01-27 スリーエム イノベイティブ プロパティズ カンパニー Reinforced fiber reinforced cement composite
JP2010031642A (en) * 2009-11-04 2010-02-12 Kurabo Ind Ltd Building accessory

Also Published As

Publication number Publication date
JPH0587460B2 (en) 1993-12-16

Similar Documents

Publication Publication Date Title
US4261754A (en) Fiber reinforced building products and method of producing same
US4483727A (en) High modulus polyethylene fiber bundles as reinforcement for brittle matrices
JP2688434B2 (en) Fiber for reinforcement
JPS60151268A (en) Cured and dried cement composition
Claramunt Blanes et al. Wet/dry cycling durability of cement mortar composites reinforced with micro and nano-scale cellulose pulps
EP2224044A2 (en) Man-made mineral fibre for three-dimensional reinforcement of a cement product
JPH01122943A (en) Polypropylene film fiber-reinforced cement formed product
JP2689171B2 (en) Manufacturing method of hydraulic material molded body
EP0006318A1 (en) Reinforced shaped articles, the production thereof and novel fibres and filaments for use therein
GB1605004A (en) Fibre reinforced building products
JPH0986984A (en) Polypropylene fiber for cement reinforcement
JPH01176253A (en) Fiber-reinforced cement molding
JPH01160850A (en) Vinylon fiber and polypropylene film fiber reinforced cement molded article
EP0388854B1 (en) Collagen fiber sheet
Olawale Effects of jute yarn on mechanical properties of concrete
JPH11348035A (en) Composite material of paper and resin, and its manufacture
JP4990827B2 (en) Hydraulic composition and cured product
JP2867087B2 (en) Polypropylene fiber and fiber reinforced cement molding
JP6375125B2 (en) Polyvinyl alcohol fiber
JPH0640755A (en) Reinforcing material for building material
US20050011417A1 (en) Unitized filamentary concrete reinforcement having circumferential binding element
JPH09107595A (en) Diaphragm for electroacoustic transducer
JP3080686B2 (en) Thermoplastic synthetic fiber for cement reinforcement
JPS61136949A (en) Cement reinforcement material
JP2645466B2 (en) Fiber reinforced concrete

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term