JPH01122573A - Solid electrolyte cell - Google Patents

Solid electrolyte cell

Info

Publication number
JPH01122573A
JPH01122573A JP62281219A JP28121987A JPH01122573A JP H01122573 A JPH01122573 A JP H01122573A JP 62281219 A JP62281219 A JP 62281219A JP 28121987 A JP28121987 A JP 28121987A JP H01122573 A JPH01122573 A JP H01122573A
Authority
JP
Japan
Prior art keywords
solid electrolyte
battery
cell
sheet
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62281219A
Other languages
Japanese (ja)
Inventor
Shigeo Kondo
繁雄 近藤
Koji Yamamura
康治 山村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62281219A priority Critical patent/JPH01122573A/en
Publication of JPH01122573A publication Critical patent/JPH01122573A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To easily obtain a sheet cell with a large cell capacity and a flexible large area by providing the cell mainly made of an organic polymer on at least one face of a sheet-shaped solid electrolyte. CONSTITUTION:An organic polymer in which ions go in and out between layers is formed on an electrode current collector and used at least as a positive electrode or a negative electrode and brought into contact with a solid electrolyte sheet prepared in advance to form a cell. The Li ion concentration in the solid electrolyte is very large in the cell using the sheet-shaped solid electrolyte as compared with an organic electrolyte, thus a flexible cell with a large capacity can be easily produced. An organic polymerized film mainly made of an organic polymer is preferably used. One or more kinds of electrolytic polymerized films selected among polyaniline, polypyrrole, and polyethylene are preferably used for this organic polymerized film.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は固体電解質電池に関するもので、さらに詳しく
は、有機高分子電極と固体電解質からなる電池に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a solid electrolyte battery, and more particularly to a battery comprising an organic polymer electrode and a solid electrolyte.

従来の技術 固体電解質を使用した電気化学セル、特に固体電解質電
池の開発が最近盛んになって来ている。
BACKGROUND OF THE INVENTION The development of electrochemical cells using solid electrolytes, particularly solid electrolyte batteries, has recently become active.

なかでもイオン伝導性固体電解質として、例えば、x−
Li4GeOa −(1x)Lis Oaを使用し、負
極としてリチウム金属を、正極おしてTiS2を使用し
た固体リチウム二次電池あるいはRbCu4l2−xC
13+8を固体電解質として使用し、負極として銅金属
を、正極としてTiS2を使用した固体二次電池の開発
が盛んである。こうした固体二次電池の作成に関しては
、太き(分けて二つの方法が知られている。即ち、蒸着
またはスパッタ等の薄膜製造装置を使用して作成する方
法とプレス機械により加圧成型して作成する方法がある
Among them, as an ion conductive solid electrolyte, for example, x-
Solid lithium secondary battery using Li4GeOa - (1x)Lis Oa, lithium metal as the negative electrode and TiS2 as the positive electrode or RbCu4l2-xC
Solid secondary batteries using 13+8 as a solid electrolyte, copper metal as a negative electrode, and TiS2 as a positive electrode are being actively developed. There are two known methods for producing such solid-state secondary batteries: one using thin film production equipment such as vapor deposition or sputtering, and the other using pressure molding using a press machine. There is a way to create one.

−例として、固体リチウム二次電池の製造方法について
述べる。該電池に使用する固体電解質の作成に際しては
、高純度のLi2CO3とSiO2さらにv205粉末
を所定の含有量となるよう秤量し、有機溶媒中(例えば
、n−へキサンを使用する。)に分散し、これらを充分
に混合する。然る後、有機溶媒を分離乾燥した後、60
0℃で加熱し、CO2が発生しなくなるまで、これらを
熱分解さぜる(通常、約1時間焼成加熱すると炭酸ガス
の発生は止まる)。
- As an example, a method for manufacturing a solid-state lithium secondary battery will be described. When creating the solid electrolyte used in the battery, high-purity Li2CO3, SiO2, and V205 powder are weighed to a predetermined content and dispersed in an organic solvent (for example, using n-hexane). , mix these thoroughly. After that, after separating and drying the organic solvent, 60
These are heated at 0° C. and thermally decomposed until CO2 is no longer generated (usually, the generation of carbon dioxide gas stops after firing and heating for about 1 hour).

その後、700℃で約40時間焼成すると固溶体が得ら
れる。これを冷却した後、粉砕し、粒径が数μmの微粉
末とする。さらに、該微粉末を金型を用い、数)ッ/ 
cn?の圧力で所望の大きさ、厚さに加圧成型し、さら
に、1000℃で約1時間焼成し固体電解質として使用
する。
Thereafter, a solid solution is obtained by firing at 700° C. for about 40 hours. After cooling this, it is pulverized to form a fine powder with a particle size of several μm. Furthermore, using a mold, the fine powder is
cn? It is pressure-molded to a desired size and thickness at a pressure of 1,000° C., and then fired at 1,000° C. for about 1 hour to be used as a solid electrolyte.

こうして得た固体電解質の一方の面に正極活物質として
TiS2と固体電解質との混合物を加圧成型して得た成
型体を、他方の面に負極活物質としてリチウム金属をそ
れぞれ圧着して電池素子が構成される。また、これら固
体電解質電池の作成は、乾燥気体雰囲気中で行う必要が
ある。以」二の様に固体電解質電池の作成は、極めて作
業能率が悪く生産性に欠けるものであった。
A molded body obtained by pressure molding a mixture of TiS2 and solid electrolyte as a positive electrode active material on one side of the solid electrolyte obtained in this way, and lithium metal as a negative electrode active material on the other side to form a battery element. is configured. Furthermore, these solid electrolyte batteries need to be created in a dry gas atmosphere. As mentioned above, the production of solid electrolyte batteries was extremely inefficient and lacked productivity.

このような問題を解決するために、発明者らは固体電解
質および電極材料に弾性を有する結着材を混合した電解
質シートおよび電極シートさらに、これらを使用したシ
ート状電池について提案した。しかし、この電池におい
てはTiS2に可逆的に入るリチウムの量が制限され大
きな容量の電池を得ることが出来ないという問題を有し
ていた。
In order to solve such problems, the inventors proposed an electrolyte sheet and an electrode sheet in which a solid electrolyte and an electrode material are mixed with an elastic binder, and also a sheet-shaped battery using these sheets. However, this battery has a problem in that the amount of lithium that reversibly enters TiS2 is limited, making it impossible to obtain a battery with a large capacity.

一方、有機高分子電解重合膜を電極とし、有機電解液を
用いた電池が、盛んに研究されている。
On the other hand, batteries using an organic electrolyte polymer membrane as an electrode and an organic electrolyte are being actively researched.

発明が解決しようとする問題点 この電池は、電池容量が有機溶媒中に溶解した支持電解
質、例えばL i C] OaなどのLiイオン濃度に
より規制され、また、有機溶媒に溶解しうる支持電解質
の量が太き(ないため、大きい容量の電池を提供するこ
とが出来ないという問題を有していた。
Problems to be Solved by the Invention In this battery, the battery capacity is regulated by the Li ion concentration of a supporting electrolyte dissolved in an organic solvent, such as Li C]Oa, and the capacity of the battery is regulated by the concentration of Li ions such as Li The problem was that it was not possible to provide a battery with a large capacity because it had a large capacity.

本発明は、上記従来技術に鑑み、固体電解質電池をシー
ト状で形成し、電池容量の大きい可逆性に優れた電池を
提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above-mentioned prior art, an object of the present invention is to form a solid electrolyte battery in the form of a sheet and provide a battery with a large capacity and excellent reversibility.

問題点を解決するための手段 電極集電体にイオンが層間に可逆的に出入する有機高分
子膜を形成し、少なくとも正極、負極のいずれかとして
用い、予め用意した固体電解質シートに接触させ電池を
形成する。
Means to Solve the Problem Form an organic polymer film on the electrode current collector through which ions reversibly move in and out between the layers, use it as at least either the positive electrode or the negative electrode, and contact it with a solid electrolyte sheet prepared in advance to form a battery. form.

作用     。Effect.

有機高分子膜を電極とし、有機電解液を用いた電池では
、電池容量が有機溶媒中に溶解した支持電解質の濃度、
により規制され大きな容量の電池を作ることが出来なか
ったが、シート状固体電解質を用いた電池では、該固体
電解質中のLiイオン濃度が4機電解液に比べ非常に大
きいため大きい容量の電池が可能となり、また、フレキ
シブルな電池が専易に作成することが出来る。
In a battery using an organic polymer membrane as an electrode and an organic electrolyte, the battery capacity depends on the concentration of the supporting electrolyte dissolved in the organic solvent,
However, in batteries using a sheet-like solid electrolyte, the Li ion concentration in the solid electrolyte is much higher than that in a four-layer electrolyte, making it impossible to create a battery with a large capacity. In addition, flexible batteries can be easily produced.

実施例 本発明に使用される固体電解質シードとしては、銀イオ
ン、銅イオン、リチウムイオン、□゛プロトン、−価の
陽イオン伝導性無機固体電解質、あるいはフッ化物イオ
ン、塩化物イオン、臭化物イオン等、−価の陰イオン伝
導性無機固′体電解質の粉体と絶縁性高分子弾性体とか
らなり□、特に、RbCu4l2−xC13+x(X;
0.2〜0.6)、RbAg4I5.o、4L i4s
 io、、−o、6Li3vO4等がイオン伝導性が優
れており本目的には好ましい固体電解質である。
Examples The solid electrolyte seeds used in the present invention include silver ions, copper ions, lithium ions, □゛protons, -valent cation-conducting inorganic solid electrolytes, or fluoride ions, chloride ions, bromide ions, etc. , consisting of a -valent anion-conductive inorganic solid electrolyte powder and an insulating polymeric elastomer □, in particular, RbCu4l2-xC13+x (X;
0.2-0.6), RbAg4I5. o, 4L i4s
io, -o, 6Li3vO4, etc. have excellent ionic conductivity and are preferred solid electrolytes for this purpose.

また、絶縁性高分子弾、性体としては、例えば1.4−
ポリブタジェン、天然ゴム、ポリイソプレン、SBR,
NB、R,、、EP’DM、、EP、M、ウレタンゴム
、ポリエステル系ゴム、クロロプレンゴム、エピクロル
ヒドリンゴム、シリコーンゴム、スチレン−ブタジェン
−スチレンブロック共重合体(SBS) 、スチレン−
イソプレン−スチレンブロック共重合体(Sl、S)、
スチレンーエチレンーブ、チレンースチレン共重合体<
5EBS)、ブチルゴム、中スフアゼンゴム、ポリエチ
レン、ポリプロピレン、ポリエチレオキシド、ポリプロ
ピレンオキシド、ポリスチレン、塩化ビニール、エチレ
ン−酢酸エチル共重合体、1.2−ポ、リプタジエン、
エポキシ樹脂、フェノール樹脂、環化ポリブタジエ、ン
、環化ポリイソプレン、ポリメタクリル酸メチル、フッ
素樹脂およびこれらの混合物が挙げられるが、電極との
接着性および電気化学的安定性の点からSBS、S I
s、5EBS。
In addition, as an insulating polymer elastic, for example, 1.4-
Polybutadiene, natural rubber, polyisoprene, SBR,
NB, R,, EP'DM, EP, M, Urethane rubber, Polyester rubber, Chloroprene rubber, Epichlorohydrin rubber, Silicone rubber, Styrene-butadiene-styrene block copolymer (SBS), Styrene-
Isoprene-styrene block copolymer (Sl, S),
Styrene-ethyleneb, styrene-styrene copolymer<
5EBS), butyl rubber, medium sulfur rubber, polyethylene, polypropylene, polyethylene oxide, polypropylene oxide, polystyrene, vinyl chloride, ethylene-ethyl acetate copolymer, 1.2-po, liptadiene,
Examples include epoxy resin, phenol resin, cyclized polybutadiene, cyclized polyisoprene, polymethyl methacrylate, fluororesin, and mixtures thereof, but from the viewpoint of adhesion with electrodes and electrochemical stability, SBS, S I
s, 5EBS.

1.2−ポリブタジェン、シリコーンゴム、フッ素樹脂
等の可塑性を有するものが好ましい。
1.2-Plastic materials such as polybutadiene, silicone rubber, and fluororesin are preferred.

固体電解質粉体を絶縁性高分子弾性体中に均一に分散さ
せ、シート化する方法としては、銀イオンまたは銅イオ
ン伝導性の固体電解質粉末を体積分率で55〜95%に
なるように芳香族炭化水素溶剤、ハロゲン化炭化水素溶
剤およびエステル系溶剤から選ばれる少なくとも1種の
溶剤に絶縁性高分子弾性体を体積分率で5〜45%溶解
した溶液に混合し、得られた混合溶液を基盤上に塗布し
乾燥することによ、す、硬度が65〜96 (ASTM
A硬度)で厚さが10〜250μmのシートを作ること
が出来る。
A method for uniformly dispersing solid electrolyte powder in an insulating polymer elastomer and forming a sheet is to add aromatic solid electrolyte powder that conducts silver ions or copper ions to a volume fraction of 55 to 95%. A mixed solution obtained by mixing a solution in which an insulating polymeric elastomer is dissolved at a volume fraction of 5 to 45% in at least one solvent selected from group hydrocarbon solvents, halogenated hydrocarbon solvents, and ester solvents. By applying it on the base and drying it, the hardness is 65-96 (ASTM
A sheet with a thickness of 10 to 250 μm can be made.

一方、電池用電極としてステンレススチール薄膜上に電
解重合用電解液中で陽極酸化し、電解重合膜を形成し正
極または負極として用いた。この電極間に前記固体電解
質シートを介在させ電池を構成した。
On the other hand, as an electrode for a battery, a stainless steel thin film was anodized in an electrolytic solution for electrolytic polymerization to form an electrolytic polymer film, which was used as a positive electrode or a negative electrode. A battery was constructed by interposing the solid electrolyte sheet between the electrodes.

以下、本発明を実施例を用い説明するが、本発明は、こ
れら実施例に限定されるものではない。
Hereinafter, the present invention will be explained using Examples, but the present invention is not limited to these Examples.

(実施例1) 固体電解質として、0.4 L iS i02 0.6
Li3VO4を用い、該固体電解質の粉末(粒径、2μ
m以下)を体積分率で90%となるようにスチレン−ブ
タジェン−スチレンブロック共重合体く日本合成ゴム社
製TR−2000)をトルエン中に溶解させた溶液(ス
チレン−ブタジェン−スチレンブロック共重合体の体積
分率は10%)とボールミルにて充分混練し、該固体電
解質粉末を分散させた溶液を作成した。得られた溶液を
速やかにスピナーにて、予めステンレススチール箔を集
電体として使用し作成したポリピロール電解重合膜電極
上に塗布し、これら2枚の電極電解質膜(1枚;Icm
、1cm、厚さ0.5mm)を対向し、電解質同志接触
させた後、弾性を有するエポキシ樹脂でシールし、電池
を作成した。
(Example 1) As a solid electrolyte, 0.4 L iS i02 0.6
Using Li3VO4, the solid electrolyte powder (particle size, 2μ
A solution of styrene-butadiene-styrene block copolymer (TR-2000 manufactured by Nippon Gosei Rubber Co., Ltd.) dissolved in toluene (styrene-butadiene-styrene block copolymer The volume fraction of the combined solid electrolyte powder was 10%) and was sufficiently kneaded in a ball mill to prepare a solution in which the solid electrolyte powder was dispersed. The obtained solution was quickly applied with a spinner onto a polypyrrole electrolyte polymer membrane electrode prepared in advance using stainless steel foil as a current collector, and these two electrode electrolyte membranes (1 sheet; Icm
, 1 cm, thickness 0.5 mm) were placed facing each other and brought into contact with the electrolyte, and then sealed with an elastic epoxy resin to prepare a battery.

得られた電池を500μA / crKで充放電した結
果、約1.2mAhrの容量を示す電池が得られた。
As a result of charging and discharging the obtained battery at 500 μA/crK, a battery exhibiting a capacity of about 1.2 mAh was obtained.

比較のために前記電極を同様の条件のもとで作成し、0
 、3 M  L iCI 04/プロピレンカーボネ
ート電解液を用い電池を作成し、同様の充放電を行った
結果、約0.2mAhrの容量しか示さないことが判明
した。
For comparison, the electrode was made under similar conditions and
, 3M LiCI 04/propylene carbonate electrolyte, and as a result of similar charging and discharging, it was found that the battery had a capacity of only about 0.2 mAh.

(実施例2) 実施例1と同様の固体電解質0.4Li4Si02 0
.6Li3VO4粉末(粒径、2μm以下)を体積分率
で90%になるようにスチレン−エチレン−ブチレン−
スチレン共重合体(SEBS;日本合成ゴム社製KRA
TON  G1650)をトルエン中に溶解させた溶液
(SEBS共重合体の体積分率は10%)とボールミル
にて充分混練し、該固体電解質を分散させた溶液を作成
した。得られた溶液を速やかにスピナーにて、予めステ
ンレススチール箔を集電体として使用し作成したポリア
ニリン電解重合膜電極上に塗布し、これら2枚の電極電
解質膜(1枚;1cm、1cm、厚さ0.5mm)を対
向し、電解質同志接触させた後、弾性を有するエポキシ
樹脂でシールし、電池を作成した。
(Example 2) Solid electrolyte 0.4Li4Si02 0 similar to Example 1
.. 6Li3VO4 powder (particle size, 2 μm or less) was mixed with styrene-ethylene-butylene at a volume fraction of 90%.
Styrene copolymer (SEBS; KRA manufactured by Japan Synthetic Rubber Co., Ltd.
TON G1650) dissolved in toluene (the volume fraction of the SEBS copolymer was 10%) was sufficiently kneaded in a ball mill to create a solution in which the solid electrolyte was dispersed. The obtained solution was quickly applied with a spinner onto a polyaniline electrolyte polymer membrane electrode prepared in advance using stainless steel foil as a current collector, and these two electrode electrolyte membranes (1 sheet; 1 cm, 1 cm thick, After the electrolytes were brought into contact with each other (with a diameter of 0.5 mm), they were sealed with an elastic epoxy resin to prepare a battery.

得られた電池を500μA / cutで充放電した結
果、約1.5mAhrの容量を示す電池が得られた。
As a result of charging and discharging the obtained battery at 500 μA/cut, a battery exhibiting a capacity of about 1.5 mAh was obtained.

比較のために前記電極を同様の条件のもとで作成し、0
 、3 M  L iCI O4/プロピレンカーボネ
ート電解液を用い電池を作成し、同様の充放電を行った
結果、約0.3mAhrの容量しか示さないことが判明
した。
For comparison, the electrode was made under similar conditions and
, 3 M LiCI O4/propylene carbonate electrolyte solution was used to prepare a battery, and as a result of similar charging and discharging, it was found that the battery had a capacity of only about 0.3 mAh.

(実施例3) 実施例1と同様の固体電解質0.4Li4Si02−0
.6L 13VO4粉末(粒径、2ttm以下)を体積
分率で90%になるようにスチレン−エチレン−ブチレ
ン−スチレン共重合体(SEBS ;日本合成ゴム社製
KRATON  G1650)をトルエン中に溶解させ
た溶液(SEBS共重合体の体積分率は10%)とボー
ルミルにて充分混練し、該固体電解質を分散させた溶液
を作成した。
(Example 3) Solid electrolyte 0.4Li4Si02-0 similar to Example 1
.. A solution in which styrene-ethylene-butylene-styrene copolymer (SEBS; KRATON G1650 manufactured by Nihon Gosei Rubber Co., Ltd.) was dissolved in toluene so that the volume fraction of 6L 13VO4 powder (particle size, 2ttm or less) was 90%. (The volume fraction of the SEBS copolymer was 10%) was sufficiently kneaded in a ball mill to prepare a solution in which the solid electrolyte was dispersed.

得られた溶液を速やかにスピナーにて、予めステンレス
スチール箔を集電体として使用し作成したポリチェニレ
ン電解重合膜電極上に塗布し、これら2枚の電極電解質
膜(1枚i 1 Cm + I Cm 1厚さ0.5+
nm)を対向し、電解質同志接触させた後、弾性を有す
るエポキシ樹脂でシールし、電池を作成した。
The obtained solution was immediately applied with a spinner onto a polythenylene electrolyte polymer membrane electrode prepared in advance using stainless steel foil as a current collector, and these two electrode electrolyte membranes (1 sheet i 1 Cm + I Cm 1 thickness 0.5+
After facing the electrolytes and bringing them into contact with each other, the batteries were sealed with an elastic epoxy resin to prepare a battery.

得られた電池を500μA / cnfで充放電した結
果、約1.4mAhrの容量を示す電池が得られた。
As a result of charging and discharging the obtained battery at 500 μA/cnf, a battery exhibiting a capacity of about 1.4 mAh was obtained.

比較のために前記電極を同様の条件のもとで作成し、0
.3M  LiCl0a/プロピレンカーボネート電解
液を用い電池を作成し、同様の充放電を行った結果、約
0.2mAhrの容量しか示さないことが判明゛した。
For comparison, the electrode was made under similar conditions and
.. When a battery was prepared using a 3M LiCl0a/propylene carbonate electrolyte and similarly charged and discharged, it was found that the battery had a capacity of only about 0.2 mAh.

発明の効果 以上のように、本発明の固体電解質電池は、有機高分子
膜を電極とし、有機電解液を用いた電池に比べ電池容量
が大きく、また、フレキシブルな大面積のシート電池を
容易に作成することができるものである。
Effects of the Invention As described above, the solid electrolyte battery of the present invention uses an organic polymer membrane as an electrode, has a larger battery capacity than a battery using an organic electrolyte, and can be easily fabricated into a flexible, large-area sheet battery. It is something that can be created.

Claims (3)

【特許請求の範囲】[Claims] (1)シート状固体電解質の少なくとも一方の面に、有
機高分子を主体としてなる電極を設置したことを特徴と
する固体電解質電池。
(1) A solid electrolyte battery characterized in that an electrode mainly composed of an organic polymer is provided on at least one surface of a sheet-like solid electrolyte.
(2)有機高分子を主体としてなる電極として、電解重
合により形成した有機重合膜を使用したことを特徴とす
る特許請求の範囲第1項記載の固体電解質電池。
(2) The solid electrolyte battery according to claim 1, wherein an organic polymer film formed by electrolytic polymerization is used as an electrode mainly composed of an organic polymer.
(3)電解重合により形成した有機重合膜がポリアニリ
ン、ポリピロール、ポリチェニレンから選ばれる少なく
とも1種以上の電解重合膜を使用したことを特徴とする
特許請求の範囲第1項または第2項記載の固体電解質電
池。
(3) The solid according to claim 1 or 2, wherein the organic polymer film formed by electrolytic polymerization uses at least one electrolytic polymer film selected from polyaniline, polypyrrole, and polythenylene. electrolyte battery.
JP62281219A 1987-11-06 1987-11-06 Solid electrolyte cell Pending JPH01122573A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62281219A JPH01122573A (en) 1987-11-06 1987-11-06 Solid electrolyte cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62281219A JPH01122573A (en) 1987-11-06 1987-11-06 Solid electrolyte cell

Publications (1)

Publication Number Publication Date
JPH01122573A true JPH01122573A (en) 1989-05-15

Family

ID=17636025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62281219A Pending JPH01122573A (en) 1987-11-06 1987-11-06 Solid electrolyte cell

Country Status (1)

Country Link
JP (1) JPH01122573A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03269012A (en) * 1990-03-19 1991-11-29 Fuji Photo Film Co Ltd New electronic conductive polymer and electrically conductive material using same polymer
JP2018107095A (en) * 2016-12-27 2018-07-05 財團法人工業技術研究院Industrial Technology Research Institute Solid electrolyte, and lithium battery prepared therewith

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03269012A (en) * 1990-03-19 1991-11-29 Fuji Photo Film Co Ltd New electronic conductive polymer and electrically conductive material using same polymer
JP2018107095A (en) * 2016-12-27 2018-07-05 財團法人工業技術研究院Industrial Technology Research Institute Solid electrolyte, and lithium battery prepared therewith

Similar Documents

Publication Publication Date Title
TW480767B (en) Element, in particular an electrode, for use in a non-aqueous battery, a method of manufacturing such an element, the application of such an element as a cathode, an anode and a separator as well as a battery
KR101684074B1 (en) A manufacturing method of all-solid battery using wet-dry process
TWI667829B (en) All-solid-state battery, hybrid structure solid electrolyte membrane and their manufacturing methods thereof
CN108172897A (en) Solid electrolyte and preparation method thereof and all-solid-state battery
US3419431A (en) Polyelectrolyte gel separator and battery therewith
US6319627B1 (en) Use of polymer mesh for improvement of safety, performance and assembly of batteries
JP3347439B2 (en) Polymer solid electrolyte lithium secondary battery and method of manufacturing the same
JP2003022707A (en) Lithium ion conductive solid electrolyte molding and lithium battery using the same
JPH05314965A (en) Battery positive electrode sheet, manufacture thereof and totally solid secondary battery
JPH01122573A (en) Solid electrolyte cell
JP4526617B2 (en) Secondary battery
JPWO2014002857A1 (en) All solid battery
JPH0287415A (en) Lithium ion electroconductive solid electrolytic sheet
JPH1180296A (en) Gel form polymer electrolyte
Kaneko et al. Lithium-ion conduction in elastomeric binder in Li-ion batteries
JPH0482166A (en) Manufacture of solid electrolytic sheet
EP0347910B1 (en) A thin ribbonlike flexible rechargeable zinc/halide cell
JP2001351694A (en) Rechargeable battery cell
JPH01107448A (en) Plane stack type solid electrolyte battery
JP2001176498A (en) Composite electrode material and nonaqueous secondary battery using the same
Gozdz et al. Polymer considerations in rechargeable Lithium ion plastic batteries
WO2022153357A1 (en) Lithium secondary battery and method for producing same
JPH05205777A (en) Macromolecular solid electrolyte battery
JP2000021234A (en) Solid electrolytic membrane, manufacture thereof and battery incorporating it
JPS6243079A (en) Battery