JPH01122043A - Method for crystallization of optical information recording medium - Google Patents

Method for crystallization of optical information recording medium

Info

Publication number
JPH01122043A
JPH01122043A JP62279233A JP27923387A JPH01122043A JP H01122043 A JPH01122043 A JP H01122043A JP 62279233 A JP62279233 A JP 62279233A JP 27923387 A JP27923387 A JP 27923387A JP H01122043 A JPH01122043 A JP H01122043A
Authority
JP
Japan
Prior art keywords
recording medium
film
flash
optical information
information recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62279233A
Other languages
Japanese (ja)
Other versions
JPH0770093B2 (en
Inventor
Koichi Moriya
宏一 森谷
Tetsuo Yonoda
夜野田 哲男
Yasuhiro Ota
康博 太田
Nobuhiro Tokujiyuku
徳宿 伸弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62279233A priority Critical patent/JPH0770093B2/en
Publication of JPH01122043A publication Critical patent/JPH01122043A/en
Publication of JPH0770093B2 publication Critical patent/JPH0770093B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To decrease the thermal damage to a layer proximate to a recording film by a small flash irradiation power and to easily obtain a crystallized film by subjecting the recording film to the flash irradiation in a preheated state. CONSTITUTION:A disk 6 is constituted by forming the recording film consisting of an Sb-Se-Bi system on an injection-molded substrate and forming an org. protective film on this film. The disk 6 is held static between a preheating incandescent lamp 1 and a flash radiating xenon lamp 5 and is subjected to preheating. The disk is then crystallized by executing the flash irradiation simultaneously with the end of the preheating. As a result, the camber of the substrate is obviated and the adhesion between the protective film and recording film of the disk 6 is not deteriorated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光学的情報記録媒体において結晶状態を得る
方法に係り、特に、該媒体全体を一括して結晶質状態に
するに好適な結晶化方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for obtaining a crystalline state in an optical information recording medium, and in particular, a method for obtaining a crystalline state in an optical information recording medium, and in particular, a method for obtaining a crystalline state in an optical information recording medium. Regarding the conversion method.

〔従来の技術〕[Conventional technology]

光学的情報記録媒体に情報を記録するには、例えばレー
ザ光等の光ビームエネルギ等を上記媒体に与えて、該媒
体の一つの構造状態を他の構造状態に物理的に変化させ
て行なうことができる。この様な情報記録媒体としては
、カルコゲン化物が知られており、カルコゲン化物は例
えば非晶質状態と結晶質状態の異なる2つの構造をとる
ことができる。例えば、光ビームを上記媒体に照射し、
加熱昇温し除冷すると、該媒体は結晶化し、また、パル
ス幅の短い光ビームを照射し、急熱急冷すると非晶質状
態となる。
In order to record information on an optical information recording medium, energy of a light beam such as a laser beam is applied to the medium to physically change one structural state of the medium to another structural state. Can be done. Chalcogenides are known as such information recording media, and chalcogenides can have two different structures, for example, an amorphous state and a crystalline state. For example, irradiating the medium with a light beam,
When the medium is heated and then slowly cooled, it becomes crystallized, and when it is irradiated with a light beam with a short pulse width and rapidly heated and cooled, it becomes an amorphous state.

上記記録媒体を用いた時の記録方法として、非晶質状態
から結晶質状態に変化させて記録を行なう方法と、結晶
質状態から非晶質状態に変化させて記録を行なう方法が
ある。例えば、1μm以下の短波長記録を行なう時には
、急熱急冷により得られる非晶質状態に変化させて記録
を行なう後者の方法が、記録時におけるピット間の熱的
干渉が少なく、有利である。しかし、情報記録媒体の製
造時には通常、該媒体は非晶質状態であるため。
As recording methods when using the above-mentioned recording medium, there are two methods: a method in which recording is performed by changing from an amorphous state to a crystalline state, and a method in which recording is performed by changing from a crystalline state to an amorphous state. For example, when recording short wavelengths of 1 μm or less, the latter method, in which recording is performed by changing the material to an amorphous state obtained by rapid heating and cooling, is advantageous because there is less thermal interference between pits during recording. However, when an information recording medium is manufactured, the medium is usually in an amorphous state.

上記記録方法を用いる場合、該媒体をあらかじめ結晶質
状態にしておく必要がある。
When using the above recording method, it is necessary to bring the medium into a crystalline state in advance.

上記の構造変化を生じせしめる方法としては、特公昭4
7−26897号公報に示されであるように、種々形態
のエネルギーを使用する方法が挙げられており、例えば
、電気エネルギー、輻射熱閃光ランプの光、レーザ光束
のエネルギ等の形における電磁エネルギの様なビーム状
エネルギ、電子線や陽子線の様な粒子線エネルギ等があ
る。
As a method for causing the above structural change,
As shown in Japanese Patent No. 7-26897, there are methods using various forms of energy, such as electromagnetic energy in the form of electrical energy, radiant heat flash lamp light, laser beam energy, etc. There are beam energies such as beam energy, and particle beam energies such as electron beams and proton beams.

上記エネルギを印加する具体的な方法として、例えば恒
温槽中に情報記録媒体を放置し、該媒体全体を加熱する
方法、あるいは、特開昭61−208648号公報記載
のように、上記加熱と同時に電気エネルギを印加する方
法等が提案されている。しかし、上記方法は情報記録媒
体を100℃〜150℃以上の高温にさらす必要があり
、アクリル樹脂やポリカーボネート樹脂等のプラスチッ
ク基板を用いた情報記録媒体には、変形の点から、適用
することは困難であった。さらにその他の方法において
も、情報記録媒体の全体を一括して。
As a specific method of applying the above-mentioned energy, for example, a method of leaving the information recording medium in a constant temperature bath and heating the entire medium, or a method of simultaneously applying the above-mentioned energy as described in Japanese Patent Application Laid-Open No. 61-208648. Methods of applying electrical energy and the like have been proposed. However, the above method requires exposing the information recording medium to high temperatures of 100°C to 150°C or higher, and cannot be applied to information recording media using plastic substrates such as acrylic resin or polycarbonate resin from the viewpoint of deformation. It was difficult. Furthermore, in other methods as well, the entire information recording medium is collected at once.

あらかじめ結晶質状態にしておくための有効な方法につ
いては充分検討されておらず、生産性の良い方法は見い
出されていなかった。
An effective method for preparing the crystalline state in advance has not been sufficiently studied, and no method with good productivity has been found.

我々は、高出力閃光照射により情報記録媒体の全体を一
括して、あらかじめ結晶質状態にできることを発見し、
検討を進めている。この方法について説明する。第2図
に高出力閃光放射装置により、光ディスクに光線を照射
している様子を示す。
We have discovered that the entire information recording medium can be brought into a crystalline state in advance by irradiating it with high-power flash light.
We are currently considering this. This method will be explained. FIG. 2 shows how a high-power flashlight emitting device irradiates an optical disc with a beam of light.

5は高出力閃光放射管であり、キセノンランプを用いて
いる。光デイスク用記録媒体は主に半導体レーザ波長域
で大きなエネルギ吸収を得ているために、閃光ランプと
しては、分光エネルギ分布が半導体レーザ波長である8
30nm付近に伸びていることが必要である。キセノン
ランプの分光エネルギ分布が自然光に近いばかりでなく
、そのエネルギ分布は半導体レーザ波長域まで充分に伸
びており、好適なランプである。第3図に、第2図に示
した閃光放射管の動作回路例を示す。5はキセノンラン
プ、C工、C2はコンデンサ、Trはトランス、R1,
R2は抵抗、Sはサイリスタ、12はスイッチ回路であ
る。C1はメインコンデンサであり、充電回路(図示せ
ず)により所定の電圧まで充電されるようになっている
。メインコンデンサC1の一方の電極は、キセノンラン
プ5の陽極9に接続され、他方の電極は陰極10に接続
されている。スイッチ回路12より、サイリスタSのゲ
ート端子にオン信号を与えると、トランスTrにコンデ
ンサC2の放電による電流が流れ、Trの昇圧作用によ
り高電圧がキセノンランプ5のトリガ電極11に印加さ
れる。これにより、キセノンランプ5内のガスがイオン
化され、内部抵抗が減少し、該キセノンランプ5の両極
間に一瞬に放電が行なねれて発光がなされる。この時の
発光時間は0 、5m5ec〜2m5ecである。以上
、高出力閃光放射装置について説明した。次に、光デイ
スク製造工程の、どこに上記結晶化工程を挿入するかに
ついて述べる。
Reference numeral 5 is a high-output flash tube, which uses a xenon lamp. Since optical disk recording media mainly absorb large amounts of energy in the semiconductor laser wavelength range, flash lamps have a spectral energy distribution that is equal to the semiconductor laser wavelength.
It is necessary that it extends around 30 nm. The spectral energy distribution of a xenon lamp is not only close to that of natural light, but also extends sufficiently to the wavelength range of a semiconductor laser, making it a suitable lamp. FIG. 3 shows an example of an operating circuit for the flash tube shown in FIG. 2. 5 is a xenon lamp, C is a condenser, C2 is a capacitor, Tr is a transformer, R1,
R2 is a resistor, S is a thyristor, and 12 is a switch circuit. C1 is a main capacitor, which is charged to a predetermined voltage by a charging circuit (not shown). One electrode of the main capacitor C1 is connected to the anode 9 of the xenon lamp 5, and the other electrode is connected to the cathode 10. When an on signal is applied to the gate terminal of the thyristor S from the switch circuit 12, a current flows through the transformer Tr due to the discharge of the capacitor C2, and a high voltage is applied to the trigger electrode 11 of the xenon lamp 5 due to the boosting action of the Tr. As a result, the gas within the xenon lamp 5 is ionized, the internal resistance is reduced, and a discharge is instantaneously generated between the two poles of the xenon lamp 5 to emit light. The light emission time at this time is 0.5 m5 ec to 2 m5 ec. The high-power flash emission device has been described above. Next, it will be described where in the optical disk manufacturing process the crystallization process is inserted.

第4図に、光デイスク製造工程(レプリカ成形以後)を
示す。まず、記録膜形成後13で結晶化を行った。基板
はPC1記録膜は5b−8s−Bi系である。記録膜の
結晶化温度が180℃のディスフにおいては、記録膜を
結晶化させうる閃光放射パワでは、加熱された記録膜の
熱拡散により。
FIG. 4 shows the optical disk manufacturing process (after replica molding). First, after forming the recording film, crystallization was performed in step 13. The substrate is PC1 and the recording film is 5b-8s-Bi system. In a disk where the crystallization temperature of the recording film is 180° C., the flash radiation power that can crystallize the recording film is due to thermal diffusion of the heated recording film.

基板の記録膜との界面が溶融し、ピットが消失してしま
った。15.16の接着膜形成後、貼り合わせ後におい
ては、閃光放射パワが不足し結晶化できなかったが、基
板は熱的ダメージを受け、大きな反りを生じた。保護膜
形成後14においては、閃光放射後、保護膜の厚さによ
り、保護膜にキレツが生じたりした。このため、保護膜
厚値を最適化したところ、閃光放射回数が増加し、保護
膜。
The interface between the substrate and the recording film melted, and the pits disappeared. After forming the adhesive film in 15.16 and bonding, the flash radiation power was insufficient and crystallization could not be achieved, but the substrate was thermally damaged and significantly warped. After forming the protective film 14, cracks occurred in the protective film after the flash radiation, depending on the thickness of the protective film. For this reason, when we optimized the protective film thickness value, the number of flash emissions increased and the protective film decreased.

基板の記録膜との界面で熱的ダメージが大きくなり、保
護膜と記録膜間の密着性低下、基板からの記録膜ハクリ
といった問題が生じた。また同じ理由により基板のに大
きな反りが生じた。
Thermal damage increased at the interface between the substrate and the recording film, resulting in problems such as reduced adhesion between the protective film and the recording film and peeling of the recording film from the substrate. Also, for the same reason, large warpage occurred in the substrate.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、閃光照射による記録膜近接層への熱的
ダメージについては配慮されておらず、保護膜と記録膜
の密着性低下、基板からの記録膜ハクリ等の開運があっ
た。
The above-mentioned conventional technology does not take into account thermal damage to the layer adjacent to the recording film due to flash irradiation, resulting in poor adhesion between the protective film and the recording film and peeling of the recording film from the substrate.

本発明の目的は、小さな閃光照射パワにより、記録膜近
接層への熱的ダメージを低減し、上記問題点を克服する
ことのできる光学的情報記録媒体の結晶化方法を提供す
ることにある。
An object of the present invention is to provide a method for crystallizing an optical information recording medium that can overcome the above-mentioned problems by reducing thermal damage to a layer adjacent to a recording film using a small flash irradiation power.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、記録膜をあらかじめ加熱した状態で閃光照
射を行なうことにより達成される。
The above object is achieved by irradiating the recording film with flash light in a preheated state.

〔作用〕[Effect]

保護膜形成後、閃光照射した場合、閃光により記録膜は
瞬時に昇温する。これと同時に記録膜界面の保護膜、基
板面に熱拡散が生じる。記録膜を結晶化するには、加熱
時の昇温速度、および結晶化温度以上の温度の保持時間
が1重要な要因となる。あらかじめ、記録膜を加熱する
ことにより記録膜界面の基板面、保護膜面が加熱され高
温となる。この状態で、閃光を照射すると、保護膜面。
When a flash of light is irradiated after the protective film is formed, the temperature of the recording film is instantaneously raised by the flash of light. At the same time, thermal diffusion occurs in the protective film at the recording film interface and the substrate surface. In order to crystallize a recording film, the rate of temperature increase during heating and the time for which the temperature is maintained at or above the crystallization temperature are important factors. By heating the recording film in advance, the substrate surface and the protective film surface at the recording film interface are heated to a high temperature. In this state, when a flash is irradiated, the protective film surface will be exposed.

基板面への記録膜からの熱拡散が低減される。これは、
記録膜の最高到達温度が、この予備加熱をしないものに
比べ高くなることを示す。すなわち予備加熱をすること
により、しないのと比べ、小さい閃光照射パワで結晶状
態へ転移させることができ、基板、保護膜に対する熱的
ダメージも低減でき、前記問題点が解決できる。
Heat diffusion from the recording film to the substrate surface is reduced. this is,
This shows that the maximum temperature of the recording film is higher than that without preheating. That is, by performing preheating, the transition to a crystalline state can be achieved with a smaller flash irradiation power than without preheating, and thermal damage to the substrate and protective film can also be reduced, thus solving the above-mentioned problems.

〔実施例1〕 以下本発明の一実施例を説明する。[Example 1] An embodiment of the present invention will be described below.

第1図は、本発明の実施に際して用いる結晶化装置であ
る。1は加熱ランプ(消費電力300W)。
FIG. 1 shows a crystallization apparatus used in carrying out the present invention. 1 is a heating lamp (power consumption 300W).

2は反射鏡、3は光線、4は透明板、5は閃光放射ラン
プ(キセノン)、6はPC基板上に5b−8e−Bi系
記録膜、保護膜の形成されたディスク(光学的情報記録
媒体)、7はディスク送リベルトである。本装置は、予
備加熱部と高出力閃光放射部の2つに分けられる。高出
力閃光放射部は、第2図に示したものと同じであり、そ
の動作は第3図に示しである。高出力閃光放射用のキセ
ノンランプ5の照射光線エネルギーW (J)は、ラン
プ発光効率η、キセノンランプに接続されるメインコン
デサの容量C(F)と、充電々圧V (v)により W=ηx−cv”であたえられる。発光効率ηはランプ
によって異なるために1本実施例ではうンプの入力エネ
ルギーCv2を目安としている。
2 is a reflecting mirror, 3 is a light beam, 4 is a transparent plate, 5 is a flash emission lamp (xenon), and 6 is a disk (optical information recording) on which a 5b-8e-Bi recording film and a protective film are formed on a PC board. (medium), 7 is a disc feed belt. The device is divided into two parts: a preheating section and a high power flash emitting section. The high power flash emitter is the same as that shown in FIG. 2, and its operation is shown in FIG. The irradiation light energy W (J) of the xenon lamp 5 for high-output flash emission is determined by the lamp luminous efficiency η, the capacity C (F) of the main capacitor connected to the xenon lamp, and the charging pressure V (v). Since the luminous efficiency η differs depending on the lamp, in this embodiment, the input energy Cv2 of the pump is used as a guide.

予備加熱用白熱ランプ1は、第5図に示す特性を示す。The preheating incandescent lamp 1 exhibits the characteristics shown in FIG.

ディスク6は、PC射出成形基板上に、5b−8e−B
i系記録膜をスパッタリングにより形成したもので、そ
の組成はSb:Se:Bi=45 : 45 : 10
である。この膜の結晶化温度は、180℃である。この
記録膜上に、有機保護膜(大日本インキ5D−17)を
約80μm形成しである。
Disk 6 is 5b-8e-B on PC injection molded board.
An i-based recording film is formed by sputtering, and its composition is Sb:Se:Bi=45:45:10
It is. The crystallization temperature of this film is 180°C. On this recording film, an organic protective film (Dainippon Ink 5D-17) was formed to a thickness of about 80 μm.

次に、本装置を用いての、結晶化アルゴリズムを述べる
。まず、ディスク6を、第1図に示しである様に、予備
加熱白熱ランプ1と閃光放射キセノンランプ5の間に静
止する。そして予備加熱を35秒行ない、それの終了と
同時に閃光放射パワ1500 (J)で閃光照射を行な
い結晶化させる。
Next, a crystallization algorithm using this apparatus will be described. First, the disk 6 is brought to rest between the preheated incandescent lamp 1 and the flash-emitting xenon lamp 5, as shown in FIG. Then, preheating is performed for 35 seconds, and at the same time as the preheating is completed, flash irradiation is performed at a flash radiation power of 1500 (J) to crystallize.

本発明によれば、1回の閃光照射により結晶化されかつ
、基板の反り、保護膜と記録膜の密着性低下といった問
題が解消され、良好なディスクを作製できる。
According to the present invention, it is possible to produce a good disk, which is crystallized by one flash irradiation, solves problems such as warpage of the substrate, and decreased adhesion between the protective film and the recording film.

〔実施例2〕 前記実施例1においては、予備加熱を、白熱ランプ光を
、35秒照射することにより行なった。
[Example 2] In Example 1, preheating was performed by irradiating incandescent lamp light for 35 seconds.

本実施例では、予備加熱を、恒温槽内で行ない、閃光照
射もその中で行なう。この様子を第6図に示す。17は
恒温槽、18は閃光放射部、6はディスク、19はベル
トコンベア、20は遮光板である。恒温槽17を、12
0℃にして、ディスク6を加熱する。本実施例では、恒
温槽長さ2m、ベルト送り速さ、5 cx / Sとし
た。この様な機構で、閃光照射パワ1500Jで光を照
射したところ、1回で結晶化でき、実施例1と同様の効
果を得た。
In this embodiment, preheating is performed in a constant temperature bath, and flash irradiation is also performed therein. This situation is shown in FIG. 17 is a constant temperature bath, 18 is a flash light emitting unit, 6 is a disk, 19 is a belt conveyor, and 20 is a light shielding plate. Constant temperature baths 17 and 12
The disc 6 is heated to 0°C. In this example, the length of the constant temperature oven was 2 m, and the belt feeding speed was 5 cx/S. When light was irradiated with a flash irradiation power of 1500 J using such a mechanism, crystallization could be achieved in one go, and the same effect as in Example 1 was obtained.

〔比較例1〕 実施例1における予備加熱時間を10秒とした場合を比
較例として示す。白熱ランプ光を10秒照射することに
より、膜表面は約50℃になる。
[Comparative Example 1] A case where the preheating time in Example 1 was changed to 10 seconds will be shown as a comparative example. By irradiating the film with incandescent lamp light for 10 seconds, the temperature of the film surface becomes approximately 50°C.

−この時閃光照射パワ1500Jで内光照射を行なった
ところ、透過率は減少したものの不充分な値であり、完
全に結晶化できていなかった。このため、2回閃光照射
を行なった。2回目にして完全に結晶化した。この時の
ディスクには、実施例1に比べ大きな反りが生じた。す
なわち、予備加熱をすることにより、閃光照射パワを有
効に結晶化のためのエネルギとして活用できるために小
さな閃光照射パワでも、結晶化が可能となり、基板。
- At this time, internal light irradiation was performed with a flash irradiation power of 1500 J, and although the transmittance decreased, it was an insufficient value, and complete crystallization was not achieved. For this reason, flash irradiation was performed twice. Complete crystallization occurred in the second attempt. At this time, a larger warp occurred in the disk than in Example 1. In other words, by preheating, the flash irradiation power can be effectively used as energy for crystallization, making it possible to crystallize the substrate even with a small flash irradiation power.

保原膜への熱的ダメージも軽減できる。また今回はPC
基板を用いたために、その熱変形温度130℃以上に予
備加熱することはできないが、ガラス基板の場合には、
より高温にでき、結晶化温度のより高い記録膜について
も予備加熱は有効な手段となる。
Thermal damage to the plasma membrane can also be reduced. Again, this time on PC
Because a substrate is used, it is not possible to preheat it to a heat distortion temperature of 130°C or higher, but in the case of a glass substrate,
Preheating is also an effective means for recording films that can be heated to a higher temperature and have a higher crystallization temperature.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、高出力閃光照射により、PC基板上に
成膜された非晶質薄膜を結晶化させるのに、高出力閃光
照射による記録膜界面における。
According to the present invention, when an amorphous thin film formed on a PC substrate is crystallized by high-power flash irradiation, the high-power flash irradiation is performed at the recording film interface.

熱的ダメージを低減しかつ、容易に結晶化膜を得ること
ができる。
It is possible to reduce thermal damage and easily obtain a crystallized film.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施に際して用いる装置例を示す説明
図、第2図は高出力閃光照射部を示す説明図、第3図は
高出力閃光照射部の発光回路を示す回路図、第4図は光
学的情報記録媒体としてのディスク製造プロセスのフロ
ーチャート、第5図は白熱ランプ光照射時の温度と時間
の関係を示す特性図、第6図は本発明の実施に際して用
いる他の装置例を示す説明図、である。 1・・・加熱ランプ、5・・・閃光ランプ、17・・・
恒温槽。
FIG. 1 is an explanatory diagram showing an example of a device used in carrying out the present invention, FIG. 2 is an explanatory diagram showing a high-output flash irradiation section, FIG. 3 is a circuit diagram showing a light emitting circuit of the high-output flash irradiation section, and FIG. The figure is a flowchart of the manufacturing process of a disk as an optical information recording medium, Figure 5 is a characteristic diagram showing the relationship between temperature and time during incandescent lamp light irradiation, and Figure 6 is an example of another apparatus used in carrying out the present invention. FIG. 1...Heating lamp, 5...Flash lamp, 17...
Constant temperature bath.

Claims (1)

【特許請求の範囲】 1、非晶質状態と結晶状態との間で何れか一方の状態か
ら他方の状態へ変わり得る記録媒体を基板上に形成して
成り、前記記録媒体を前記2つの状態の何れか一方から
他方へ変えることにより情報の記録を行う光学的情報記
録媒体において、前記記録媒体を予め一括して結晶状態
に導く光学的情報記録媒体の結晶化方法において、前記
記録媒体を予め加熱し、その後、高出力の閃光光線を該
記録媒体に照射することにより該記録媒体を一括して結
晶化することを特徴とする光学的情報記録媒体の結晶化
方法。 2、特許請求の範囲第1項記載の光学的情報記録媒体の
結晶化方法において、前記記録媒体の加熱を光により行
うことを特徴とする光学的情報記録媒体の結晶化方法。 3、特許請求の範囲第1項記載の光学的情報記録媒体の
結晶化方法において、前記記録媒体の加熱を加熱された
気体を介して行うことを特徴とする光学的情報記録媒体
の結晶化方法。 4、特許請求の範囲第1項記載の光学的情報記録媒体の
結晶化方法において、前記記録媒体の加熱温度を前記基
板の熱変形温度より低くすることを特徴とする光学的情
報記録媒体の結晶化方法。 5、特許請求の範囲第4項記載の光学的情報記録媒体の
結晶化方法において、前記基板がPC基板から成り、前
記記録媒体の加熱温度が120℃以下であることを特徴
とする光学的情報記録媒体の結晶化方法。
[Claims] 1. A recording medium capable of changing from one state to the other between an amorphous state and a crystalline state is formed on a substrate, and the recording medium is changed between the two states. In an optical information recording medium in which information is recorded by changing from one to the other, a crystallization method for an optical information recording medium in which the recording medium is brought into a crystalline state all at once. 1. A method for crystallizing an optical information recording medium, comprising heating the recording medium and then irradiating the recording medium with a high-output flash beam to crystallize the recording medium all at once. 2. A method for crystallizing an optical information recording medium according to claim 1, wherein the recording medium is heated with light. 3. A method for crystallizing an optical information recording medium according to claim 1, characterized in that the recording medium is heated via heated gas. . 4. A method for crystallizing an optical information recording medium according to claim 1, wherein the heating temperature of the recording medium is lower than the thermal deformation temperature of the substrate. method. 5. The method for crystallizing an optical information recording medium according to claim 4, wherein the substrate is a PC board, and the heating temperature of the recording medium is 120° C. or less. Method for crystallizing recording media.
JP62279233A 1987-11-06 1987-11-06 Crystallization method of optical information recording medium Expired - Fee Related JPH0770093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62279233A JPH0770093B2 (en) 1987-11-06 1987-11-06 Crystallization method of optical information recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62279233A JPH0770093B2 (en) 1987-11-06 1987-11-06 Crystallization method of optical information recording medium

Publications (2)

Publication Number Publication Date
JPH01122043A true JPH01122043A (en) 1989-05-15
JPH0770093B2 JPH0770093B2 (en) 1995-07-31

Family

ID=17608290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62279233A Expired - Fee Related JPH0770093B2 (en) 1987-11-06 1987-11-06 Crystallization method of optical information recording medium

Country Status (1)

Country Link
JP (1) JPH0770093B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5398579A (en) * 1992-04-16 1995-03-21 Bando Kiko Co., Ltd. Glass plate cutting device
EP0790603A1 (en) * 1996-02-16 1997-08-20 Matsushita Electric Industrial Co., Ltd Method and apparatus for initializing optical recording medium
EP1118988A1 (en) * 1999-07-12 2001-07-25 Matsushita Electric Industrial Co., Ltd. Optical information recording medium and method for initializing the same
WO2001037196A3 (en) * 1999-11-16 2001-11-22 Polaroid Corp System and method for initializing phase change recording media

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6220155A (en) * 1985-07-19 1987-01-28 Fujitsu Ltd Manufacture of optical disk
JPS62250533A (en) * 1986-04-23 1987-10-31 Toshiba Corp Initial crystallization method for optical disk

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6220155A (en) * 1985-07-19 1987-01-28 Fujitsu Ltd Manufacture of optical disk
JPS62250533A (en) * 1986-04-23 1987-10-31 Toshiba Corp Initial crystallization method for optical disk

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5398579A (en) * 1992-04-16 1995-03-21 Bando Kiko Co., Ltd. Glass plate cutting device
US5857398A (en) * 1992-04-16 1999-01-12 Bando Kiko, Ltd. Glass plate cutting device
EP0790603A1 (en) * 1996-02-16 1997-08-20 Matsushita Electric Industrial Co., Ltd Method and apparatus for initializing optical recording medium
US6060221A (en) * 1996-02-16 2000-05-09 Matsushita Electric Industrial Co., Ltd. Method and apparatus for initializing optical recording medium
EP1118988A1 (en) * 1999-07-12 2001-07-25 Matsushita Electric Industrial Co., Ltd. Optical information recording medium and method for initializing the same
EP1118988A4 (en) * 1999-07-12 2005-11-16 Matsushita Electric Ind Co Ltd Optical information recording medium and method for initializing the same
WO2001037196A3 (en) * 1999-11-16 2001-11-22 Polaroid Corp System and method for initializing phase change recording media
US6587429B1 (en) 1999-11-16 2003-07-01 Polaroid Corporation System and method for initializing phase change recording media

Also Published As

Publication number Publication date
JPH0770093B2 (en) 1995-07-31

Similar Documents

Publication Publication Date Title
CN102089898B (en) Mask and method for sealing glass envelope
JPH09193249A (en) Disk bonding method and apparatus
CA2206613C (en) Process and device for bonding discs to one another
US6331348B1 (en) Substrate having repaired metallic pattern and method and device for repairing metallic pattern on substrate
JPH1097738A (en) Production of optical information recording medium and apparatus for production
JPH01122043A (en) Method for crystallization of optical information recording medium
US20220149225A1 (en) Method of production of silicon heterojunction solar cells with stabilization step and production line section for the stabilizing step
JPH07187890A (en) Laser annealing method
JPS63261553A (en) Method for crystallizing optical information recording medium
JPH02210631A (en) Method for crystallization of recording film and device for crystallization of recording film for optical information recording medium
JP2574885B2 (en) Method and apparatus for crystallizing optical information recording medium
JP2816320B2 (en) Crystallization method for optical information recording medium
CN112811795A (en) Laser heating micro-nano photonics device mould pressing processing device and method
KR102632428B1 (en) Method for performing delamination of a polymer film
JP2771322B2 (en) Method and apparatus for manufacturing optical information recording medium
JP3298791B2 (en) Disc bonding method and apparatus
JP2020192815A (en) Method for performing delamination of polymer film
JP2003188396A (en) Method and apparatus for forming light absorption layer
JPS63111092A (en) Production of optical recording medium
JP2000113518A (en) Production of phase transition type optical disk
JP2002190137A (en) Laminated body and optical disc using it
JPS63245920A (en) Annealing method for semiconductor
JPH07182656A (en) Method and apparatus for initializing data-recording medium
JPH1174206A (en) Method and device for manufacturing polycrystalline semiconductor
JP2001266429A (en) Method for manufacturing magneto-optical memory and magneto-optical memory manufactured thereby

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees