JPH01121719A - Magnetic encoder - Google Patents

Magnetic encoder

Info

Publication number
JPH01121719A
JPH01121719A JP27998887A JP27998887A JPH01121719A JP H01121719 A JPH01121719 A JP H01121719A JP 27998887 A JP27998887 A JP 27998887A JP 27998887 A JP27998887 A JP 27998887A JP H01121719 A JPH01121719 A JP H01121719A
Authority
JP
Japan
Prior art keywords
magnetic
magnetization
moving body
magnetized
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27998887A
Other languages
Japanese (ja)
Inventor
Mitsuaki Ikeda
満昭 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Manufacturing Co Ltd filed Critical Yaskawa Electric Manufacturing Co Ltd
Priority to JP27998887A priority Critical patent/JPH01121719A/en
Publication of JPH01121719A publication Critical patent/JPH01121719A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PURPOSE:To suppress variance in output voltage to spacing variation and to obtain high resolution by magnetizing magnetic poles formed on a magnetized member at right angles to the moving direction of a moving direction. CONSTITUTION:The magnetized member 1 is formed on a Co-P film 3 on the surface of a drum 2 as the moving body and the magnetization direction of the magnetic poles is set at right angles to the moving direction of the moving body. Further, an amorphous wire 5 provided with winding 4 is arranged nearby the magnetized member 1. When this magnetization direction is set as mentioned above, a decrease of magnetic flux entering the wire 5 is proportional to e<x>/l (l: track width) on condition that the distance X between the moving body 2 and wire 5 is constant. Here, the track width (l) may be increased irrelevantly to the pitch, so the decrease of the magnetic flux is reducible. Consequently, variation in output voltage to the spacing variation can be suppressed small and the high resolution is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ロボットや工作機等の設備における駆動用、
制御用モータの速度1位置検出を行うための磁気エンコ
ーダに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to driving equipment such as robots and machine tools;
The present invention relates to a magnetic encoder for detecting the speed and position of a control motor.

〔従来の技術〕[Conventional technology]

ロボットや工作機に組込まれた回転又は直線運動を行う
モータの制御精度を高めるため、これらのモータの位置
及び速度を瞬時的に正確に測定することができる検出器
が要求されている。
In order to improve the control accuracy of motors that perform rotational or linear motion built into robots and machine tools, there is a need for a detector that can instantaneously and accurately measure the position and speed of these motors.

このような検出器としては、多極着磁が施された移動す
る磁化部材からの周期的磁場の強さを、磁気抵抗効果素
子により電圧変化とじて検出する方式がある。しかし、
この方式の場合は、高分解能化により磁極ピッチが小さ
くなると磁場の強さの変°化が小さくなるため出力電圧
が低く、ノイズの影響を受は易いという問題があった。
As such a detector, there is a method in which the strength of a periodic magnetic field from a moving magnetized member subjected to multipolar magnetization is detected as a voltage change using a magnetoresistive element. but,
In the case of this method, when the magnetic pole pitch becomes smaller due to higher resolution, the change in the strength of the magnetic field becomes smaller, so the output voltage is low and there is a problem that it is easily affected by noise.

さらには磁気抵抗効果素子に常に電流を流していなけれ
ばならないので、消費電力の問題も生じていた。
Furthermore, since current must always flow through the magnetoresistive element, there is also the problem of power consumption.

これに対し、微小磁界の変化に対しても高出力を発生し
、しかも消費電力が零という方式が提案された(特願昭
61−266914号)。この方式は、第5図に示すよ
うに、回転円板10の表面に、円周方向に沿って磁界方
向が交互に反転する多数の磁極11を着磁し、この磁極
11に近接してアモルファス線12を配置し、このアモ
ルファス線12にピックアップコイル13を巻いたもの
である。この方式は、回転円板IOの回転に伴って、ア
モルファス線12に作用する磁界が反転するため、その
磁束変化をピックアップコイル13で電圧変化として取
り出し、その信号を利用して位置検出を行うものである
。電圧変化は増幅器14で所定のレベルまで増幅され、
整流回路15及び波形整形回路16を通して直流電圧に
変換され、出力回路17を通して回転速度信号として出
力される。
In response, a system has been proposed that generates high output even in response to minute changes in magnetic field and consumes zero power (Japanese Patent Application No. 61-266914). In this method, as shown in FIG. 5, a large number of magnetic poles 11 are magnetized on the surface of a rotating disk 10, and the direction of the magnetic field is alternately reversed along the circumferential direction. A wire 12 is arranged, and a pickup coil 13 is wound around this amorphous wire 12. In this method, as the rotating disk IO rotates, the magnetic field acting on the amorphous wire 12 is reversed, so the pick-up coil 13 extracts the magnetic flux change as a voltage change and uses that signal to detect the position. It is. The voltage change is amplified to a predetermined level by an amplifier 14,
It is converted into a DC voltage through a rectifier circuit 15 and a waveform shaping circuit 16, and outputted as a rotational speed signal through an output circuit 17.

〔発明°が解決しようとする問題点〕[Problem that the invention aims to solve]

ところが、この方式の磁気エンコーダで高分解能化を図
る場合、磁極11のピッチpが小さくなると、アモルフ
ァス線12を通る磁束はスペーシング、すなわち回転円
板lOとアモルファス線12との距離Xが長くなるにつ
れ、e X / pに比例して減少する。
However, when achieving high resolution with this type of magnetic encoder, as the pitch p of the magnetic poles 11 becomes smaller, the spacing of the magnetic flux passing through the amorphous wire 12, that is, the distance X between the rotating disk lO and the amorphous wire 12 becomes longer. decreases in proportion to e x /p.

したがって、スペーシング変動に対して出力電圧のばら
つきを生じ、読取ミスが発生し、このことが高分解能化
の大きな問題点となっていた。
Therefore, variations in output voltage occur due to variations in spacing, leading to reading errors, which has been a major problem in achieving high resolution.

本発明は、このような従来の問題点に鑑みてなされたも
のであり、スペーシング変動に対する出力電圧のばらつ
きを抑え、高分解能化を図ることを目的とする。
The present invention has been made in view of these conventional problems, and aims to suppress variations in output voltage due to variations in spacing and improve resolution.

〔問題点を解決するための手段〕[Means for solving problems]

この目的を達成するため、本発明の磁気エンコーダは、
移動体の表面に形成され、磁界方向が交互に反転する状
態に多数の磁極を着磁した磁化部材と、該磁化部に近接
して配設されたアモルファス線材よりなる磁性体と、該
磁性体に巻回された検出巻線とよりなる磁気エンコーダ
において、前記磁化部材に形成される磁極の磁化方向を
、前記移動体の移動方向に直角な方向としたことを特徴
とする。
To achieve this objective, the magnetic encoder of the present invention includes:
A magnetized member formed on the surface of a moving body and magnetized with a large number of magnetic poles in a state where the direction of the magnetic field is alternately reversed; a magnetic body made of an amorphous wire disposed close to the magnetized portion; and the magnetic body. In the magnetic encoder including a detection winding wound around the magnet, the magnetization direction of the magnetic pole formed in the magnetization member is perpendicular to the direction of movement of the movable body.

〔作用〕[Effect]

本発明においては、磁化部材の磁極の磁化方向を、移動
体の移動方向に直角な方向としている。
In the present invention, the magnetization direction of the magnetic pole of the magnetization member is perpendicular to the moving direction of the moving body.

従来の着磁方法においては、磁化方向は移動体の移動方
向と同一方向であったため、移動体とアモルファス線と
の距離Xが一定の場合には、アモルファス線に入る磁束
の減り方は、e X / pに比例する。したがって、
高分解能化する程、すなわちピッチpが小さくなる程、
磁束は小さくなっていた。
In the conventional magnetization method, the magnetization direction is the same as the moving direction of the moving body, so when the distance X between the moving body and the amorphous wire is constant, the decrease in the magnetic flux entering the amorphous wire is e Proportional to X/p. therefore,
The higher the resolution, that is, the smaller the pitch p,
The magnetic flux was getting smaller.

本発明においては、磁化方向を、移動体の移動方向に直
角にとっているため、アモルファス線に入る磁束の減り
方は、e″/I!(1はトラック幅)に比例する。ここ
で、トラック幅lはピッチpに無関係に大きくとれるの
で、e″/1は小さくなり、スペーシング変化に対し出
力変化は小さい。したがって、本発明の磁化方向にする
ことにより、移動体とアモルファス線との距離が変動し
ても、その変動が出力電圧に与える影響が小さくなる。
In the present invention, since the magnetization direction is perpendicular to the moving direction of the moving body, the decrease in magnetic flux entering the amorphous wire is proportional to e''/I! (1 is the track width). Since l can be made large regardless of the pitch p, e''/1 becomes small, and the output change is small with respect to the spacing change. Therefore, by using the magnetization direction of the present invention, even if the distance between the moving body and the amorphous wire changes, the effect of the change on the output voltage is reduced.

〔実施例〕〔Example〕

以下、本発明を図面に示す実施例に基づいて詳細に説明
する。
Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings.

第1図は、本発明の磁気エンコーダの第1実施例を示す
模式図である。同図において、1はアルミニウム等の非
磁性材にてなるドラム20表面にCo−P膜3を15J
J!n厚さめっきして形成した磁化部材である。このC
o−P膜3には、磁化方向が一定周期で交互に反転する
状態で、多極着磁が施されている。矢印の大きさは磁化
の強さを示しており、磁化の強さを正弦波状に変化させ
ている。
FIG. 1 is a schematic diagram showing a first embodiment of the magnetic encoder of the present invention. In the figure, 1 is a drum 20 made of a non-magnetic material such as aluminum with a Co-P film 3 of 15J coated on the surface.
J! This is a magnetized member formed by plating to a thickness of n. This C
The o-P film 3 is subjected to multipolar magnetization in such a state that the magnetization direction is alternately reversed at a constant period. The size of the arrow indicates the strength of magnetization, and the strength of magnetization is changed in a sinusoidal manner.

本例においては、着磁幅を2007m、 )ラック幅を
600虜とした。磁化部材lの近くには、直径15〇−
の(Feo、5cOo、 5)yssi+o Bus組
成のアモルファス線5を配置し、これに50ターンの巻
線4を施した。
In this example, the magnetization width was 2007 m, and the rack width was 600 mm. Near the magnetizing member l, there is a diameter 150-
An amorphous wire 5 having a composition of (Feo, 5cOo, 5)yssi+o Bus was arranged, and a winding 4 of 50 turns was applied thereto.

スペーシングを100JJ!nとして、ドラム2を10
00il P M(線速度2.釦/5ee)で回転させ
たところ、巻線4の両端には、0.2 VP−Pの電圧
が誘起された。その波形を第3図に示す。
100JJ spacing! n, drum 2 is 10
When it was rotated at 00il PM (linear velocity 2. button/5ee), a voltage of 0.2 VP-P was induced at both ends of the winding 4. The waveform is shown in FIG.

第2図は本発明の磁気エンコーダの第2実施例を示す模
式図である。斜線部は着磁部を示す。この実施例では、
アルミニウム製のドラム2の外周に形成した磁化部材1
0表面に、磁化方向が交互に反転する磁極を形成してい
る。この第2実施例のものは、第1実施例に比較して、
着磁を一括して行うことができるという利点がある。
FIG. 2 is a schematic diagram showing a second embodiment of the magnetic encoder of the present invention. The shaded area indicates the magnetized area. In this example,
Magnetized member 1 formed on the outer periphery of an aluminum drum 2
Magnetic poles whose magnetization directions are alternately reversed are formed on the zero surface. Compared to the first embodiment, this second embodiment has the following:
There is an advantage that magnetization can be performed all at once.

本発明の磁気エンコーダの出力も、従来と同様にex/
Pに比較して下がる。しかし磁極間のピッチPは従来例
では分解能で決まる値であるが、本発明の場合、分解能
とは無関係にいくらでも太き(できる。実施例で説明す
るとPは600pとなる。従来例では200 uy+に
相当するので、出力の下がり方は200 /600にな
る。これらの磁気エンコーダについては磁化反転時の出
力に及ぼすスペーシングの影響を測定した結果を従来例
と比較して第4図に示す。トラック幅をさらに広くすれ
ばまだ出力の低下は少なくなる。
The output of the magnetic encoder of the present invention is also ex/
It is lower than P. However, in the conventional example, the pitch P between the magnetic poles is a value determined by the resolution, but in the case of the present invention, it can be made as thick as desired regardless of the resolution.As explained in the example, P is 600p.In the conventional example, it is 200 uy + Therefore, the output decreases by 200/600.For these magnetic encoders, the influence of spacing on the output at the time of magnetization reversal was measured and the results are shown in comparison with the conventional example. If the track width is made wider, the drop in output will still be less.

この第4図に表されているように、本発明のエンコーダ
はいずれもスペーシングに対する出力変動が小さい。
As shown in FIG. 4, all encoders of the present invention have small output fluctuations with respect to spacing.

〔発明の効果〕〔Effect of the invention〕

以上に説明したように、本発明においては、磁化部材に
形成した磁極の磁化方向を移動体の移動方向に対して直
角の方向となるようにしている。
As described above, in the present invention, the magnetization direction of the magnetic pole formed on the magnetization member is perpendicular to the moving direction of the moving body.

これにより、スペーシング変動に対して出力変化が小さ
いので安定した出力が得られる。その結果、高分解能化
を図ることができる。
As a result, a stable output can be obtained since output changes are small with respect to spacing variations. As a result, high resolution can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明の構成を示す図、第3図は第1
実施例の出力波形図、第4図は本発明の効果を示す図、
第5図は従来の方法を示す図である。 l:磁化部材   2ニドラム 3:Co−P収    4:巻線 5:アモルファス線
1 and 2 are diagrams showing the configuration of the present invention, and FIG. 3 is a diagram showing the configuration of the present invention.
An output waveform diagram of the embodiment, FIG. 4 is a diagram showing the effects of the present invention,
FIG. 5 is a diagram showing a conventional method. 1: Magnetizing member 2 Ni drum 3: Co-P collection 4: Winding wire 5: Amorphous wire

Claims (1)

【特許請求の範囲】[Claims] 1、移動体の表面に形成され、磁界方向が交互に反転す
る状態に多数の磁極を着磁した磁化部材と、該磁化部に
近接して配設されたアモルファス線材よりなる磁性体と
、該磁性体に巻回された検出巻線とよりなる磁気エンコ
ーダにおいて、前記磁化部材に形成される磁極の磁化方
向を、前記移動体の移動方向に直角な方向としたことを
特徴とする磁気エンコーダ。
1. A magnetized member formed on the surface of a moving body and having a large number of magnetic poles magnetized so that the direction of the magnetic field is alternately reversed; a magnetic body made of an amorphous wire disposed close to the magnetized portion; A magnetic encoder comprising a detection winding wound around a magnetic material, wherein the magnetization direction of the magnetic pole formed in the magnetization member is perpendicular to the direction of movement of the movable body.
JP27998887A 1987-11-05 1987-11-05 Magnetic encoder Pending JPH01121719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27998887A JPH01121719A (en) 1987-11-05 1987-11-05 Magnetic encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27998887A JPH01121719A (en) 1987-11-05 1987-11-05 Magnetic encoder

Publications (1)

Publication Number Publication Date
JPH01121719A true JPH01121719A (en) 1989-05-15

Family

ID=17618740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27998887A Pending JPH01121719A (en) 1987-11-05 1987-11-05 Magnetic encoder

Country Status (1)

Country Link
JP (1) JPH01121719A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10012202A1 (en) * 2000-03-13 2001-09-27 Siemens Ag Shaft position and velocity sensor has sinusoidal edge form does not require frequency generator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10012202A1 (en) * 2000-03-13 2001-09-27 Siemens Ag Shaft position and velocity sensor has sinusoidal edge form does not require frequency generator
DE10012202C2 (en) * 2000-03-13 2002-11-07 Siemens Ag Device for detecting the speed, direction of movement and / or position of a part of the device to be moved

Similar Documents

Publication Publication Date Title
US6118271A (en) Position encoder using saturable reactor interacting with magnetic fields varying with time and with position
JPS63127163A (en) Speed and acceleration detector
JP2002544509A (en) Position encoders using fluxgate sensors
US5229715A (en) Variable reluctance sensor for electromagnetically sensing the rate of movement of an object
JP2000065596A5 (en) Magnetic encoder and motor with magnetic encoder
JPH01114759A (en) Displacement speed detector
JPH01121719A (en) Magnetic encoder
JP3664289B2 (en) Magnetic metal sensor
JP2550085B2 (en) Absolute position detector
JP2547533Y2 (en) Pulse generator
JP2003257738A (en) Permanent magnet, its manufacturing method, and position sensor
JP3626341B2 (en) Magnetic metal sensor and magnetic metal detection system
JPS61266914A (en) Encoder
JPH0381631A (en) Rotary sensor
JPH01145519A (en) Magnetic encoder
JPH03276014A (en) Magnetic rotational angle detector
JPH0430756B2 (en)
JP2000356531A (en) Device and measuring motion state of rolling element for rolling bearing
JPH0622505A (en) Motor with speed detector
JPH02194316A (en) Displacement detecting device
JP2536693B2 (en) Magnetic encoder
JPH01233318A (en) Position detector
JPH0441282B2 (en)
JPS5944950A (en) Motor mounted with magnetic encoder
JPS63180865A (en) Rotation detector