JPH01119106A - Digital voltage controlled oscillator - Google Patents

Digital voltage controlled oscillator

Info

Publication number
JPH01119106A
JPH01119106A JP62274734A JP27473487A JPH01119106A JP H01119106 A JPH01119106 A JP H01119106A JP 62274734 A JP62274734 A JP 62274734A JP 27473487 A JP27473487 A JP 27473487A JP H01119106 A JPH01119106 A JP H01119106A
Authority
JP
Japan
Prior art keywords
adder
phase
sine wave
wave generator
amplitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62274734A
Other languages
Japanese (ja)
Inventor
Yoshio Tanimoto
善夫 谷本
Susumu Otani
進 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP62274734A priority Critical patent/JPH01119106A/en
Publication of JPH01119106A publication Critical patent/JPH01119106A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To realize an equivalent function by a ROM small in capacity by constituting the title oscillator by an adder, a central frequency setter, a phase modulator, a sine wave generator, and an amplitude polarity converter. CONSTITUTION:The adder 31 which inputs a phase error signal quantized by a sampling cycle and adds a constant value from the central frequency setter and the phase error signal at every sampling period cumulatively is constituted of the adder A, the adder B, and a latch A. The sine wave generator 32 connected to the output of the phase modulator 33 is constituted of the ROM, and the phase modulator 33 connected to the output of the adder 31 is constituted of an exclusive OR circuit. Also, the amplitude polarity converter 34 which converts the amplitude polarity of the output signal of the sine wave generator 32 corresponding to a control signal from the phase modulator 33 is constituted of a latch B. In such a way, it is possible to realize the equivalent function by the ROM small in capacity.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明はディジタル位相同期回路に不可欠なディジタル
電圧制御発振器(VCO)に関し、特に位相分解能なら
びに振幅分解能を改善したディジタルVCOに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a digital voltage controlled oscillator (VCO) essential to a digital phase locked circuit, and particularly to a digital VCO with improved phase resolution and amplitude resolution.

(従来の技術〕 第4図に従来のディジタルフェーズロックループの構成
を示す。ここで1は乗算器、2はループフィルタ、3は
中心周波数設定器30と加算器31と正弦波発生器32
とからなるディジタル■ 。
(Prior Art) Fig. 4 shows the configuration of a conventional digital phase-locked loop. Here, 1 is a multiplier, 2 is a loop filter, and 3 is a center frequency setter 30, an adder 31, and a sine wave generator 32.
Digital ■ consisting of.

COである。正弦波発生器32は理想的には第5図に示
すように位相・振幅特性がアナログ的連続性を保つこと
が望ましいのであるが、回路の小型化と経済性とを考慮
した適切なサンプリング周波数と量子化ビット数との選
択がディジタル化する上で重要となる。
It is CO. Ideally, it is desirable for the sine wave generator 32 to maintain analog continuity in phase and amplitude characteristics as shown in FIG. The selection of the number of bits and the number of quantization bits is important for digitization.

さて、−iには上記正弦波発生器32はROM(Rea
d 0nly Memory)で構成されることが多い
Now, at -i, the sine wave generator 32 is a ROM (Rea).
d 0nly Memory).

この場合、加算器31は、サンプリング期間T毎に!ビ
ットに量子化された位相誤差信号Cの時系列C(jT)
と中心周波数設定器30からの一定値にとを入力し、累
積加算してROMの番地指定信号dの時系列D(jT)
を下式に基づき作成する。
In this case, the adder 31 is added every sampling period T! Time series C(jT) of phase error signal C quantized into bits
and are input to the constant value from the center frequency setter 30, and are cumulatively added to obtain the time series D(jT) of the ROM address designation signal d.
is created based on the formula below.

D(jT)  =C(jT)+に+D ((j−1)T
)ROMには番地指定信号d(実は位相そのものである
)で指定された番地にそれぞれの位相における正弦波の
振幅値が記憶されている。いま、ROMの番地指定ビッ
ト数をm、メモリ出力ビツト数をnとすると、ROM出
力信号fは、sin  (360°/211xD (j
T))をnビット量子化したものである。
D(jT) = C(jT)+ +D ((j-1)T
) The amplitude values of the sine waves at each phase are stored in the ROM at addresses designated by the address designation signal d (which is actually the phase itself). Now, if the number of ROM address specification bits is m and the number of memory output bits is n, then the ROM output signal f is sin (360°/211xD (j
T)) is quantized by n bits.

ここでD(jT)は0〜2′I−1なる整数値であり、
一般に12mで使用されることが多い。
Here, D(jT) is an integer value from 0 to 2'I-1,
Generally, it is often used at 12m.

−例として第6図及び表1にm=4.n=3の場合を例
にして第5図の連続系の位相・振幅特性に対応した波形
を示す。
- As an example, m=4 in FIG. 6 and Table 1. Taking the case of n=3 as an example, waveforms corresponding to the phase/amplitude characteristics of the continuous system in FIG. 5 are shown.

〔発明が解決しようとする問題点] 上述した従来のディジタル■COにおいては、第6図及
び表1から判るように、m、nが多ければ多いほど位相
分解能・振幅分解能が高くなるが、先に述べたようにビ
ット数を増加することは周辺演算回路規模の増大2処理
時間の増大にともなう動作スピードの低下を招くととも
に、ROM自体のメモリ容量の限界からも小型化並びに
経済性の上で重大な問題が生じることになる。
[Problems to be solved by the invention] In the conventional digital CO described above, as can be seen from FIG. 6 and Table 1, the larger the number of m and n, the higher the phase resolution and amplitude resolution. As mentioned above, increasing the number of bits increases the scale of the peripheral arithmetic circuits2.2 Processing time increases, resulting in a decrease in operating speed.At the same time, due to the memory capacity limit of the ROM itself, it is difficult to downsize and economically. A serious problem will arise.

本発明の目的は、特にROMのメモリ容量がシステムの
重要な選択点であるような場合に有効なディジタル■C
Oを提供するものである。
The object of the present invention is to provide a digital C which is effective especially in cases where the memory capacity of ROM is an important selection point of the system.
It provides O.

(問題点を解決するための手段〕 本発明のディジタル■COは、サンプリング周期で量子
化された位相誤差信号を入力し、中心周波数設定器から
の一定の値と前記位相誤差信号とをサンプリング期間毎
に累積加算する加算器と、この加算器の出力に接続され
る位相変換器と、この位相変換器の出力に接続される正
弦波発生器と、前記位相変換器からの制御信号に応じて
前記正弦波発生器の出力信号の振幅極性を変換する振幅
極性変換器とで構成している。
(Means for Solving the Problems) The digital CO of the present invention inputs a phase error signal quantized at a sampling period, and uses a constant value from a center frequency setter and the phase error signal during the sampling period. an adder that performs cumulative addition at each time; a phase converter connected to the output of this adder; a sine wave generator connected to the output of this phase converter; and an amplitude polarity converter that converts the amplitude polarity of the output signal of the sine wave generator.

〔実施例〕〔Example〕

次に、本発明を図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明によるvCOの構成を示すブロック図で
ある。図において、30は中心周波数設定器、31は加
算器、32は正弦波発生器、33は位相変換器、34は
振幅極性変換器である。ここで、例としてm=2、n=
2なるROMを正弦波発生器32として使用した場合の
一構成を第2図に示す。
FIG. 1 is a block diagram showing the configuration of a vCO according to the present invention. In the figure, 30 is a center frequency setter, 31 is an adder, 32 is a sine wave generator, 33 is a phase converter, and 34 is an amplitude polarity converter. Here, as an example, m=2, n=
A configuration in which two ROMs are used as the sine wave generator 32 is shown in FIG.

第2図において、加算器31はアダーA、アダーB及び
ラッチAで構成される。正弦波発生器32はROMで構
成され、位相変換器33は排他的オア回路で構成される
。また、振幅極性変換器34はラッチBにより構成され
る。
In FIG. 2, adder 31 is composed of adder A, adder B, and latch A. The sine wave generator 32 is composed of a ROM, and the phase converter 33 is composed of an exclusive OR circuit. Further, the amplitude and polarity converter 34 is constituted by a latch B.

この構成において、位相誤差信号Cの量子化数は4ビツ
トであり、加算器31にて累積加算された番地指定信号
dは位相変換器33にて、そのMSB(最上位ビット)
は振幅極性変換器34へ極性変換信号りとして出力する
。一方、第2M5B信号は残る下位2ビツトを排他的論
理和演算して2ビツトとのROM番地指定信号gとして
正弦波発生器32へ出力する。ここで、正弦波発生器3
2を構成するROMの内容には第3図及び表2で示すよ
うに、0°−90°範囲の振幅の絶対値のみ書込まれて
いることが特徴である。
In this configuration, the quantization number of the phase error signal C is 4 bits, and the address designation signal d cumulatively added by the adder 31 is converted to the MSB (most significant bit) by the phase converter 33.
is outputted to the amplitude and polarity converter 34 as a polarity conversion signal. On the other hand, the second M5B signal is outputted to the sine wave generator 32 as a ROM address designation signal g by performing an exclusive OR operation on the remaining lower two bits. Here, sine wave generator 3
As shown in FIG. 3 and Table 2, the contents of the ROM constituting ROM 2 are characterized in that only absolute values of amplitudes in the 0°-90° range are written.

また、表3にO’ −360’範囲における■CO出力
振幅を示している。即ち、位相変換器33の入力信号d
の第2M5Bで下位2ビツトの位相を906毎に制御す
ることにより、ROMの番地O。
Furthermore, Table 3 shows the CO output amplitude in the O'-360' range. That is, the input signal d of the phase converter 33
By controlling the phase of the lower two bits every 906 in the second M5B of the ROM address O.

−90°だけから0°−360°の全範囲で必要な2ビ
ツトの正弦波の絶対値振幅信号iを読出し、振幅極性変
換器34へ出力する。この振幅極性変換器34では、極
性変換信号りをMSBに、絶対値振幅信号iを下位2ビ
ツトに配して、■CO出力振幅信号fを構成する。
A necessary 2-bit sine wave absolute value amplitude signal i is read out over the entire range from -90° to 0° to 360° and output to the amplitude polarity converter 34. In this amplitude/polarity converter 34, the polarity conversion signal is assigned to the MSB, and the absolute value amplitude signal i is assigned to the lower two bits, thereby forming the CO output amplitude signal f.

表3から、これはm=4.n=3  のROMを使用し
た従来のvCOの動作を示す表1と一致しており、本発
明によりm=2.n=2の小容量のROMで等価な機能
を実現することがわかる。
From Table 3, this means m=4. This is consistent with Table 1 showing the operation of a conventional vCO using n=3 ROMs, and the present invention allows m=2. It can be seen that an equivalent function can be achieved with a small capacity ROM of n=2.

なお、以上の説明では本発明のvCOが従来のvCOで
必要なROMの1/8で構成することが可能であること
を示しているが、逆に同じROMを使用したときには、
従来のvCOに比較して振幅分解能を2倍にしかつ位相
分解能を4倍にでき、量子化ノイズ並びに位相ジッタの
より少ないvCOを構成することが可能である。
The above explanation shows that the vCO of the present invention can be configured with 1/8 of the ROM required for a conventional vCO, but conversely, when the same ROM is used,
Compared to conventional vCOs, the amplitude resolution can be doubled and the phase resolution can be quadrupled, making it possible to configure a vCO with less quantization noise and phase jitter.

表1 表2 表3 〔発明の効果〕 以上説明したように本発明は、加算器、中心周波数設定
器1位相変化器、正弦波発生器及び振幅極性変換器で構
成することにより、従来のVCOに比較して小容量のR
OMで等価な機能を実現でき、特にROMのメモリ容量
がシステムの構成に大きく影響する場合に、小型化及び
低コスト化を図る上で極めて存効なものになるという効
果がある。
Table 1 Table 2 Table 3 [Effects of the Invention] As explained above, the present invention is configured with an adder, a center frequency setter, a phase changer, a sine wave generator, and an amplitude polarity converter, thereby improving the efficiency of the conventional VCO. Small capacity R compared to
Equivalent functions can be realized with OM, and this has the effect of being extremely effective in reducing size and cost, especially when the memory capacity of ROM has a large effect on the system configuration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるVCOの構成を示すブロック図、
第2図は本発明によるVCOの一実施例の回路図、第3
図は本発明によるVCO内のROMの位相振幅特性を示
す図、第4図はディジタルフェーズロックループにおけ
る従来のvCOの構成を示すブロック図、第5図は理想
的位相振幅特性を示す図、第6図は従来のVCO内のR
OMの位相振幅特性を示す図である。 1・・・乗算器、2・・・ループフィルタ、3・・・デ
ィジタル電圧制御発振器(VCO) 、30・・・中心
周波数設定器、31・・・加算器、32・・・正弦波発
生器、33・・・位相変換器、34・・・振幅極性変換
器。
FIG. 1 is a block diagram showing the configuration of a VCO according to the present invention;
FIG. 2 is a circuit diagram of an embodiment of a VCO according to the present invention;
4 is a block diagram showing the configuration of a conventional vCO in a digital phase-locked loop. FIG. 5 is a diagram showing ideal phase amplitude characteristics. Figure 6 shows R in a conventional VCO.
It is a figure showing the phase amplitude characteristic of OM. DESCRIPTION OF SYMBOLS 1... Multiplier, 2... Loop filter, 3... Digital voltage controlled oscillator (VCO), 30... Center frequency setter, 31... Adder, 32... Sine wave generator , 33... Phase converter, 34... Amplitude polarity converter.

Claims (1)

【特許請求の範囲】[Claims] (1)サンプリング周期で量子化された位相誤差信号を
入力し、中心周波数設定器からの一定の値と前記位相誤
差信号とをサンプリング期間毎に累積加算する加算器と
、この加算器の出力に接続される位相変換器と、この位
相変換器の出力に接続される正弦波発生器と、前記位相
変換器からの制御信号に応じて前記正弦波発生器の出力
信号の振幅極性を変換する振幅極性変換器とで構成した
ことを特徴とするディジタル電圧制御発振器。
(1) An adder that inputs the phase error signal quantized at the sampling period and cumulatively adds the constant value from the center frequency setter and the phase error signal every sampling period, and the output of this adder. a sine wave generator connected to the output of the phase converter; and an amplitude converting the amplitude polarity of the output signal of the sine wave generator in accordance with a control signal from the phase converter. A digital voltage controlled oscillator characterized by comprising a polarity converter.
JP62274734A 1987-10-31 1987-10-31 Digital voltage controlled oscillator Pending JPH01119106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62274734A JPH01119106A (en) 1987-10-31 1987-10-31 Digital voltage controlled oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62274734A JPH01119106A (en) 1987-10-31 1987-10-31 Digital voltage controlled oscillator

Publications (1)

Publication Number Publication Date
JPH01119106A true JPH01119106A (en) 1989-05-11

Family

ID=17545835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62274734A Pending JPH01119106A (en) 1987-10-31 1987-10-31 Digital voltage controlled oscillator

Country Status (1)

Country Link
JP (1) JPH01119106A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04301576A (en) * 1991-03-29 1992-10-26 Nippon Seiki Co Ltd Method of controlling coil driving signal control part in cross coil type instrument apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04301576A (en) * 1991-03-29 1992-10-26 Nippon Seiki Co Ltd Method of controlling coil driving signal control part in cross coil type instrument apparatus

Similar Documents

Publication Publication Date Title
JP3419484B2 (en) Modulator, transmitter
JPS5930308A (en) Phase/amplitude converter
JPH03253108A (en) Direct digital synthesizer and signal generation
US5931891A (en) Digital frequency synthesizer
JPH06177651A (en) Frequency synthesizer
TW507424B (en) Direct digital synthesizer
JP2836526B2 (en) Frequency synthesizer
JPH01119106A (en) Digital voltage controlled oscillator
JPH05206732A (en) Frequency synthesizer
CN115145353A (en) High-frequency resolution digital sine wave generator
US5475627A (en) Digital wave synthesizer with address conversion for reducing memory capacity
JPH11289224A (en) Frequency synthesizer
JPH06216646A (en) Sine wave generator
JP3474126B2 (en) Function Generator
JPH05341871A (en) Function generator
JPH05283937A (en) Digital oscillation circuit
JPH0783263B2 (en) Digital signal generator
JPH07135469A (en) D/a converter
JPH05283985A (en) Digital frequency synthesizer
Karpagavalli et al. Design of Direct Digital Frequency Synthesizer with the Technique of Segmenting in Quarter Wave
JP3013859B2 (en) Frequency synthesizer
JPS6123886B2 (en)
JPH06164386A (en) Frequency synthesizer
JP2853723B2 (en) Pulse width modulation circuit
JPS6148292B2 (en)