JPH01118721A - Flow rate measuring instrument - Google Patents

Flow rate measuring instrument

Info

Publication number
JPH01118721A
JPH01118721A JP27573487A JP27573487A JPH01118721A JP H01118721 A JPH01118721 A JP H01118721A JP 27573487 A JP27573487 A JP 27573487A JP 27573487 A JP27573487 A JP 27573487A JP H01118721 A JPH01118721 A JP H01118721A
Authority
JP
Japan
Prior art keywords
pressure
flow
flow rate
pipe
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27573487A
Other languages
Japanese (ja)
Inventor
Mikima Nakanishi
中西 幹磨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tomoe Technical Research Co Ltd
Original Assignee
Tomoe Technical Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tomoe Technical Research Co Ltd filed Critical Tomoe Technical Research Co Ltd
Priority to JP27573487A priority Critical patent/JPH01118721A/en
Publication of JPH01118721A publication Critical patent/JPH01118721A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To eliminate the need for air bleeding between a measurement tip part and a sensing part by fitting a thin pipe penetrating a cylindrical main body clamped between piping flanges at right angles and fitting >=1 pressure sensor on its surface. CONSTITUTION:The cylindrical main body 12 is clamped 11b between the piping flanges 11a of a conduit 11 and fluid is made to flow, so that the fluid flows around the thin pipe 13 perpendicular to the flow (a) along its surface. Then pressure sensors 14 and 15 (consisting of a semiconductor and a small strain gauge) which are arranged in parallel and at right angles to the flow (a) detect the static pressure and total pressure (dynamic pressure plus static pressure) of the fluid respectively. Their pressure values are connected to a computing element 16 such as an operational amplifier which is provided externally. Then the dynamic pressure, flow velocity, and flow rate are calculated. When plural pressure sensors are used, the mean value of those detected values is calculated. The fitting of this device to the piping 11 is facilitated and measuring operation is speeded up.

Description

【発明の詳細な説明】 〔産業上の利用分野) 本発明は、配管内を流れる流体の静圧及び総圧をそれぞ
れ検出して流量を算出するようにした流量測定装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a flow rate measuring device that calculates a flow rate by detecting the static pressure and total pressure of a fluid flowing in a pipe.

(従来の技術〕・ 従来、流量の測定には、種々の方式があり、流体に関す
るベルヌーイの定理より差圧を測定するピトー管による
流量測定もその一つである。このものは、第4図の原理
図に示すように、管1の先端に孔2が、また周面に孔3
がそれぞれ開孔され、液管jの内部を貫通する通路2a
及び3aを経て、圧力計4及び5にそれぞれ連通されて
いる。
(Prior art) - Conventionally, there are various methods for measuring flow rate, one of which is flow rate measurement using a Pitot tube, which measures differential pressure based on Bernoulli's theorem regarding fluids. As shown in the principle diagram, there is a hole 2 at the tip of the tube 1, and a hole 3 on the circumference.
A passage 2a that penetrates the inside of the liquid pipe j
and 3a, and are connected to pressure gauges 4 and 5, respectively.

上記ピトー管1を、矢印方向の流れaの中に平行に位置
させた場合、液管1の先端では流体がせき止められるた
め、開孔2部に作用する圧力Pは、流体の静圧Ps及び
動圧Pdを合わせた総圧(Ps +Pd)を表わし、ま
た開孔3部に作用する圧力は静圧Psを表わし、これら
の両正力値(よ、それぞれ圧力検知部つまり圧力計4及
び5によって表示されるようになっている。
When the pitot tube 1 is positioned parallel to the flow a in the direction of the arrow, the fluid is blocked at the tip of the liquid tube 1, so the pressure P acting on the opening 2 is equal to the static pressure Ps of the fluid and It represents the total pressure (Ps + Pd) which is the sum of the dynamic pressure Pd, and the pressure acting on the aperture 3 represents the static pressure Ps. It is now displayed by.

そして、上記両圧力クPとP3の差圧、つまり ゛動圧
Pdを測定することによって、速度 は、V= iτ〒
−−Ps了フ弓−(ρ:流体の密度)=r  (γ:流
体の単位体積重it)となり、流1!tQは Q=A 、 v(A :管の断面積) より求められる。
Then, by measuring the differential pressure between the two pressures P and P3, that is, the dynamic pressure Pd, the speed is calculated as follows: V= iτ〒
--Ps completion curve-(ρ: density of fluid) = r (γ: unit volume weight of fluid it), and the flow is 1! tQ is obtained from Q=A, v (A: cross-sectional area of the tube).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記したピトー管による流量測定は、ピトー管1の先端
2から圧力計4.5による圧力検知部までの管路の空気
(エア)抜きが測定の度に必要で、そのため、実験用と
しては使用できたが、産業用測定器としては使いものに
ならないという問題点があった。
The above-mentioned flow rate measurement using a Pitot tube requires the air to be removed from the pipe from the tip 2 of the Pitot tube 1 to the pressure detection part using the pressure gauge 4.5 each time a measurement is made, so it is not suitable for use in experiments. However, the problem was that it was useless as an industrial measuring instrument.

また、流れに乱れがある場合は、ピトー管1を手動で上
げ下げして平均値をもとめたが、このような操作も実験
用でしか可能でないという問題点があった。
Furthermore, when there was turbulence in the flow, the average value was obtained by manually raising and lowering the pitot tube 1, but there was a problem in that such an operation was only possible for experimental purposes.

本発明は、総圧と静圧の差つまり動圧を計って流量を求
める方式の流量計において、産業用に使えるように、 (i)測定先端部と感知部との間の空気抜きを必要とな
い構造にすること (ii)流れに乱れがある場合、平均値が得られる構造
にすること を技術的課題としている。
The present invention is a flow meter that measures the difference between total pressure and static pressure, that is, dynamic pressure, to determine the flow rate, and in order to be usable for industry, (i) air venting between the measuring tip and the sensing part is required. (ii) The technical challenge is to create a structure that allows an average value to be obtained when there is turbulence in the flow.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記した従来技術の問題点及び技術的課題を
解決するために、配管フランジの間に挾持される円筒状
の本体に、直角方向に細いパイプを貫通して取付け、該
パイプの表面に、流れに平行に配置された静圧測定用の
圧力センサと、流れに直角に配置された総圧測定用の圧
力センサとをそれぞれ取付け、これら両圧力センサの配
線を上記パイプの中を通して外部に取り出して演算器に
°接続し、両圧力センサから検知された圧力値から流量
を算出するようにしたことを特徴としている。
In order to solve the problems and technical problems of the prior art described above, the present invention has been developed by attaching a thin pipe to a cylindrical body sandwiched between piping flanges by penetrating the pipe in a perpendicular direction. A pressure sensor for measuring static pressure placed parallel to the flow and a pressure sensor for measuring total pressure placed perpendicular to the flow are respectively attached to the pipe, and the wiring for both pressure sensors is passed through the pipe and connected to the outside. The feature is that the flow rate is calculated from the pressure values detected by both pressure sensors by taking it out and connecting it to a calculator.

実施に当っては、上記演算器は、アナログで計算すると
きはセンサ出力をオペアンプに入力し、デジタルで計算
するときはマイクロコンピュータに接続されるようにな
っている。
In practice, the arithmetic unit inputs the sensor output to an operational amplifier when performing analog calculations, and is connected to a microcomputer when performing digital calculations.

〔作 用〕[For production]

本発明は上記のように構成されているので、流量を測定
すべき管路の配管フランジの間に円筒状の本体を挾持し
て流体を流すと、該流体は、流れに直交された細いパイ
プの周りを表面に沿って流れる。従って、該パイプの表
面に流れに平行に配置された圧力センサには、流体の静
圧が検知され、また、流れに直角に配置された圧力セン
サには、流体の総圧つまり(動圧+静圧)が検知される
Since the present invention is configured as described above, when the cylindrical main body is sandwiched between the piping flanges of the pipeline whose flow rate is to be measured and the fluid is caused to flow, the fluid flows through the thin pipe that is perpendicular to the flow. flows around the surface. Therefore, a pressure sensor placed parallel to the flow on the surface of the pipe detects the static pressure of the fluid, and a pressure sensor placed perpendicular to the flow senses the total fluid pressure (dynamic pressure + static pressure) is detected.

上記のように圧力センサによって検知された各圧力値は
、パイプ内の配線を経て、外部に設けられたオペアンプ
又はマイクロコンピュータ等の演算Hに接続され、ここ
で上記両センサから検知された静圧Psと総圧Pの差か
ら動圧Pdを求め、該動圧Pdから流速y=iアコ−が
算出され、次いで流ff1Q=A・グが算出される。
Each pressure value detected by the pressure sensor as described above is connected to a calculation H such as an operational amplifier or a microcomputer installed externally through the wiring inside the pipe, where the static pressure detected from both of the above sensors is Dynamic pressure Pd is determined from the difference between Ps and total pressure P, flow velocity y=iac is calculated from the dynamic pressure Pd, and then flow ff1Q=A·g is calculated.

上記演算は、アナログで行なうときは圧力センサの出力
をオペアンプに入力し、デジタルで行なうときは該出力
をマイクロコンピュータに人力する。
When performing the above calculation in an analog manner, the output of the pressure sensor is inputted into an operational amplifier, and when performed in a digital manner, the output is manually input to a microcomputer.

〔実施例〕〔Example〕

次に、本発明の実施例を図面と共に説明する。 Next, embodiments of the present invention will be described with reference to the drawings.

第1図は、本発明の一実施例を示す流量測定装置の要部
樅断面図、第2図は第1図■−■線による側面図、第3
図は、第2図■−■線による断面図である。
Fig. 1 is a sectional view of the main part of a flow rate measuring device showing one embodiment of the present invention, Fig. 2 is a side view taken along the line ■-■ in Fig. 1, and Fig. 3
The figure is a sectional view taken along the line ■-■ in FIG. 2.

図において、2個の配管11.11の両フランジlla
、lla間に円筒状の本体12がポルトzbで挾持され
、該本体12に直角方向に細いパイプ13が貫通して取
付けられている。
In the figure, both flanges lla of two pipes 11.11
, lla, a cylindrical main body 12 is held between the ports zb, and a thin pipe 13 is attached to the main body 12 so as to pass through the main body 12 in a perpendicular direction.

上記パイプ13の表面には、流れaに平行に静圧測定用
の1個以上(図で1個)の圧力センサ14が、また流れ
に直角に総圧測定用の1個以上(図で3個)の年カセン
サ15がそれぞれ取付けられている。これらの圧力セン
ナは、半導体や小さいストレンゲージで構成された公知
のものでよく、例えば変換素子に箔ひずみゲージを使用
して変換器内部でブリッジを構成した小型・薄肉な構造
の圧力変換器等がある。
On the surface of the pipe 13, there are one or more pressure sensors 14 (one in the figure) parallel to the flow a for measuring static pressure, and one or more pressure sensors 14 (three in the figure) perpendicular to the flow for measuring the total pressure. A total of 15 sensors 15 are installed respectively. These pressure sensors may be well-known ones made of semiconductors or small strain gauges, such as pressure transducers with a small and thin structure that use a foil strain gauge as a transducer element and form a bridge inside the transducer. There is.

上記2種類の各圧力センサ14.15は、パイプ13内
で、外部に導かれた配線14a、15aにそれぞれ接続
され、これら配線14a、15aは演算器16に接続さ
れる。該演算器16は、アナログで行なうときはセンサ
出力をオペアンプ(オペレーシゴンアンプ)に入力され
、デジタルで行なうときは該出力をマイクロコンピュー
タに入力されるように構成されている。
Each of the two types of pressure sensors 14 and 15 is connected within the pipe 13 to wirings 14a and 15a led to the outside, respectively, and these wirings 14a and 15a are connected to a computing unit 16. The arithmetic unit 16 is configured such that the sensor output is input to an operational amplifier when analog processing is performed, and the output is input to a microcomputer when digital processing is performed.

上記のように構成されているので、圧力センサ14によ
って静圧Psが検出され、また圧力センサ15によって
総圧力Pが検出され、これらの検出値は、配線14a、
15aによって演算器16に導かれ、ここで先ず、動圧
Pdが、Pd=P−Psより算出され、次いで流速Vが
 =fiiア〒より算出され、更に流量QがQ=A −
Vより算出される。この際、圧力センサ15は3個使用
されているので、流体の総圧は、これら3個の圧力セン
サによる検出値の平均値となる。
With the above configuration, the static pressure Ps is detected by the pressure sensor 14, and the total pressure P is detected by the pressure sensor 15, and these detected values are transmitted to the wiring 14a,
15a to the calculator 16, where first the dynamic pressure Pd is calculated from Pd=P-Ps, then the flow velocity V is calculated from =fiiA〒, and the flow rate Q is calculated from Q=A-Ps.
Calculated from V. At this time, since three pressure sensors 15 are used, the total pressure of the fluid is the average value of the values detected by these three pressure sensors.

上記した実施例において、円筒状の本体12に貫通して
設けられるパイプ13を1本で構成した構造について説
明したが、該パイプは十字形にしたり、格子状にするこ
とも可能である。このようにして圧力検出個所を増やす
ことにより、流量測定値を、実際に配管内部を流れる流
量に近づけることが可能である。
In the above-described embodiments, a structure is described in which a single pipe 13 is provided to penetrate through the cylindrical main body 12, but the pipe can also be formed into a cross shape or a lattice shape. By increasing the number of pressure detection points in this way, it is possible to bring the measured flow rate closer to the flow rate that actually flows inside the pipe.

また、圧力センサの取付位置並びに取付個数等について
も、管内における流れの状態等に応じて適宜選定される
Further, the mounting position and number of pressure sensors to be mounted are also appropriately selected depending on the flow state in the pipe.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、配管フランジの
間に挾持される円筒状の本体に、細いパイプを直角方向
に貫通して取付け、該パイプの表面に、流れに平行に配
置された静圧測定用の圧力センサと流れに直角に配置さ
れた総圧測定用の圧力センサとを取付け、これら両圧力
センサの配線を、上記パイプの中を通して外部の演算器
に接続して流量を算出するようにしたことにより、次の
ような効果が奏される。
As explained above, according to the present invention, a thin pipe is attached to the cylindrical body held between piping flanges by penetrating it in a perpendicular direction, and a thin pipe is installed on the surface of the pipe parallel to the flow. A pressure sensor for measuring static pressure and a pressure sensor for measuring total pressure placed perpendicular to the flow are installed, and the wiring for both pressure sensors is connected to an external calculator through the above pipe to calculate the flow rate. By doing so, the following effects can be achieved.

(i)配管内を流れる流体の流量を、配管フランジの間
に円筒状の本体を挾持させて行なうことができるで、当
該測定装置の配管への取付は作業が容易である。
(i) The flow rate of the fluid flowing inside the pipe can be determined by sandwiching the cylindrical body between the piping flanges, making it easy to attach the measuring device to the pipe.

(ii )圧力センサは半導体や小さいストレンゲージ
で構成されているので薄くて小さく、パイプの表面に取
付けても流れに影響を与えることが少なく、また圧力導
入部と検知部が一敗しているので、従来のビート管のよ
うにこれら両部間に空気が溜ることがない。従って測定
操作が迅速に行われる。
(ii) Pressure sensors are made of semiconductors and small strain gauges, so they are thin and small, and even when installed on the surface of a pipe, they have little effect on the flow, and the pressure introduction part and detection part are completely destroyed. Therefore, unlike conventional beat tubes, air does not accumulate between these two parts. Therefore, the measurement operation can be carried out quickly.

(ij)圧力センサによって配管内を流れる流体の静圧
も測定しているので、流量と同時に圧力値も得られる。
(ij) Since the static pressure of the fluid flowing in the pipe is also measured by the pressure sensor, the pressure value can be obtained at the same time as the flow rate.

(iv)可動部がないので、寿命が長い。(iv) Long lifespan as there are no moving parts.

(v)多点測定が容易であるので、かなり流れが乱れて
いても測定することができる。
(v) Since multi-point measurement is easy, measurements can be made even if the flow is considerably turbulent.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す流量測定装置の要部縦
断面図、第2図は第1図I[−IN綿による側面図、第
3図は第2図■−■線による断面図、第4図は従来例を
示す説明図である。 11・・・配管、      lla・・・フランジ、
12・・・円筒状本体、   13・・・パイプ、14
・・・静圧測定用圧力センサ、 15・・・総圧測定用圧力センサ、 14a、15a・・・配線、16・・・演算器。 第2図
Fig. 1 is a longitudinal cross-sectional view of the main part of a flow rate measuring device showing one embodiment of the present invention, Fig. 2 is a side view of Fig. 1 I[-IN cotton, and Fig. 3 is drawn from Fig. 2 The sectional view and FIG. 4 are explanatory diagrams showing a conventional example. 11... Piping, lla... Flange,
12... Cylindrical body, 13... Pipe, 14
...Pressure sensor for measuring static pressure, 15...Pressure sensor for measuring total pressure, 14a, 15a... Wiring, 16... Arithmetic unit. Figure 2

Claims (1)

【特許請求の範囲】 1、配管フランジの間に挾持される円筒状の本体に、直
角方向に細いパイプを貫通して取付け、該パイプの表面
に、流れに平行に配置された静圧測定用の圧力センサと
、流れに直角に配置された総圧測定用の圧力センサとを
それぞれ取付け、これら両圧力センサの配線を上記パイ
プの中を通して外部に取り出して演算器に接続し、両圧
力センサから検知された圧力値から流量を算出するよう
にしたことを特徴とする流量測定装置。 2、上記演算器がオペアンプ又はマイクロコンピュータ
からなっている特許請求の範囲第1項記載の流量測定装
置。 3、上記両圧力センサが、場所を変えて複数個取付けら
れるようになっている特許請求の範囲第1項記載の流量
測定装置。
[Claims] 1. A thin pipe is attached to a cylindrical body held between piping flanges by penetrating it in a right angle direction, and a static pressure measuring device is placed on the surface of the pipe parallel to the flow. A pressure sensor and a pressure sensor for measuring the total pressure placed perpendicular to the flow are installed, and the wiring for both pressure sensors is taken out through the above pipe and connected to a computing unit, and the wiring from both pressure sensors is connected to the computer. A flow rate measuring device characterized in that a flow rate is calculated from a detected pressure value. 2. The flow rate measuring device according to claim 1, wherein the arithmetic unit comprises an operational amplifier or a microcomputer. 3. The flow rate measuring device according to claim 1, wherein a plurality of both pressure sensors can be installed at different locations.
JP27573487A 1987-11-02 1987-11-02 Flow rate measuring instrument Pending JPH01118721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27573487A JPH01118721A (en) 1987-11-02 1987-11-02 Flow rate measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27573487A JPH01118721A (en) 1987-11-02 1987-11-02 Flow rate measuring instrument

Publications (1)

Publication Number Publication Date
JPH01118721A true JPH01118721A (en) 1989-05-11

Family

ID=17559643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27573487A Pending JPH01118721A (en) 1987-11-02 1987-11-02 Flow rate measuring instrument

Country Status (1)

Country Link
JP (1) JPH01118721A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0634416A (en) * 1992-07-15 1994-02-08 Tlv Co Ltd Vortex flowmeter
EP0763718A1 (en) * 1994-06-03 1997-03-19 Tokyo Gas Co., Ltd. Flowmeter
KR102623666B1 (en) * 2023-06-15 2024-01-11 (주)우연시스템 Fire Hydrant Pipeline Monitoring System

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS616724B2 (en) * 1980-01-31 1986-02-28 Sumitomo Heavy Industries

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS616724B2 (en) * 1980-01-31 1986-02-28 Sumitomo Heavy Industries

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0634416A (en) * 1992-07-15 1994-02-08 Tlv Co Ltd Vortex flowmeter
EP0763718A1 (en) * 1994-06-03 1997-03-19 Tokyo Gas Co., Ltd. Flowmeter
EP0763718A4 (en) * 1994-06-03 1997-11-05 Tokyo Gas Co Ltd Flowmeter
KR102623666B1 (en) * 2023-06-15 2024-01-11 (주)우연시스템 Fire Hydrant Pipeline Monitoring System

Similar Documents

Publication Publication Date Title
US4696194A (en) Fluid flow measurement
JPH07504744A (en) Non-intrusive fluid sensing system
WO2005010469A3 (en) A dual function flow measurement apparatus having an array of sensors
JPH0618541A (en) Method and device for measuring unstationary flow rate
EP3488192B1 (en) Vortex flowmeter with reduced process intrusion
US7308832B1 (en) Strain gage differential pressure measurement in a fluid flow meter
US7201067B2 (en) System and method for determining flow characteristics
US4735100A (en) Fluid flow sensor having multiplying effect
US10724879B2 (en) Flow measuring device operating on the vortex counter principle
CN201858993U (en) Device for measuring flow quantity of double-directional unstable fluid flow
JPH01118721A (en) Flow rate measuring instrument
US4573346A (en) Method of measuring the composition of an oil and water mixture
JPS59184832A (en) Differential pressure measuring device
JP3119782B2 (en) Flowmeter
JP2019506608A5 (en)
JP3615371B2 (en) Airflow measuring device
JPH09101186A (en) Pitot-tube type mass flowmeter
US3662599A (en) Mass flowmeter
KR20060016557A (en) Pitot tube and flow velocity measurement method and system using it
US3453868A (en) Specific gravity measuring system for interface detection
WO2005012881A3 (en) An apparatus and method for providing a density measurement augmented for entrained gas
RU2037796C1 (en) Strain flowmeter
CA2506399A1 (en) An apparatus and method for providing a flow measurement compensated for entrained gas
JP3252187B2 (en) Flowmeter
JPH03108613A (en) Measuring method of average flow velocity within conduit