JPH03108613A - Measuring method of average flow velocity within conduit - Google Patents

Measuring method of average flow velocity within conduit

Info

Publication number
JPH03108613A
JPH03108613A JP1245076A JP24507689A JPH03108613A JP H03108613 A JPH03108613 A JP H03108613A JP 1245076 A JP1245076 A JP 1245076A JP 24507689 A JP24507689 A JP 24507689A JP H03108613 A JPH03108613 A JP H03108613A
Authority
JP
Japan
Prior art keywords
flow velocity
water
depth
pipe
calculated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1245076A
Other languages
Japanese (ja)
Other versions
JPH0820291B2 (en
Inventor
Atsushi Matsuo
淳 松尾
Fumihiko Iwashita
岩下 文彦
Shintaro Ikeda
新太郎 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kokan Koji KK
Original Assignee
Nippon Kokan Koji KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Koji KK filed Critical Nippon Kokan Koji KK
Priority to JP1245076A priority Critical patent/JPH0820291B2/en
Publication of JPH03108613A publication Critical patent/JPH03108613A/en
Publication of JPH0820291B2 publication Critical patent/JPH0820291B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To improve the measuring accuracy of an average flow velocity by obtaining an extra coefficient using a specific formula based on a hydraulic mean depth calculated from the depth of water and the diameter of a tube, equivalent roughness of the tube, mounting position of a sensor and the depth of water, and multiplying the obtained extra coefficient with the flow velocity. CONSTITUTION:A sensor 1 is placed at a fixed position (y) from the bottom of a tube 11 by a sensor holder 15. A flow velocity V at the position (y) is detected by a flow velocity sensor of the sensor 1. At the same time, a depth of water H to the surface of water 12 is measured by a level gauge. A cross sectional area A of the flowing water within the tube 11 and a peripheral length L of the tube 11 in contact with the flowing water are calculated from a diameter D of the tube 11 and the depth of water H, and a hydraulic mean depth R is calculated from the cross sectional area A and peripheral length L. Moreover, an extra coefficient alpha is calculated from an equivalent roughness Ks determined by the hydraulic mean depth R, depth of water H, position (y) and kind of the tube 11 with using a formula. The average flow velocity within the tube 11 can be obtained by multiplying the flow velocity V with the coefficient alpha.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、例えば下水道管渠内に流れる流体の平均流
速測定方法、特に測定精度の向上に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for measuring the average flow velocity of a fluid flowing, for example, in a sewer pipe, and particularly to improving measurement accuracy.

[従来の技術] 例えば時間的な変動が大きい下水管渠内の滝川を高精度
に測定することは、下水の総組規制や処理場におけるプ
ロセスの状況監視と制御卸等のために必要である。
[Prior art] For example, highly accurate measurement of waterfalls in sewage pipes, which have large temporal fluctuations, is necessary for overall sewage regulation, process status monitoring and control at treatment plants, etc. .

従来、下水管渠内の流量を測定する方法としては、フリ
ュームを用いて限界流を発生させ、その上流水深を超音
波等を使用した水位計で検出して流量を測定する方法や
、ベンチュリー管内の差圧により流速を検出したり、超
音波や電磁式の流速計で流速を検出して流量を算出する
方法等が用いられている。
Conventionally, methods for measuring the flow rate in sewer pipes include using a flume to generate a critical flow and measuring the flow rate by detecting the upstream water depth with a water level meter using ultrasonic waves, etc. Methods such as detecting the flow velocity based on the differential pressure between the two or calculating the flow rate by detecting the flow velocity using an ultrasonic or electromagnetic current meter are used.

しかしながら、管内の流速は第5図(a)(b)の流速
分布図に示すように同一直径りの断面を有する管11で
あっても、管11の管底から水面12までの水深Hが異
なると流速分布13も異なる。したがって、管11内の
流量を正確に測定するためには、管ll内の流水断面各
部の流速を測定して平均流速を算出する必要がある。し
かしながら、この方法で平均流速を求めるためには多く
の測定位置で流速を繰返し測定しなければならず、その
測定がわずられしくて実用的ではなかった。そこで、例
えば米国特許4.083.246号に示すように、管1
1の底部で測定した流速Vに補正係数f(H)を乗算し
て平均流速VAVを算出する方法が採られている。
However, as shown in the flow velocity distribution diagrams in FIGS. 5(a) and 5(b), even if the pipes 11 have cross-sections with the same diameter, the water depth H from the bottom of the pipe 11 to the water surface 12 will vary. If they are different, the flow velocity distribution 13 will also be different. Therefore, in order to accurately measure the flow rate in the pipe 11, it is necessary to measure the flow velocity at each part of the flowing water cross section in the pipe 11 and calculate the average flow velocity. However, in order to obtain the average flow velocity using this method, it is necessary to repeatedly measure the flow velocity at many measurement positions, which makes the measurement laborious and impractical. Therefore, as shown in U.S. Pat. No. 4.083.246, for example, the tube 1
A method has been adopted in which the average flow velocity VAV is calculated by multiplying the flow velocity V measured at the bottom of 1 by a correction coefficient f(H).

米国特許4.083.246号に開示された平均流速の
測定方法は、第6図に示すように管径りに対する水深H
の割合H/Dで変化する補正係数f (H)をあらかじ
め求めておき、流体内に先端を挿入した空気配管に送ら
れる空気のあわが生じる圧力を検出して水深Hを求め、
測定した水深Hと管径りの割合すなわち相対水深H/ 
Dから補正係数「(H)を読み出し測定流速■に乗算し
て平均流速VAvを算出している。
The method for measuring the average flow velocity disclosed in U.S. Pat. No. 4,083,246 is as shown in Fig.
The correction coefficient f (H), which changes at the ratio H/D, is determined in advance, and the water depth H is determined by detecting the pressure at which air bubbles are generated when the air is sent to the air pipe whose tip is inserted into the fluid.
The ratio of the measured water depth H to the pipe diameter, that is, the relative water depth H/
The average flow velocity VAv is calculated by reading out the correction coefficient "(H) from D and multiplying it by the measured flow velocity ■.

[発明が解決しようとする課題] しかしながら、管ll内の流速分布は管径りと水GHの
みならず管11の種類、すなわち管内面のあらさ等によ
っても異なる。したがって、上記のように管径りに対す
る水深Hの割合H/Dで得られる補正係数「(H)によ
り測定流速Vを修正して平均流速VAVを算出する方法
においては、管の種類に応じて補正係数「(H)を求め
ておかないと正確な平均流速VAvを得ることができな
いという短所があった。
[Problems to be Solved by the Invention] However, the flow velocity distribution within the pipe 11 differs not only depending on the pipe diameter and the water GH but also on the type of the pipe 11, that is, the roughness of the inner surface of the pipe. Therefore, in the method of calculating the average flow velocity VAV by correcting the measured flow velocity V using the correction coefficient "(H)" obtained by the ratio H/D of the water depth H to the pipe diameter as described above, There was a disadvantage that an accurate average flow velocity VAv could not be obtained unless the correction coefficient "(H) was determined.

また、管の種類に応じて補正係数f (H)を求めるこ
とは容易でなく、かつ求めた各補正係数f(H)を記憶
させるためには大容量の記憶手段が必要であるという短
所もあった。
Another disadvantage is that it is not easy to determine the correction coefficient f(H) depending on the type of pipe, and a large-capacity storage means is required to store each of the determined correction coefficients f(H). there were.

この発明はかかる短所を解決するためになされたもので
あり、高精度な平均流速を簡単に求めることができる管
渠内の平均流速測定方法を提案することを目的とするも
のである。
The present invention has been made to solve these shortcomings, and it is an object of the present invention to propose a method for measuring the average flow velocity in a pipe conduit, which can easily determine the average flow velocity with high accuracy.

[課題を解決するための手段〕 この発明に係る管渠内の平均流速測定方法は、管内底面
に水位計と流速計とからなるセンサを設置して管内の水
i f(と流速を同時に検出し、上記水位計で検出した
水深Hと管径とから流水断面積で定まる径深Rを算出し
、算出した径深Rと管の種類で定まる相当粗度ksと上
記センサの取付位rffy及び検出した水深Hとから次
式で定まる割増し係数αを算出し、 算出した割増し係数αに上記流速計で検出した流速Vを
乗算して平均流速を算出することを特徴とする。
[Means for Solving the Problem] The method for measuring the average flow velocity in a pipe according to the present invention is to install a sensor consisting of a water level meter and a current meter on the bottom surface of the pipe to simultaneously detect the water i f (and the flow velocity) in the pipe. Then, from the water depth H detected by the water level gauge and the pipe diameter, calculate the diameter depth R determined by the cross-sectional area of the flowing water, and calculate the calculated diameter depth R, the equivalent roughness ks determined by the type of pipe, the mounting position rffy of the sensor, and It is characterized in that an additional coefficient α determined by the following formula is calculated from the detected water depth H, and the average flow velocity is calculated by multiplying the calculated additional coefficient α by the flow velocity V detected by the current velocity meter.

[作用] この発明においては、管内底部に設置した水位計と流速
計からなるセンサで管内の水G Hと流速■を検出し、
検出した水深Hと既知の管径りと種の種類で定まる相当
粗度ks及びセンサの取付位置yとから水深■(と相当
粗度ksにより変動する割増し係数αを算出し、この割
増し係数を検出した流速Vに乗算して補正することによ
り管内の平均流速VAvを算出する。
[Function] In this invention, the water GH and flow velocity in the pipe are detected by a sensor consisting of a water level meter and a current meter installed at the bottom of the pipe,
From the detected water depth H, the known pipe diameter, the equivalent roughness ks determined by the type of seed, and the sensor installation position y, calculate the additional coefficient α that varies depending on the water depth (and the equivalent roughness ks), and use this additional coefficient as The average flow velocity VAv in the pipe is calculated by multiplying and correcting the detected flow velocity V.

[実施例] 第1図はこの発明の一実施例に係る平均流速測定装置を
示すブロック図である。図において、lはセンサであり
、センサIは例えば第2図に示すように、先端部が流れ
を乱さないように角錐台状をし、このセンサ1内に電磁
銹導を利用した流速計2と、流速計2の後段底部に取り
付けられ流水断面水位に相当する圧力でたわむダイアフ
ラム3aとダイアフラム3aのたわみを検出する半導体
ストレインゲージ3bとからなる水位計3及びプリアン
プ4が一体に形成されている。
[Embodiment] FIG. 1 is a block diagram showing an average flow velocity measuring device according to an embodiment of the present invention. In the figure, l is a sensor, and sensor I has a truncated pyramid shape at the tip so as not to disturb the flow, as shown in FIG. A water level gauge 3 and a preamplifier 4 are integrally formed, each of which includes a diaphragm 3a that is attached to the rear bottom of the current meter 2 and is deflected by a pressure corresponding to the cross-sectional water level of the flowing water, and a semiconductor strain gauge 3b that detects the deflection of the diaphragm 3a. .

5は管内面の抵抗係数を定める径深Rすなわち開水路に
おける流水断面積を水に接する周辺の長さで割った値を
算出する径深演算手段、6は径深演算手段5で算出した
径深Rと水位計3で検出した水深H、管内面のあらさで
定まる相当粗度ks及びセンサlの管底に対する取付は
位ff1yとから割増し係数αを算出する割増し係数演
算手段である。7は割増し係数演算手段6で演算した割
増し係数αを流速Vに乗算して管内の平均流速V Al
lを算出する乗算手段であり、センサlと径深演算手段
51割増し係数演算手段61乗算手段7及び管pI!D
等を入力する入力手段で平均流速測定装置の制御部を構
成している。
5 is a diameter depth calculation means that calculates the diameter depth R that determines the resistance coefficient of the inner surface of the pipe, that is, the value obtained by dividing the cross-sectional area of flowing water in an open channel by the length of the periphery in contact with water, and 6 is the diameter calculated by the diameter depth calculation means 5. The extra coefficient calculation means calculates the extra coefficient α from the depth R, the water depth H detected by the water level gauge 3, the equivalent roughness ks determined by the roughness of the inner surface of the tube, and the position ff1y of the sensor l attached to the bottom of the tube. 7 multiplies the flow velocity V by the extra coefficient α calculated by the extra coefficient calculation means 6 to calculate the average flow velocity V Al in the pipe.
It is a multiplication means for calculating l, and includes the sensor l, the diameter/depth calculation means 51, the extra coefficient calculation means 61, the multiplication means 7, and the pipe pI! D
The control unit of the average flow velocity measuring device is composed of an input means for inputting the following information.

8は流1演算手段であり、滝川演算手段8は径深演算手
段5で算出した流水断面積Aと平均流速■□から滝川Q
を算出する。
8 is a flow 1 calculation means, and the Takigawa calculation means 8 calculates the Takigawa Q from the flowing water cross-sectional area A calculated by the diameter depth calculation means 5 and the average flow velocity ■□.
Calculate.

上記のように構成された実施例の動作を説明するにあた
り、まずこの発明の詳細な説明する。
Before explaining the operation of the embodiment configured as described above, the present invention will first be explained in detail.

第5図(a)、(b)に示すように、自然流下方式によ
る管11内の流速は等速度分布をするものと想定され、
その流速分布13は水面12の位置により変化する。い
ま、管底部で計測した流速Vと管内の速度分布を考慮し
た平均流速vAvとの比率である割増し係数α=VAv
/vが求められると、計測した流速Vと割増し係数αと
から平均流速VAvが算出される。
As shown in FIGS. 5(a) and 5(b), it is assumed that the flow velocity in the pipe 11 by the gravity flow method has a uniform velocity distribution,
The flow velocity distribution 13 changes depending on the position of the water surface 12. Now, the additional coefficient α = VAv, which is the ratio between the flow velocity V measured at the bottom of the tube and the average flow velocity vAv considering the velocity distribution in the tube.
Once /v is determined, the average flow velocity VAv is calculated from the measured flow velocity V and the additional coefficient α.

ここで、流速分布13を対数分布と仮定すると、開水路
の速度分布はカルマンの対数法則によると(1)式で表
わされる。
Here, assuming that the flow velocity distribution 13 is a logarithmic distribution, the velocity distribution of the open channel is expressed by equation (1) according to Kalman's logarithmic law.

但し、g:重力加速度 R:径深 I:管底勾配 I4:水深 y:管底に対するセンサ取付位置 kzカルマン定数(=0.4) (1)式より したがって、平均流速vAvは(3)式で求めることが
できる。
However, g: Gravitational acceleration R: Diameter depth I: Pipe bottom gradient I4: Water depth y: Sensor mounting position relative to the pipe bottom kz Kalman constant (=0.4) From formula (1), the average flow velocity vAv is calculated by formula (3). It can be found by

■ =V、□ −−7g R1 (3) (2)、(3)式より 一般に、下水管路は完全粗面と考えられることから、流
体摩擦係数をfとすると、 V Av/I g RI = I 8/ f=6.0 
 +5.75  log(R/ks)”(51但し、k
sは相当粗度 (5)式より AV =I gRI  (6,0+5.75 log(R/k
 s) )・ ・ ・ (6) (4)式と(6)式とから割増し係数αを(7)式で得
ることができる。
■ = V, □ −-7g R1 (3) From equations (2) and (3), it is generally assumed that a sewage pipe is a completely rough surface, so if the coefficient of fluid friction is f, then V Av/I g RI =I8/f=6.0
+5.75 log(R/ks)” (51, however, k
s is the equivalent roughness. From equation (5), AV = I gRI (6,0+5.75 log(R/k
s) )・・・・(6) From equations (4) and (6), the extra coefficient α can be obtained using equation (7).

・ ・ ・ ・ (7) (7)式に示すように割増し係数αは管径り。・ ・ ・ ・(7) As shown in equation (7), the additional coefficient α is based on the pipe diameter.

水G H、センサ取付位tidy及び相当粗度ksの関
数となり、センサ取付位置yが一定の場合は相対水深H
/Dの増加とともに大きくなるが、管底勾配とは無関係
になる。
It is a function of water G H, sensor mounting position tidy and equivalent roughness ks, and if sensor mounting position y is constant, relative water depth H
It increases as /D increases, but becomes independent of the tube bottom gradient.

また、(ア)式に示す相当粗度ksを正確に得ることは
困難であるが、相当粗度ksの変動は割増し係数αの算
出に際して殆ど影響を与えない。
Furthermore, although it is difficult to accurately obtain the equivalent roughness ks shown in equation (A), fluctuations in the equivalent roughness ks have little effect on the calculation of the additional coefficient α.

したがって、相当粗度ksとしては管の種類に応じた平
均的な相当粗度ksを使用してもよい。
Therefore, as the equivalent roughness ks, an average equivalent roughness ks depending on the type of pipe may be used.

そこで、管径りと相当粗度ksを既知数として、センサ
1を一定位置yに設置して水深11を計測することによ
り、その水深Hに対応した割増し係数αを算出すること
ができる。
Therefore, by setting the sensor 1 at a fixed position y and measuring the water depth 11 with the pipe diameter and the equivalent roughness ks as known quantities, it is possible to calculate the additional coefficient α corresponding to the water depth H.

以下、上記原理に基くこの発明の実施例の動作を説明す
る。
The operation of the embodiment of the present invention based on the above principle will be explained below.

まず、第3図の斜視図に示すように上端部にターンバッ
クル14を有する環状のセンサホルダ15を使用して先
端を上流側に向けたセンサlを管11の底部から一定位
置yに設置する。なお、第3図において、16はセンサ
ケーブルである。
First, as shown in the perspective view of FIG. 3, using an annular sensor holder 15 having a turnbuckle 14 at the upper end, a sensor l with its tip facing upstream is installed at a fixed position y from the bottom of the pipe 11. . In addition, in FIG. 3, 16 is a sensor cable.

次に、センサlの流速計2でセンサ取付位ftyにおけ
る流速Vを計測し、同時に水位計3により水面12まで
の水深Hを計測する。一方、入力手段で測定する管11
の管径り、相当粗度ks及びセンサ取付位置yを平均流
速測定装置の制i卸部に人力する。この入力された管径
りと水位計3により計測された水深Hにより径深演算手
段5で管II内の流水断面積Aと流水に接している管1
1の周長りを算出し、算出した流水断面積へと周長りと
から径深Rを算出する。算出された径深Rは割増し係数
演算手段6に送られ、割増し係数演算手段6で径深7と
水位計3で計測した水深Hと入力手段で入力された相当
粗度ks及びセンサ取付位置yにより(7)式に示す演
算が行なわれて、割増し係数aが算出される。
Next, the flow velocity V at the sensor mounting position fty is measured by the current meter 2 of the sensor l, and at the same time, the water depth H to the water surface 12 is measured by the water level meter 3. On the other hand, the tube 11 to be measured by the input means
The pipe diameter, equivalent roughness ks, and sensor mounting position y are input manually to the control section of the average flow velocity measuring device. Based on the input pipe diameter and the water depth H measured by the water level meter 3, the diameter depth calculation means 5 calculates the cross-sectional area A of the flowing water in the pipe II and the pipe 1 in contact with the flowing water.
The circumferential length of 1 is calculated, and the diameter depth R is calculated from the calculated cross-sectional area of flowing water and the circumferential length. The calculated diameter depth R is sent to the extra coefficient calculation means 6, which calculates the diameter depth 7, the water depth H measured by the water level gauge 3, the equivalent roughness ks inputted by the input means, and the sensor mounting position y. The calculation shown in equation (7) is performed to calculate the extra coefficient a.

第4図は横軸に相対水深H/ D 、縦軸に割増し係数
αをとり、管径D = 800mmの管11で水深Hを
変えながら(7)式により算出した割増し係数aと、実
際にセンサ取付位置yを含む複数箇所で流速を計測して
得た平均流速とから得た割増し係数σの分布特性を示す
。図において、曲線aは(7)式により求めた理論値、
複数の点すは実際の計測により求めた計測値である。図
に示すように、(7)式により求めた割増し係数αと実
際の計測値から得た割増し係数αとの誤差は3σの管理
限界内にすべで含まれ、はとんどlσ内に含まれている
。このため、割増し係数演算手段6で実際に合った割増
し係数αを算出することができる。
Figure 4 shows the relative water depth H/D on the horizontal axis and the extra coefficient α on the vertical axis. The distribution characteristics of the additional coefficient σ obtained from the average flow velocity obtained by measuring the flow velocity at multiple locations including the sensor mounting position y are shown. In the figure, curve a is the theoretical value obtained by equation (7),
The multiple points are measured values obtained through actual measurements. As shown in the figure, the error between the extra coefficient α obtained from equation (7) and the extra coefficient α obtained from the actual measured value is all within the control limit of 3σ, and most of the errors are within lσ. It is. Therefore, the extra coefficient calculating means 6 can calculate an actually suitable extra coefficient α.

この算出された割増し係数αが乗算手段7に送られる。This calculated extra coefficient α is sent to the multiplication means 7.

一方、乗算手段7にはセンサlの流速計2で計測された
流速■も送られ、乗算手段7で流速Vに割増し係数aが
乗算されて、管ll内の平均流速VAvが算出される。
On the other hand, the flow velocity ■ measured by the current meter 2 of the sensor l is also sent to the multiplication means 7, and the multiplication means 7 multiplies the flow velocity V by an additional coefficient a to calculate the average flow velocity VAv in the pipe II.

そして、算出した平均流速■。を流量演算手段8に送り
、径深演算手段5で算出した流水断面積Aを乗算するこ
とにより、管ll内の流ff1Qを算出することができ
る6なお、上記実施例において、流速計2で流速Vを複
数回計測し、その平均値から平均流速V Allを算出
することにより、平均流速vAvを高精度で算出するこ
とができる。
Then, the calculated average flow velocity ■. is sent to the flow rate calculation means 8 and multiplied by the flowing water cross-sectional area A calculated by the diameter depth calculation means 5, the flow ff1Q in the pipe 11 can be calculated. By measuring the flow velocity V multiple times and calculating the average flow velocity V All from the average value, the average flow velocity vAv can be calculated with high accuracy.

[発明の効果] この発明は以上説明したように5管内底部に設置した水
位計と流速計からなるセンサで管内の水深Hと流速Vを
検出し、検出した水?2Hと既知の管径りと管の種類で
定まる相当粗度ks及びセンサの取付位置yとから水深
Hと相当粗度ksにより変動する割増し係数αを算出し
、この割増し係数αを検出した流速Vに乗算して補正す
ることにより管内の平均流速V AVを算出するように
したから、相対水深H/Dと管内面の抵抗係数を考慮し
て平均流速vAvを求めることができ、平均流速VAv
の測定精度を大幅に高めることができる。
[Effects of the Invention] As explained above, this invention detects the water depth H and flow velocity V in the pipe with a sensor consisting of a water level meter and a current velocity meter installed at the bottom of the five pipes, and detects the detected water? 2H, the known pipe diameter, the equivalent roughness ks determined by the type of pipe, and the sensor installation position y, calculate the additional coefficient α that varies depending on the water depth H and the equivalent roughness ks, and calculate the flow velocity at which this additional coefficient α is detected. Since the average flow velocity VAV in the pipe is calculated by multiplying and correcting V, the average flow velocity vAv can be calculated by considering the relative water depth H/D and the resistance coefficient of the inner surface of the pipe, and the average flow velocity VAv
The measurement accuracy can be greatly improved.

また、センサに一体で設置された流速計と水位計で流速
Vと水EHを計測することにより、ただちに平均流速V
AVを得ることができるから、時間的変動が大きい下水
管渠内の流量を高精度で得ることができる。
In addition, by measuring the flow velocity V and water EH with the current meter and water level meter installed integrally with the sensor, the average flow velocity V
Since the AV can be obtained, the flow rate in the sewer pipe, which has large temporal fluctuations, can be obtained with high accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例に係る平均流速測定装置を示
すブロック図、第2図は上記実施例のセンサの構造を示
す説明図、第3図は管に対するセンサの取付状態を示す
斜視図、第4図は相対水深H/Dと割増し係数αの特性
図、第5図(a)。 (b)は各々管内の流速分布を示す流速分布図、第6図
は従来例における補正係数f (H)を示す補正係数特
性図である。 ■・・・・センサ、2・・・・流速計、3・・・・水位
計、5・・・・径深演算手段、6・・・・割増し係数演
算手段、7・・・・乗算手段。
Fig. 1 is a block diagram showing an average flow rate measuring device according to an embodiment of the present invention, Fig. 2 is an explanatory diagram showing the structure of the sensor of the above embodiment, and Fig. 3 is a perspective view showing how the sensor is attached to a pipe. , FIG. 4 is a characteristic diagram of relative water depth H/D and additional coefficient α, and FIG. 5(a). (b) is a flow velocity distribution diagram showing the flow velocity distribution in each pipe, and FIG. 6 is a correction coefficient characteristic diagram showing the correction coefficient f (H) in the conventional example. ■...sensor, 2...current meter, 3...water level meter, 5...diameter depth calculating means, 6...additional coefficient calculating means, 7...multiplying means .

Claims (1)

【特許請求の範囲】  管内底部に水位計と流速計とからなるセンサを設置し
て管内の水深Hと流速を検出し、上記水位計で検出した
水深Hと管径Dとから流水断面積で定まる径深Rを算出
し、 算出した径深Rと管の種類で定まる相当粗度ksと上記
センサの取付位置y及び検出した水深Hとから次式で定
まる割増し係数αを算出し、1/α=1+(1+2.3
log(y/H))/0.4{6.0+5.75log
(R/ks)}算出した割増し係数αに上記流速計で検
出した流速Vを乗算して平均流速を算出することを特徴
とする管渠内の平均流速測定方法。
[Claims] A sensor consisting of a water level meter and a current meter is installed at the bottom of the pipe to detect the water depth H and flow velocity inside the pipe, and the cross-sectional area of the flowing water is calculated from the water depth H and the pipe diameter D detected by the water level gauge. Calculate the determined diameter depth R, calculate the additional coefficient α determined by the following formula from the calculated diameter depth R, the equivalent roughness ks determined by the type of pipe, the mounting position y of the above sensor, and the detected water depth H, and calculate 1/ α=1+(1+2.3
log(y/H))/0.4{6.0+5.75log
(R/ks)} A method for measuring an average flow velocity in a pipe, characterized in that the average flow velocity is calculated by multiplying the calculated additional coefficient α by the flow velocity V detected by the current velocity meter.
JP1245076A 1989-09-22 1989-09-22 Method of measuring average flow velocity in pipe Expired - Lifetime JPH0820291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1245076A JPH0820291B2 (en) 1989-09-22 1989-09-22 Method of measuring average flow velocity in pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1245076A JPH0820291B2 (en) 1989-09-22 1989-09-22 Method of measuring average flow velocity in pipe

Publications (2)

Publication Number Publication Date
JPH03108613A true JPH03108613A (en) 1991-05-08
JPH0820291B2 JPH0820291B2 (en) 1996-03-04

Family

ID=17128239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1245076A Expired - Lifetime JPH0820291B2 (en) 1989-09-22 1989-09-22 Method of measuring average flow velocity in pipe

Country Status (1)

Country Link
JP (1) JPH0820291B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07209045A (en) * 1994-01-07 1995-08-11 Yasushi Nakashin Covered conduit flow rate measuring system by shape recognition
JP2008175631A (en) * 2007-01-17 2008-07-31 Furukawa Electric Co Ltd:The Flow velocity measuring system
CN108775931A (en) * 2018-04-13 2018-11-09 中南大学 A kind of metering of high-temperature fusant discharge capacity and monitoring method
CN113944886A (en) * 2021-10-12 2022-01-18 天津精仪精测科技有限公司 Pipeline rust tumor detection method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102603818B1 (en) * 2021-05-20 2023-11-21 (주) 그린텍아이엔씨 Flow rate correction method according to the water level of the conduit flow metering system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4083246A (en) * 1977-02-28 1978-04-11 Marsh-Mcbirney, Inc. Fluid flow meter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4083246A (en) * 1977-02-28 1978-04-11 Marsh-Mcbirney, Inc. Fluid flow meter

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07209045A (en) * 1994-01-07 1995-08-11 Yasushi Nakashin Covered conduit flow rate measuring system by shape recognition
JP2008175631A (en) * 2007-01-17 2008-07-31 Furukawa Electric Co Ltd:The Flow velocity measuring system
CN108775931A (en) * 2018-04-13 2018-11-09 中南大学 A kind of metering of high-temperature fusant discharge capacity and monitoring method
CN113944886A (en) * 2021-10-12 2022-01-18 天津精仪精测科技有限公司 Pipeline rust tumor detection method
CN113944886B (en) * 2021-10-12 2023-08-08 天津精仪精测科技有限公司 Pipeline rust detection method

Also Published As

Publication number Publication date
JPH0820291B2 (en) 1996-03-04

Similar Documents

Publication Publication Date Title
US4102186A (en) Method and system for measuring flow rate
JP3234894B2 (en) Method and apparatus for measuring unsteady flow velocity
CN108254032A (en) River ultrasonic wave time difference method method of calculating flux
CN113916486B (en) Low-speed wind tunnel rapid pressure measurement and control method based on multi-parameter pressure regression algorithm
EP0598720A1 (en) Nonintrusive flow sensing system.
JPH10508112A (en) Self-calibrating open channel flowmeter
JP3164632U (en) Device for determining the flow rate of a bi-directional unsteady fluid flow
US5467650A (en) Open channel flowmeter
JPH03108613A (en) Measuring method of average flow velocity within conduit
CA1139445A (en) Method and apparatus for determining the individual flow rates of the phases in a two-phase medium
US4393451A (en) Method and apparatus for measuring total liquid volume flow
Reshmin et al. Turbulent flow in a circular separationless diffuser at Reynolds numbers smaller than 2000
JP2733717B2 (en) Two-phase flow meter
JPH09101186A (en) Pitot-tube type mass flowmeter
JP6959642B2 (en) Simple flow measurement method and equipment
CA2506399A1 (en) An apparatus and method for providing a flow measurement compensated for entrained gas
Sârbu Modern water flowmeters: Differential pressure flowmeters
JP3252187B2 (en) Flowmeter
JPH0740179Y2 (en) Flow measurement device detector
JPH01272922A (en) Vortex flowmeter
KR101179749B1 (en) Two phase flow measurement device and method by using fluid borne noise and solid borne noise
CN110260930B (en) Measuring device for measuring flow of roof rain drop pipe
KR101324574B1 (en) Clamp-on type ultrasonic flowmeter and the measuring method of correction data
JP2000002567A (en) Composite type mass flow meter
CN117007159A (en) Flow coefficient detection method for pitot tube differential pressure flowmeter