JP3615371B2 - Airflow measuring device - Google Patents

Airflow measuring device Download PDF

Info

Publication number
JP3615371B2
JP3615371B2 JP29793497A JP29793497A JP3615371B2 JP 3615371 B2 JP3615371 B2 JP 3615371B2 JP 29793497 A JP29793497 A JP 29793497A JP 29793497 A JP29793497 A JP 29793497A JP 3615371 B2 JP3615371 B2 JP 3615371B2
Authority
JP
Japan
Prior art keywords
detector
pressure measurement
fluid
static pressure
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29793497A
Other languages
Japanese (ja)
Other versions
JPH11118547A (en
Inventor
保夫 山本
Original Assignee
ウエツトマスター株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウエツトマスター株式会社 filed Critical ウエツトマスター株式会社
Priority to JP29793497A priority Critical patent/JP3615371B2/en
Priority to CA002249797A priority patent/CA2249797C/en
Priority to US09/173,715 priority patent/US6044716A/en
Publication of JPH11118547A publication Critical patent/JPH11118547A/en
Application granted granted Critical
Publication of JP3615371B2 publication Critical patent/JP3615371B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、管路中を流れる風量を測定する風量測定装置に関する。
【0002】
【従来の技術】
ケーシングの上流側に整流器を設け、下流側にピトー管等の流体圧力検知器を設けた風量測定装置は公知である(実開昭60−80316号公報参照)。
【0003】
【発明が解決しようとする課題】
この公知の風量測定装置は、流体圧力検知器の静圧測定孔が流体の流れ方向に対し、垂直に開孔していることから、渦のない安定した流れでの測定が求められる。そのため上流域に位置する整流器から発生する渦の影響を避けるには、整流器と流体圧力検知器の間に充分な直管部を設ける必要がある。
そして、一般的に流体圧力検知器の静圧測定孔は、流路内の真の静圧を検知する目的で、流体の流れに対して垂直方向に向くよう開口されているため、前述同様、整流器直後に差圧検知体を設けた場合、整流器の直後に生ずる渦流の影響を大きく受ける。そのため、検出圧力の測定精度が悪化するという問題点がある。
【0004】
以上のことから、日本工業規格のJIS B 8330 送風機の試験及び検査方法では、整流器の後の渦流の影響を受けないようにするため、整流器と流体圧力検知器との間の距離を、ケーシングの管径より大きくとることが行われている。このことは整流器を内蔵する風量測定装置にあっては、流体の流れ方向の長さが長くなり、装置として大型化が余儀なくされ、装置の設置スペースが大きくなるという問題点がある。
さらに、管路中の風量を測定する位置は、必ずしも管路が直管の所ばかりではなく、むしろ曲がり管や分岐管直後の狭い場所で測定しなければならない場合が一般的である。その為には風量測定装置自身の流れ方向寸法を短くすると共に、装置上流の直管寸法が短い場所でも測定可能な風量測定装置が要求されるという課題がある。
【0005】
本発明は、上記課題に鑑み、特に流体の流れ方向の寸法を短くして、装置のコンパクト化を図り、管路中への取付け上の制限を緩和させると共に、巾広い用途に対応する新規な流量測定装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明流量測定装置は、ケーシング内の上流側に整流器を設け、下流側に流体圧力検知器を設けた風量測定装置であって、上記流体圧力検知器が、流体の流れ方向に沿うような偏平な略矩形形状の中空体からなると共に、流体の流れ方向の前後の何れかに位置する片側壁を断面円弧状にして、この断面円弧状にした片側壁に複数の圧力測定孔を穿設した全圧測定検知体と静圧測定検知体とからなり、上記全圧測定検知体と静圧測定検知体とが同一形状,同一寸法に形成され、これらを背中合わせに連結してあり、全圧測定検知体の全圧測定孔を流体の流れの上流側に向け、静圧測定検知体の静圧測定孔を流体の流れの下流側に向けて位置付けてあることを特徴とする。
【0007】
また、本発明流量測定装置は、ケーシング内の上流側に整流器を設け、下流側に流体圧力検知器を設けた風量測定装置であって、上記流体圧力検知器が、流体の流れ方向に沿うような偏平な略矩形形状の中空体からなると共に、流体の流れ方向の前後の何れかに位置する片側壁を断面円弧状にして、この断面円弧状にした片側壁に複数の圧力測定孔を穿設した全圧測定検知体と静圧測定検知体とからなり、上記全圧測定検知体と静圧測定検知体とが同一形状,同一寸法に形成され、これらを背中合わせに間隔をおき僅かな空間をおいて配置してあり、全圧測定検知体の全圧測定孔を流体の流れの上流側に向け、静圧測定検知体の静圧測定孔を流体の流れの下流側に向けて位置付けてあることを特徴とする。
【0008】
【発明の実施の形態】
発明の実施の形態を図面に示した実施例に基づいて説明する。
図1及び図2にケーシングが角型の実施例を示してある。図中10がケーシングで、その中の上流側に整流器11が取り付けてある。この整流器11の構造は従前公知のハニカム構造でも、メッシュ構造でもよいし、更には平板間にコルゲート形状の波板を交互に積層構造にした近似ハニカム構造のものでもよい。何れにしてもこの整流器は、種々の環境に耐えられるようステンレス製にすることが耐久性を高める点で望ましい。
【0009】
図中1,1が流体圧力検知器で、上記整流器11の下流側に複数本が平行に配置固定されている。
この流体圧力検知器は、図4及び図5に示すように同一形状及び同一寸法からなる流体圧力検知体1a,1bを背中合わせに連結して構成してある。この流体圧力検知器1a,1bは、偏平な略矩形形状の中空六面体であり、この中空六面体を水平においた状態での平板な上壁2及び下壁3と左右閉塞壁4,4と流体の流れ方向の前後の何れかに位置する前後壁5,5とによって形成されている。上記左右閉塞壁4,4の何れか片側の閉塞壁4に圧力取出口6を設け、前後壁5,5の何れか片側壁5に複数の圧力測定孔7を穿設してある。
そして、それぞれの圧力取出口6,6を同じ方向に位置付けて、それぞれの圧力測定孔7,7が相反する向きになるように背中合わせに連結する。これによって流れの上流側に位置する方を全圧測定孔となる全圧測定検知体とし、下流側に位置する方を静圧測定孔となる静圧測定検知体とする。
図示した実施例では、圧力測定孔7を穿設してある片側壁5を断面円弧状にしてあるが、必ずしも円弧状にすることなく、流れに直角に位置する平板状であってもよい。さらには、流体圧力検知体を偏平にすることなくパイプ形状にしたものであってもよい。
【0010】
上記した流体圧力検知器1は、静圧測定孔が最下流端に位置付くから、流体圧力検知体自体がつくる渦流によって真の静圧より低めの見掛静圧となるため、全圧と見掛静圧との差圧である見掛動圧が真の動圧より大きくなる。特に、動圧の小さくなる低風速域では、真の動圧を検出する装置に比し、圧力の読み誤差率を小さく見積もることができる。また、流体圧力検知体自体がつくる渦流内で静圧を測定することより整流器から発生する渦の影響を受け難くなり、計測精度の向上が期待できる。
また、流体圧力検知器1を偏平な中空体とすることにより、流体圧力検知器自身が、流体の流れを整える作用を有するため効果的である。
【0011】
図3に示した実施例では左右閉塞壁4,4を流体圧力検知体の左右開放部に例えばキャップ状の鋳造品等の嵌め込み型に構成してあり、シール材ならびに接着材を使用して極力溶接加工を少なくし、作業工程を省力化している。
それぞれの圧力取出口6は、ケーシング10から外に突出させてあり、このケーシングに左右閉塞壁4をビス止めして固定してある。
複数の流体圧力検知装置の圧力取出口6を1本の連通管12によって連通し、平均圧力取出口18により平均全圧又は平均静圧を取り出すようにしてある。
また、この連通管12の取付けも図3に示すようにカバー体13を被せ、このカバー体13と一体的にして左右閉塞壁4をビス14によって取り付けるようにしてある。
さらには、連通管をゴムチューブ形状のものとし、チューブに形成した連通孔に圧力取出口6を気密に挿入するだけの構造としてもよい。
【0012】
図6には丸型の本発明装置の実施例が示してある。角型と同様に整流器11を上流側に配置し、流体圧力検知器1を下流側に配置してある。
図6〜8に示すとおり、丸型に取り付けられる流体圧力検知器1は、十字状に組み合わされている。
図示実施例では、4本の流体圧力検知器を中空体からなるセンサーソケット15に、このソケットを中心として放射状に連結してある。それぞれの全圧測定検知体同士及び静圧測定検知体同士をセンサーソケット15の中空部16を介して全圧同士及び静圧同士を平均化させるように連通してある。4つの全圧測定検知体あるいは4つの静圧測定検知体のうちの1つの測定検知体の全圧取出口6及び静圧取出口6にそれぞれの測定検知体内部を貫通するように圧力取出管17を連結し、その内端をセンサーソケット15内に開口させ、平均圧力取出口18より4つの流体圧力検知体の平均全圧又は平均静圧を取り出すようにしてある。
【0013】
図面には示してないが、上記センサーソケットを中心に放射状に複数連結した流体圧力検知器を、流体の流れ方向に直交した異断面に複数段設け、前記複数連結の流体圧力検知器が流体の流れ方向で上流側と下流側に重ならない位置に配備することもできる。
【0014】
図9及び図10に全圧測定検知体1aと静圧測定検知体1bとの間に僅かに空間部8をおいて配置した本発明装置を示してある。
この空間部8をおいて配置した流体圧力検知器1では、流れ方向に対する指向性を低めることができ、迎え角でのヨー特性を高めることができる。このことから上流に位置する整流器の効果と相まって、偏流の著しい条件下や流れの方向が安定しない非定常的な流れの場に於いても検出圧力に誤差を生じにくい装置とすることができた。
実験して得た結果を表として表示し、これを図11に示す。この実験では、既に実用化されている公知の装置(A装置という)と、流体圧力検知体1a,1bを背中合わせに連結した図1,図6に示した装置(B装置という)及び図9及び図10に示した装置(C装置という)とを対比したものである。これによると迎え角0度〜18度の間で好結果を得た。
この実験に使用した実施例は次の通りである。
厚み10mm,幅30mm,長さ200mmの流体圧力検知体であって、圧力測定孔7,7を穿設してある片側壁を円弧状にしてある図3に示した実施例を背中合わせに連結した上記B装置と、同じ寸法のものを使用して流体圧力検知体間を2mmの空間を介して配置した装置を使用し、200mm×300mmのダクト内に配置し、風速毎秒11mの状態でテストした。
【0015】
本発明装置では、流体圧力検知器を流体の流れ方向に沿うような形状の中空体によって構成し、静圧測定検知体の静圧測定孔を下流側に向けて位置付けてあるため、流体圧力検知器自身で誘起した渦流内にて圧力を検知している。これにより、整流器の後の渦流の影響を受けることが少なく、従って流体圧力検知器と整流器との間の寸法を短くすることができる。即ち図2に示すように整流器と流体圧力検知器との間の寸法Lとケーシングの管径Dとの関係をJISの規定より短いL<Dとすることができる。
【0016】
本発明風量計測装置の図6に示す実施例により機能性試験をした結果を図12に示してある。この機能性試験は、412mm直径の丸型装置を使用し、ファン下流にハニカム構造の整流器付きの本発明装置と、整流器なしの装置とを設置し、風速23m/s及び2.5m/sで試験したものである。その結果、整流器の存在により真の風速に対する誤差率がきわめて少なく高精度の測定結果が得られた。
さらに、流体圧力検知器にあっては、全圧測定検知体と静圧測定検知体とを同一形状,同一寸法の構造体とし、これを背中合わせに配置すると、その制作、加工が簡単である。
また、差圧検知体の材質が、アルミや樹脂等であれば、押出し加工が可能であるため、全圧測定検知体と静圧測定検知体とが一体の流体圧力検知器を成形することができた。
【0017】
【発明の効果】
以上の通り、本発明装置では、静圧測定検知体の静圧測定孔を流体の流れの下流側に向けて配置したことにより、整流器から発生する流体の流れの渦の影響を受けにくい利点を有し、整流器の整流効果と相まって測定誤差率を少なくすることができた。
その結果、整流器と流体圧力検知体との間に充分な直管部を設ける必要をなくし、測定装置のコンパクト化を可能とした効果を有する。
従って、管路中のフアンあるいはエルボ直後への装置の取付けも可能となり、管路中への装置の取付けの制限を緩和でき、巾広い用途に対応できるという実用上の大きな効果が得られた。
【図面の簡単な説明】
【図1】角型の本発明装置の実施例の一部切欠斜視図
【図2】同じくその一部切欠側面図
【図3】流体圧力検知器の実施例を示す一部切欠側面図
【図4】流体圧力検知体の基本構造を示す一部切欠斜視図
【図5】同上の基本構造の断面図
【図6】丸型の本発明実施例を示す一部切欠斜視図
【図7】丸型に装備する流体圧力検知器の一部切欠側面図
【図8】同上要部の一部切欠正面図
【図9】流体圧力検知体間に僅かな空間部を設けた角型実施例の一部切欠斜視図
【図10】同じく丸型実施例の一部切欠斜視図
【図11】迎え角のヨー特性の比較を実験により得た表である。
【図12】図6に示す実施例により整流器付きと整流器なしの装置で機能性試験を行った結果を表すグラフである。
【図13】流体の流れ方向と圧力検知体の相対的角度θを示す説明図である。
【符号の説明】
1 流体圧力検知器
1a 流体圧力検知体
1b 流体圧力検知体
2 上壁
3 下壁
4 左右閉塞壁
5 前後壁
6 圧力取出口
7 圧力測定孔
8 空間部
10 ケーシング
11 整流器
12 連通管
13 カバー体
14 ビス
15 センサーソケット
16 中空部
17 圧力取出管
18 平均圧力取出口
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an air volume measuring device that measures an air volume flowing in a pipeline.
[0002]
[Prior art]
An air flow measuring device in which a rectifier is provided on the upstream side of the casing and a fluid pressure detector such as a Pitot tube is provided on the downstream side is known (see Japanese Utility Model Laid-Open No. 60-80316).
[0003]
[Problems to be solved by the invention]
In this known air volume measuring device, since the static pressure measuring hole of the fluid pressure detector is opened perpendicular to the fluid flow direction, measurement with a stable flow without vortex is required. Therefore, in order to avoid the influence of the vortex generated from the rectifier located in the upstream region, it is necessary to provide a sufficient straight pipe portion between the rectifier and the fluid pressure detector.
In general, the static pressure measurement hole of the fluid pressure detector is opened to face in a direction perpendicular to the fluid flow for the purpose of detecting the true static pressure in the flow path. When the differential pressure detector is provided immediately after the rectifier, it is greatly affected by the eddy current generated immediately after the rectifier. Therefore, there is a problem that the measurement accuracy of the detected pressure is deteriorated.
[0004]
From the above, in the Japanese Industrial Standard JIS B 8330 blower test and inspection method, the distance between the rectifier and the fluid pressure detector is set so as not to be affected by the vortex flow after the rectifier. Taking larger than the tube diameter is performed. This is a problem with an air flow measuring device having a built-in rectifier, in which the length in the fluid flow direction becomes longer, the device must be enlarged, and the installation space for the device increases.
Furthermore, the position where the air volume in the pipe is measured is not always limited to a straight pipe, but rather, it must be measured in a narrow place immediately after a bent pipe or a branch pipe. For this purpose, there is a problem that the air flow measuring device itself is required to be shortened in the flow direction size and to be able to measure even in a place where the straight pipe size upstream of the device is short.
[0005]
In view of the above problems, the present invention reduces the size of the apparatus in particular by shortening the dimension in the fluid flow direction, relaxes restrictions on installation in a pipe line, and is a novel type that supports a wide range of applications. It aims at providing a flow measuring device.
[0006]
[Means for Solving the Problems]
The flow rate measuring device of the present invention is an air flow measuring device in which a rectifier is provided on the upstream side in a casing and a fluid pressure detector is provided on the downstream side, wherein the fluid pressure detector is flat so as to follow the fluid flow direction. Rutotomoni such a substantially rectangular shape hollow body, one side wall positioned either before or after the flow direction of the fluid in the arcuate cross-section, bored a plurality of pressure measurement hole on one side wall to the arcuate cross-section It consists of a total pressure measurement sensing element and static pressure measurement sensing body in which said the total pressure measurement sensing element and static pressure measurement sensing member is formed the same shape, the same dimensions, Yes and connecting them back to back, the total pressure The total pressure measurement hole of the measurement detector is directed toward the upstream side of the fluid flow, and the static pressure measurement hole of the static pressure measurement detector is positioned toward the downstream side of the fluid flow.
[0007]
The flow rate measuring device of the present invention is an air volume measuring device in which a rectifier is provided on the upstream side in the casing and a fluid pressure detector is provided on the downstream side, and the fluid pressure detector is arranged along the fluid flow direction. In addition to a flat, generally rectangular hollow body, one side wall located either before or after the fluid flow direction is formed in a circular arc shape, and a plurality of pressure measurement holes are formed in the single side wall. It consists of a total pressure measurement detector and a static pressure measurement detector, and the total pressure measurement detector and the static pressure detection detector are formed in the same shape and dimensions, and they are spaced apart from each other back to back. With the total pressure measurement hole of the total pressure measurement detector facing the upstream side of the fluid flow and the static pressure measurement hole of the static pressure measurement detector facing the downstream side of the fluid flow. It is characterized by being.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described based on examples shown in the drawings.
1 and 2 show an embodiment in which the casing has a square shape. In the figure, reference numeral 10 denotes a casing, and a rectifier 11 is attached to the upstream side thereof. The structure of the rectifier 11 may be a conventionally known honeycomb structure or a mesh structure, or may be an approximate honeycomb structure in which corrugated corrugated plates are alternately laminated between flat plates. In any case, it is desirable that this rectifier is made of stainless steel so that it can withstand various environments from the viewpoint of enhancing durability.
[0009]
In the figure, 1 and 1 are fluid pressure detectors, and a plurality of them are arranged and fixed in parallel on the downstream side of the rectifier 11.
As shown in FIGS. 4 and 5, the fluid pressure detector is configured by connecting fluid pressure detectors 1a and 1b having the same shape and the same size back to back. The fluid pressure detectors 1a and 1b are flat, substantially rectangular hollow hexahedrons, and the flat upper wall 2 and lower wall 3 and the left and right blocking walls 4 and 4 with the hollow hexahedron placed horizontally It is formed by front and rear walls 5 and 5 that are located either before or after in the flow direction. A pressure outlet 6 is provided in one of the left and right blocking walls 4, 4, and a plurality of pressure measurement holes 7 are formed in one of the front and rear walls 5, 5.
Then, the pressure outlets 6 and 6 are positioned in the same direction, and are connected back to back so that the pressure measurement holes 7 and 7 are in opposite directions. Thus, the one located on the upstream side of the flow is the total pressure measurement detector serving as the total pressure measurement hole, and the one located on the downstream side is the static pressure measurement detector serving as the static pressure measurement hole.
In the illustrated embodiment, the one side wall 5 in which the pressure measurement hole 7 is bored has an arcuate cross section, but it may not necessarily be arcuate but may be a flat plate positioned perpendicular to the flow. Further, the fluid pressure detector may be formed into a pipe shape without being flattened.
[0010]
In the fluid pressure detector 1 described above, since the static pressure measurement hole is located at the most downstream end, the apparent static pressure is lower than the true static pressure due to the vortex generated by the fluid pressure detector itself. The apparent dynamic pressure, which is a differential pressure from the applied static pressure, becomes larger than the true dynamic pressure. In particular, in a low wind speed region where the dynamic pressure is small, the pressure reading error rate can be estimated to be smaller than that of a device that detects the true dynamic pressure. In addition, measuring the static pressure in the vortex created by the fluid pressure detector itself makes it less susceptible to vortices generated from the rectifier and can be expected to improve measurement accuracy.
Moreover, since the fluid pressure detector 1 has a flat hollow body, the fluid pressure detector itself has an effect of adjusting the flow of the fluid, which is effective.
[0011]
In the embodiment shown in FIG. 3, the left and right blocking walls 4 and 4 are configured to be fitted into the left and right open portions of the fluid pressure detector, for example, cap-shaped castings, etc., and use seal materials and adhesives as much as possible. The welding process is reduced and the work process is saved.
Each pressure outlet 6 protrudes outward from the casing 10, and the left and right blocking walls 4 are fixed to the casing by screws.
The pressure outlets 6 of the plurality of fluid pressure detection devices are communicated by a single communication pipe 12, and the average total pressure or the average static pressure is taken out by the average pressure outlet 18.
Further, as shown in FIG. 3, the communication pipe 12 is attached by covering the cover body 13 and attaching the left and right blocking walls 4 with screws 14 integrally with the cover body 13.
Furthermore, it is good also as a structure which makes a communicating tube the thing of a rubber tube shape, and inserts the pressure outlet 6 airtightly in the communicating hole formed in the tube.
[0012]
FIG. 6 shows an embodiment of a round device according to the present invention. Similar to the square type, the rectifier 11 is arranged on the upstream side, and the fluid pressure detector 1 is arranged on the downstream side.
As shown in FIGS. 6-8, the fluid pressure detector 1 attached to a round shape is combined in a cross shape.
In the illustrated embodiment, four fluid pressure detectors are radially connected to a sensor socket 15 made of a hollow body with the socket as a center. The total pressure measurement detectors and the static pressure measurement detectors communicate with each other through the hollow portion 16 of the sensor socket 15 so as to average the total pressure and the static pressure. The pressure take-out pipes so that the total pressure outlet 6 and the static pressure outlet 6 of the four total pressure measuring detectors or one of the four static pressure measuring detectors penetrate the inside of the respective measuring detectors. 17 is connected, its inner end is opened in the sensor socket 15, and the average total pressure or average static pressure of the four fluid pressure detectors is taken out from the average pressure outlet 18.
[0013]
Although not shown in the drawing, a plurality of fluid pressure detectors radially connected around the sensor socket are provided in a plurality of stages on different cross sections orthogonal to the fluid flow direction, and the plurality of fluid pressure detectors are connected to each other. It can also be arranged at a position that does not overlap the upstream side and the downstream side in the flow direction.
[0014]
FIG. 9 and FIG. 10 show the device of the present invention in which the space 8 is arranged slightly between the total pressure measurement detector 1a and the static pressure measurement detector 1b.
In the fluid pressure detector 1 arranged with the space portion 8 disposed, the directivity with respect to the flow direction can be lowered, and the yaw characteristic at the angle of attack can be enhanced. From this, coupled with the effect of the rectifier located upstream, it was possible to make the device less susceptible to errors in the detected pressure even under extreme drift conditions and unsteady flow fields where the flow direction is not stable. .
The results obtained from the experiment are displayed as a table, which is shown in FIG. In this experiment, a known device (referred to as device A) that has already been put into practical use, the device (referred to as device B) shown in FIGS. 1 and 6 in which fluid pressure detectors 1a and 1b are connected back to back, FIG. This is a comparison with the apparatus shown in FIG. 10 (referred to as “C apparatus”). According to this, good results were obtained at an angle of attack of 0 to 18 degrees.
Examples used in this experiment are as follows.
3 is a fluid pressure detector having a thickness of 10 mm, a width of 30 mm, and a length of 200 mm, in which one side wall provided with pressure measurement holes 7 and 7 has an arc shape, and the embodiment shown in FIG. A device having the same dimensions as the above-mentioned device B, and a device in which the fluid pressure detectors are arranged through a space of 2 mm was placed in a 200 mm × 300 mm duct and tested at a wind speed of 11 m / sec. .
[0015]
In the device of the present invention, the fluid pressure detector is constituted by a hollow body shaped so as to follow the fluid flow direction, and the static pressure measurement hole of the static pressure measurement detector is positioned toward the downstream side. The pressure is detected in the vortex induced by the vessel itself. This makes it less susceptible to vortex flow after the rectifier, thus reducing the dimension between the fluid pressure detector and the rectifier. That is, as shown in FIG. 2, the relationship between the dimension L between the rectifier and the fluid pressure detector and the tube diameter D of the casing can be set to L <D, which is shorter than JIS regulations.
[0016]
FIG. 12 shows the result of the functionality test performed by the embodiment shown in FIG. 6 of the air flow measuring device of the present invention. In this functional test, a 412 mm diameter round device was used, and the present invention device with a rectifier having a honeycomb structure and a device without a rectifier were installed downstream of the fan, and the wind speed was 23 m / s and 2.5 m / s. Tested. As a result, due to the presence of the rectifier, the error rate with respect to the true wind speed was extremely small, and highly accurate measurement results were obtained.
Furthermore, in the fluid pressure detector, if the total pressure measuring detector and the static pressure measuring detector are structured with the same shape and the same dimensions and are arranged back to back, their production and processing are easy.
Also, if the material of the differential pressure detector is aluminum, resin, etc., extrusion processing is possible, so a fluid pressure detector in which the total pressure measurement detector and the static pressure measurement detector are integrated can be formed. did it.
[0017]
【The invention's effect】
As described above, in the device of the present invention, the static pressure measurement hole of the static pressure measurement detector is arranged toward the downstream side of the fluid flow, so that it is less susceptible to the influence of the fluid flow vortex generated from the rectifier. The measurement error rate can be reduced in combination with the rectification effect of the rectifier.
As a result, there is no need to provide a sufficient straight pipe portion between the rectifier and the fluid pressure detector, and the measurement apparatus can be made compact.
Therefore, it is possible to attach the device immediately after the fan or elbow in the pipe line, and it is possible to alleviate restrictions on the installation of the apparatus in the pipe line, and to obtain a great practical effect that it can be used for a wide range of applications.
[Brief description of the drawings]
FIG. 1 is a partially cutaway perspective view of an embodiment of the square-type device of the present invention. FIG. 2 is a partially cutaway side view of the same. FIG. 3 is a partially cutaway side view of an embodiment of a fluid pressure detector. 4] Partially cutaway perspective view showing the basic structure of the fluid pressure sensing body [FIG. 5] Cross-sectional view of the basic structure same as above [FIG. 6] Partially cutaway perspective view showing an embodiment of the present invention of a round shape [FIG. Fig. 8 is a partially cutaway side view of the main part of the fluid pressure detector provided in the mold. Fig. 8 is a partially cutaway front view of the main part of the same. Partial cutaway perspective view. FIG. 10 is a partially cutaway perspective view of the same circular embodiment. FIG. 11 is a table obtained by experiment to compare yaw characteristics of angles of attack.
12 is a graph showing the results of a functional test performed on a device with and without a rectifier according to the embodiment shown in FIG.
FIG. 13 is an explanatory diagram showing a fluid flow direction and a relative angle θ of the pressure detector.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Fluid pressure detector 1a Fluid pressure detector 1b Fluid pressure detector 2 Upper wall 3 Lower wall 4 Left and right obstruction wall 5 Front and rear wall 6 Pressure outlet 7 Pressure measurement hole 8 Space part 10 Casing 11 Rectifier 12 Communication pipe 13 Cover body 14 Screw 15 Sensor socket 16 Hollow part 17 Pressure extraction pipe 18 Average pressure outlet

Claims (2)

ケーシング内の上流側に整流器を設け、下流側に流体圧力検知器を設けた風量測定装置であって、上記流体圧力検知器が、流体の流れ方向に沿うような偏平な略矩形形状の中空体からなると共に、流体の流れ方向の前後の何れかに位置する片側壁を断面円弧状にして、この断面円弧状にした片側壁に複数の圧力測定孔を穿設した全圧測定検知体と静圧測定検知体とからなり、上記全圧測定検知体と静圧測定検知体とが同一形状,同一寸法に形成され、これらを背中合わせに連結してあり、全圧測定検知体の全圧測定孔を流体の流れの上流側に向け、静圧測定検知体の静圧測定孔を流体の流れの下流側に向けて位置付けてあることを特徴とする風量測定装置。An air volume measuring device provided with a rectifier on the upstream side in a casing and a fluid pressure detector on the downstream side, wherein the fluid pressure detector is a flat, substantially rectangular hollow body that follows the fluid flow direction. Tona Rutotomoni, one side wall positioned either before or after the flow direction of the fluid in the arcuate cross-section, the total pressure measurement sensing element and bored a plurality of pressure measurement hole on one side wall to the arcuate cross-section It consists of a static pressure measurement detector, and the total pressure measurement detector and the static pressure measurement detector are formed in the same shape and the same dimensions, and are connected back to back. An air volume measuring device, wherein the hole is positioned toward the upstream side of the fluid flow, and the static pressure measuring hole of the static pressure measurement detector is positioned toward the downstream side of the fluid flow. ケーシング内の上流側に整流器を設け、下流側に流体圧力検知器を設けた風量測定装置であって、上記流体圧力検知器が、流体の流れ方向に沿うような偏平な略矩形形状の中空体からなると共に、流体の流れ方向の前後の何れかに位置する片側壁を断面円弧状にして、この断面円弧状にした片側壁に複数の圧力測定孔を穿設した全圧測定検知体と静圧測定検知体とからなり、上記全圧測定検知体と静圧測定検知体とが同一形状,同一寸法に形成され、これらを背中合わせに間隔をおき僅かな空間をおいて配置してあり、全圧測定検知体の全圧測定孔を流体の流れの上流側に向け、静圧測定検知体の静圧測定孔を流体の流れの下流側に向けて位置付けてあることを特徴とする風量測定装置。An air volume measuring device provided with a rectifier on the upstream side in a casing and a fluid pressure detector on the downstream side, wherein the fluid pressure detector is a flat, substantially rectangular hollow body that follows the fluid flow direction. Tona Rutotomoni, one side wall positioned either before or after the flow direction of the fluid in the arcuate cross-section, the total pressure measurement sensing element and bored a plurality of pressure measurement hole on one side wall to the arcuate cross-section It consists of a static pressure measurement detector, the total pressure measurement detector and the static pressure measurement detector are formed in the same shape and the same dimensions, and they are arranged back to back with a slight space, Air flow measurement, characterized in that the total pressure measurement hole of the total pressure measurement detector is directed toward the upstream side of the fluid flow, and the static pressure measurement hole of the static pressure measurement detector is positioned toward the downstream side of the fluid flow apparatus.
JP29793497A 1997-10-16 1997-10-16 Airflow measuring device Expired - Lifetime JP3615371B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP29793497A JP3615371B2 (en) 1997-10-16 1997-10-16 Airflow measuring device
CA002249797A CA2249797C (en) 1997-10-16 1998-10-08 Fluid pressure detector and air flow rate measuring apparatus using same
US09/173,715 US6044716A (en) 1997-10-16 1998-10-16 Fluid pressure detector and air flow rate measuring apparatus using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29793497A JP3615371B2 (en) 1997-10-16 1997-10-16 Airflow measuring device

Publications (2)

Publication Number Publication Date
JPH11118547A JPH11118547A (en) 1999-04-30
JP3615371B2 true JP3615371B2 (en) 2005-02-02

Family

ID=17852992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29793497A Expired - Lifetime JP3615371B2 (en) 1997-10-16 1997-10-16 Airflow measuring device

Country Status (1)

Country Link
JP (1) JP3615371B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009297498A (en) * 2008-04-08 2009-12-24 Cardinal Health 203 Inc Flow sensor

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011122795A (en) * 2009-12-14 2011-06-23 Hibiya Eng Ltd Air volume adjustment device
KR101326189B1 (en) * 2012-08-20 2013-11-07 주식회사 대한인스트루먼트 Average pitot tube type flow meter
JP6498541B2 (en) * 2015-06-16 2019-04-10 山洋電気株式会社 measuring device
EP3064904B1 (en) 2015-03-06 2023-06-07 Sanyo Denki Co., Ltd. Measurement device
CN110631235B (en) * 2019-09-26 2023-10-24 国药奇贝德(上海)工程技术有限公司 Wind speed and air quantity measuring device and efficient air port with same
WO2023151565A1 (en) * 2022-02-09 2023-08-17 付成 Modular flow measurement method and apparatus, and application

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009297498A (en) * 2008-04-08 2009-12-24 Cardinal Health 203 Inc Flow sensor
US8888711B2 (en) 2008-04-08 2014-11-18 Carefusion 203, Inc. Flow sensor
US9375166B2 (en) 2008-04-08 2016-06-28 Carefusion 203, Inc. Flow sensor
US9713438B2 (en) 2008-04-08 2017-07-25 Carefusion 203, Inc. Flow sensor

Also Published As

Publication number Publication date
JPH11118547A (en) 1999-04-30

Similar Documents

Publication Publication Date Title
US6044716A (en) Fluid pressure detector and air flow rate measuring apparatus using same
EP0255056B1 (en) Method for measuring the speed of a gas flow
US4343194A (en) Flow sensing apparatus
US6487918B1 (en) Airflow sensor for averaging total pressure
US7228750B2 (en) Apparatus and method for measuring fluid flow
JP3615371B2 (en) Airflow measuring device
US3981193A (en) Fluid pressure sensing apparatus
EP0137623B1 (en) A flowmeter
US20020178837A1 (en) Apparatus and method for measuring fluid flow
JP2006162417A (en) Total pressure/static pressure measuring venturi system flow measuring device
FI81447C (en) ANALYZING FOLLOWING VOLUME IN BLAESTER.
JP7034480B2 (en) Fluid pressure detector
CN108318090B (en) Flowmeter suitable for large-caliber pipeline flow measurement
JP3615369B2 (en) Fluid pressure detector
JP3657354B2 (en) Dynamic pressure measuring device
JP2004294147A (en) Current meter
CN114838228A (en) Machining method of smoke air duct measuring section and smoke air duct measuring section
JPH09101186A (en) Pitot-tube type mass flowmeter
JP3615370B2 (en) Fluid pressure detector
US7013738B2 (en) Flow sensor
JP2001194193A (en) Flow meter
KR100500532B1 (en) Pitot cone assembly for flow measurement
CN215980061U (en) Flow velocity sensor, fan and cleaning equipment
CA1049810A (en) Fluid pressure sensing apparatus
JP3083598U (en) Average wind speed measuring device in pipeline

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041029

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term